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Abstract — This paper presents a new framework of 

personalized multimodal signal processing specifically tuned into 

Augmented Reality (AR) environments. Our approach is based 

upon advanced Machine Learning (ML) algorithms to create 

adaptive interfaces through the integration of audio, visual, and 

haptic signals that respond preferentially to individual user traits 

and behaviors. Our focus is on interactive real-time signal 

processing with respect to gesture and facial recognition and 

personalized content delivery in AR applications. The system is 

evaluated through a user study, showing a significant increase in 

user engagement and its quality through the mix of interactivity 

factor when compared to existing non-personalized approaches. 

The results emphasize the effectiveness of personalized signal 

processing overhaul toward human-computer interaction (HCI) 

for the future AR tech developments. 

Keywords — personalized signal processing; Augmented 

Reality; multimodal HCI;real-time content adaptation; 

I.  INTRODUCTION 

The proliferation of Augmented Reality (AR) is placing 
new parameters around interaction among computers and 
humans, including different immersive experiences that 
transverse the physical and digital [1]. However, the success 
of any AR system is subject to each individual's adjustments, 
which is paramount in ensuring higher user engagement and 
satisfaction. With that said, the standard AR systems mostly 
treat users as homogeneous entities, not considering the 
different preferences, behaviours, and cognitive loads of 
individuals [2]. This limitation brings forth the need to 
suitably approach personalized multimodal signal processing, 
which combines the many sensory inputs, including those of 
audio, visual, and haptic signals, to produce adaptive and 
responsible AR interfaces. 

Personalized multimodal signal processing becomes that 
much more relevant in the AR environments, where 
individuals interact with virtual objects overlaying the real 
world [3]. For example, in AR-based training applications for 
medical students, some possible implementations include 
adjusting the complexity of visual instructions based on 
indications expressed by the user, including facial expressions 
that can denote confusion or comprehension. Again, haptic 

feedback in games may be adjusted to meet the particular 
sensitivity to tactile stimuli that each individual should have to 
immerse themselves in AR gaming. These examples point to 
revolutionizing what personalization can achieve in AR; 
however, many challenges still need resolution, such as real-
time signal processing, multimodal data fusion, and modelling 
user behaviours.  

This paper addresses these challenges by proposing a 
broad framework for personalized multimodal signal 
processing in AR environments. Our approach embodies 
combining cutting-edge machine learning skills with advanced 
signal processing algorithms to create adaptive interfaces 
responding to individual users in real-time. The framework is 
designed to build upon its modularity to integrate itself 
smoothly with existing AR systems. Our emphasis on 
personalization should merge the rift between stereotypical 
AR interfaces and user-centric experiences; hence, more 
intuitive human-computer interaction (HCI) in AR business 
applications will be realized. 

The remainder of this paper is organized as follows. 
Section II reviews related work in multimodal signal 
processing and personalization in AR. Section III presents the 
proposed framework, detailing its architecture and key 
components. Section IV describes the experimental setup and 
evaluation metrics. Section V discusses the results and their 
implications for AR applications. Finally, Section VI 
concludes the paper and outlines future research directions. 

II. RELATED WORK 

Though it has been a blaze of interest for the last few years 
due to the ever-increasing demand for immersive interactive 
experiences,  integration of the multi-modal signal processing 
in AR started focusing more or less on visual signal 
processing, where earlier techniques used computer vision to 
track objects and overlay virtual content [6-10]. Nonetheless, 
multi-modal signal processing started surfacing after AR used 
instances including healthcare, education, and entertainment 
[11, 12]. As an example, in AR-based surgery simulation 
training, exclusively vision-based signals do not offer a sense 
of realism during the act; haptic feedback along with sound 
signals could bolster the intensity of training [13]. 



The increase in ML innovations recently has further sped 
up the evolution of multimodal signal processing techniques 
[14]. Exceptional successes with deep architectures have been 
achieved in the areas of gesture recantation, facial analysis, 
and emotion recognition [15]. These models would equip AR 
systems to interpret complex user behaviours and 
appropriately adapt responses to them [16-19]. For instance, 
an autonomous virtual assistant in the AR environment can 
relate the user's tone of voice with their facial expression to 
determine a user's emotional state and accordingly adapt an 
interaction style [20]. However, most existing systems treat all 
users as one and fail to personalize the experience, not 
considering differences of the individual concerning interests 
and behaviour. 

In different applied perspectives, personalization 
techniques in AR had been elaborated so far, still very less is 
done on the integration of multimodal signal processing 
therein. Very few works focused on either personalizing visual 
content according to the user his/her preference or adaptive 
haptic feedback, with no consideration of synergy between 
various modalities while offering adaptive AR experiences 
[21-25]. For example, an AR set-up involving personalization 
of visual content but lone in ignoring the auditory or haptic 
signals will not deliver orderly user experience [26]. This 
obviously raises the necessity for an integrated modality 
framework for successful tailoring of an AR experience  to 
individual users. 

The proposed personalized multimodal signal processing 
framework for AR would lay down the guidelines and 
protocols to circumvent the hurdles faced by the existing 
approaches. By combining advanced machine learning 
techniques with real-time signal processing, we aim to create 
AR interfaces that are immersive, adaptive, and user-centric. 
This framework marks a major step forward in AR research, 
opening up new possibilities for improving human-computer 
interaction across a wide range of applications. 

III. PROPOSED FRAMEWORK 

The proposed framework for personalizing multimodal 
signal processing in augmented reality environments tends 
toward the issues of real-time adaptability and user-centricity. 
The proposed framework comprises three main components: a 
multimodal signal acquisition module, a personalization 
engine, and an adaptive interface. Fig. 1 illustrates the 
proposed framework.  

 
Fig. 1 Personalized multimodal signal processing framework for AR 

The multimodal signal acquisition module is responsible 
for receiving and processing audio-, visual-, and haptic-based 
signals both from the user and in the surroundings, as shown 
in S=waA+wvV+whH, where S is the final processed signal, 
A,V,H represent audio, visual, and haptic inputs, and  wa, wv 
and wh are their respective importance weights, which can be 
adjusted dynamically based on user interactions. In an AR-
based fitness application, for instance, this application could 
respond to the user in real-time based on the user's bodily 
movements, voice commands, and heart rate. 

A variety of machine learning algorithms are used by the 
main engine, namely the personalization engine, to analyze the 
captured signals and provide personalized responses. This 
engine used a hybrid of supervised and unsupervised methods 
for modelling user preferences and behaviours. For instance, 
an AR shopping application would use the engine to analyze 
the gaze patterns of the user, along with their purchase history 
to recommend products suited to the user, as shown in: 

 
where P(U∣D) is the probability of user preference U given 
observed data D, P(D∣U) is the likelihood of observed data 
given the user model, P(U) is the prior probability of user 
preference, and P(D) is the evidence (normalization factor). 
The engine also employs the rein-forcing learning method to 
update its responses over time so that the AR ecosystem can 
evolve along with the user, as shown in:   

 
where Rt is the total expected reward, ri is the reward at step i, 
γ is the discount factor (0 < γ < 1) that determines how much 
past interactions influence current decisions. 

The adaptive interface is responsible for providing 
personalized responses for the user in a very frustrating sense. 
It integrates visual, auditory, and haptic feedback to create a 
unique user experience. For instance, in an AR-based 
navigation system, the operational interface could provide 
visual directions, auditory hints, and haptic vibrations that will 
guide the user through a complex environment in an organized 
manner. Its modular construction permits changes based on 
specific AR applications rather easily. 



The proposed framework uses a combination of Python 
and C++ for real-time signal processing, whereas TensorFlow 
handles the machine learning aspect. The framework is 
predicted to be validated through several similar experiments 
that could prove it to adapt to specific users and enhance user 
interaction mechanisms in AR systems. It depicts the 
capability of this framework in HCI in AR to change the 
nature of interactions and, thus, possibilities towards 
personalized immersive experiences. 

IV. EXPERIMENTAL SETUP 

To test the proposed framework's efficiency, a series of 
experiments were performed in a controlled AR environment. 
The experiments included the tasks to evaluate the 
framework's ability to process multimodal signals in real time 
and adjust to individual users. The particular setup included a 
Microsoft HoloLens 2 AR headset, a haptic feedback glove, 
and a high-fidelity microphone array to capture audio signals. 
Unity3D simulated the AR environment and overlaid virtual 
objects onto physical space (Table I).  

TABLE I.  EXPERIMENTAL SETUP. 

Component Description 

AR Headset Microsoft HoloLens 2 for spatial 

computing 
Haptic Feedback Haptic feedback glove for tactile 

interaction 

Audio Capture High-fidelity microphone array for 
speech and tone analysis 

AR Simulation Unity3D for rendering virtual objects 

and interaction 
Machine Learning TensorFlow for real-time multimodal 

signal processing 

 

A total of 30 participants aged 20-45 were recruited to 
perform several tasks that focused on different aspects of the 
framework such as gesture recognition, facial expression 
analysis, and personalized content delivery (Table II). 

TABLE II.  PATRICIPANT DEMOGRAPHICS. 

Age Group Number of participants 

20-25 6 

20-30 7 
31-35 6 

36-40 5 

41-45 6 

 

Participants were asked to perform certain common hand 
gestures for the purpose of gesture recognition: swipe, pinch, 
and rotate. The servo motor controlling gesture recognition 
results was evaluated in real-time, and the corresponding 
accuracy, precision, recall, and F1-score were calculated. For 
facial expression, images were presented to evoke responses 
like happiness, surprise, and confusion. The score was based 
on the recognition and interpretation of expression about 
accuracy by the time taken to react to the experiment's 
completion. In the personalized content delivery task, several 
options were recommended by the virtual assistant based on 
the user's preference and behaviour (Table III).  

TABLE III.  EXPERIMENTAL TASKS AND METRICS. 

Task Metrics 

Gesture Recognition F1-score, Accuracy, Precision, 
Recall 

Facial Expression Analysis Recognition Accuracy, Response 

Time 
Personalized Content Delivery User Satisfaction Score, Engagement 

 

The effectiveness of the recommendation was evaluated 
based on user satisfaction and engagement.  

The experiments yielded results that proved the framework 
in real-time processing of multimodal inputs and that it has 
tailored to the needs of individual participants. The gesture 
recognition task achieved a mean F1-score of 0.92, thereby 
declaring its highly precise identification of hand movements. 
Similarly, expression analysis had a mean accuracy of 0.89 
with an average 172.765ms response time. In addition, the 
exploratory study on personalized content delivery had high 
user satisfaction, at around 4.5/5 on average, indicating that 
the users were indeed very engaged and satisfied (Table IV). 

TABLE IV.  EXPERIMENTAL RESULTS. 

Metric Value 

Gesture Recognition (F1-score) 0.92 

Facial Expression Analysis 
(Accuracy) 

0.89 

Facial Expression Analysis 
(Response Time) 

172.765 ms 

User Satisfaction Score 4.5/5 

 

All these are informative to the framework's potential in 
improving HCI within AR environments for customized and 
immersive experiences. 

V. RESULTS AND DISCUSSION 

Cumulatively, the experimental results present a strong 
case for the efficacy of this proposed framework as a means to 
enhance HCI in AR environments. A fair balance of 
outstanding accuracy with the lowest possible gesture 
recognition and facial expression task latencies speaks 
volumes about real-time multimodal signal processing-a 
prerequisite for AR applications, in which lag will certainly 
affect user engagement and immersion quality. Participant 
feedback also reflects strong satisfaction with personalized 
content delivery and engagement levels. 

One major foundation of strengths offered through the 
designed framework is its modular paradigm, permitting 
personalizations driven for particular demands of various AR 
applications. However, in the AR training setup, it can be 
changed or reconfigured in the favour of visual and haptic 
feedback. On the contrary, when in a gaming setup, the same 
could be changed with a better focus on auditory and visual 
cue prioritizing. Thus this modular feature justifies its 
application in almost all walks of life, such as healthcare, 
education, entertainment, and retail domains. 



Another significant contribution evidenced via the 
experiments is the personalization-driven user engagement. 
The subjects consistently reported a preference for the 
personalized AR system over the non-personalized system in 
terms of their satisfaction and participation. This finding 
emphasizes the role of personalization in AR, where user 
engagement is a major factor in the acceptance of the 
application. With individual user considerations, the proposed 
framework becomes a potent aid in improving user 
engagement and satisfaction. 

While these results are certainly promising, there are 
several limitations of this framework. First is the adoption of 
the pre-established user profiles that may not cover the entire 
range of individual preferences and behaviours. Future work 
remains to find advanced machine learning algorithms such as 
deep reinforcement learning to create dynamic user profiles. 
The heavy reliance on external hardware such as the haptic 
feedback glove may bring practicality issues in many AR 
applications. Investigating alternative haptic feedback actions-
such as ultrasonic haptics, may overcome this limitation. 

VI. CONCLUSION AND FUTURE WORK 

This paper presents a new framework for personalized 
multimodal signal processing in AR environments. The 
framework combines adaptive audio, visual, and haptic 
interfaces to react to each user in real time. The experimental 
results showed the framework's ability to enhance the AR 
experience of human-computer interaction, thus extending 
opportunities for personalized and immersive experiences. The 
modular character of the framework permits diverse AR 
applications, healthcare and education included, with 
applications in entertainment and retail. 

Future work may focus on addressing certain limitations of 
the current framework, such as whether it has predefined user 
profiles and whether there has been reliance on external 
hardware. Further studies will encompass the applicability of 
advanced machine learning techniques, for example deep 
reinforcement learning, in building with time evolving 
dynamic user profiles. Other haptic feedback modalities, such 
as ultrasonic haptics, are truly worth exploring to improve on 
the practicality of the framework. We shall also conduct 
larger-scale user studies in order to further validate the 
effectiveness of the framework while exploring its application 
potentials in new domains. 

The framework is a big leap forwards for AR, creating new 
opportunities to provide enhancement in HCI via personalized 
multimodal signal processing. The framework bridges general 
AR interfaces with user-centered experiences and might 
transform interaction with AR systems, thus paving the way 
for more intuitive, engaging, and immersive applications. 

 

REFERENCES 

[1] K. Subramanian, L. Thomas, M. Sahin, and F. Sahin, “Supporting 
human–robot interaction in manufacturing with augmented reality and 
effective human–computer interaction: A review and framework,” 
Machines, vol. 12, no. 10, p. 706, 2024. Available: 
https://doi.org/10.3390/machines12100706. 

[2] Y. K. Dwivedi et al., “Metaverse beyond the hype: Multidisciplinary 
perspectives on emerging challenges, opportunities, and agenda for 
research, practice and policy,” Int. J. Inf. Manage., vol. 66, p. 102542, 
2022. Available: https://doi.org/10.1016/j.ijinfomgt.2022.102542. 

[3] L. Chen, H. Zhao, C. Shi, Y. Wu, X. Yu, W. Ren, Z. Zhang, and X. Shi, 
“Enhancing multi-modal perception and interaction: An augmented 
reality visualization system for complex decision making,” Systems, vol. 
12, no. 1, p. 7, 2024. Available: 
https://doi.org/10.3390/systems12010007. 

[4] J. C. Kim, T. H. Laine, and C. Åhlund, “Multimodal interaction systems 
based on Internet of Things and augmented reality: A systematic 
literature review,” Appl. Sci., vol. 11, no. 4, p. 1738, 2021. Available: 
https://doi.org/10.3390/app11041738. 

[5] M. N. A. Nor’a, A. W. Ismail, and M. Y. F. Aladin, “Interactive 
augmented reality pop-up book with natural gesture interaction for 
handheld,” in Encyclopedia of Computer Graphics and Games, N. Lee, 
Ed. Cham: Springer, 2024. Available: https://doi.org/10.1007/978-3-
031-23161-2_365. 

[6] D. Cortes, B. Bermejo, and C. Juiz, “The use of CNNs in 
VR/AR/MR/XR: A systematic literature review,” Virtual Reality, vol. 
28, p. 154, 2024. Available: https://doi.org/10.1007/s10055-024-01044-
6. 

[7] Shahabaz and S. Sarkar, "Increasing Importance of Joint Analysis of 
Audio and Video in Computer Vision: A Survey," in IEEE Access, vol. 
12, pp. 59399-59430, 2024, doi: 10.1109/ACCESS.2024.3391817. 

[8] U. Sulubacak, O. Caglayan, S. A. Grönroos, et al., “Multimodal machine 
translation through visuals and speech,” Mach. Transl., vol. 34, pp. 97–
147, 2020. Available: https://doi.org/10.1007/s10590-020-09250-0. 

[9] M. J. Lazaro, J. Lee, J. Chun, M. H. Yun, and S. Kim, “Multimodal 
interaction: Input-output modality combinations for identification tasks 
in augmented reality,” Appl. Ergon., vol. 105, p. 103842, 2022. 
Available: https://doi.org/10.1016/j.apergo.2022.103842. 

[10] M. Venkatesan, H. Mohan, J. R. Ryan, C. M. Schürch, G. P. Nolan, D. 
H. Frakes, and A. F. Coskun, “Virtual and augmented reality for 
biomedical applications,” Cell Rep. Med., vol. 2, no. 7, p. 100348, July 
2021. Available: https://doi.org/10.1016/j.xcrm.2021.100348. 

[11] J. Fu, H. Wang, R. Na, A. Jisaihan, Z. Wang, and Y. Ohno, “Recent 
advancements in digital health management using multi-modal signal 
monitoring,” Math. Biosci. Eng., vol. 20, no. 3, pp. 5194–5222, 2023. 
Available: https://doi.org/10.3934/mbe.2023241. 

[12] A. Barua, M. U. Ahmed and S. Begum, "A Systematic Literature 
Review on Multimodal Machine Learning: Applications, Challenges, 
Gaps and Future Directions," in IEEE Access, vol. 11, pp. 14804-14831, 
2023, doi: 10.1109/ACCESS.2023.3243854. 

[13] S. Azher, A. Mills, J. He, T. Hyjazie, J. Tokuno, A. Quaiattini, and J. M. 
Harley, “Findings favor haptics feedback in virtual simulation surgical 
education: An updated systematic and scoping review,” Surg. Innov., 
vol. 31, no. 3, pp. 331–341, June 2024. Available: 
https://doi.org/10.1177/15533506241238263. 

[14] M. M. Taye, “Understanding of machine learning with deep learning: 
Architectures, workflow, applications and future directions,” Computers, 
vol. 12, no. 5, p. 91, 2023. Available: 
https://doi.org/10.3390/computers12050091. 

[15] A. Rehman, M. Mujahid, A. Elyassih, B. AlGhofaily, and S. A. O. 
Bahaj, “Comprehensive Review and Analysis on Facial Emotion 
Recognition: Performance Insights into Deep and Traditional Learning 
with Current Updates and Challenges,” Comput. Mater. Contin., vol. 82, 
no. 1, pp. 41–72, 2025. https://doi.org/10.32604/cmc.2024.058036 

[16] M. Ismael, R. McCall, F. McGee, I. Belkacem, M. Stefas, J. Baixauli, 
and D. Arl, “Acceptance of augmented reality for laboratory safety 
training: Methodology and an evaluation study,” Front. Virtual Real., 
vol. 5, p. 1322543, 2024. Available: 
https://doi.org/10.3389/frvir.2024.1322543. 

[17] C. Papakostas, C. Troussas, A. Krouska, and C. Sgouropoulou, 
“Personalization of the learning path within an augmented reality spatial 
ability training application based on fuzzy weights,” Sensors, vol. 22, 
no. 18, p. 7059, 2022. Available: https://doi.org/10.3390/s22187059. 

[18] G. Singh and F. Ahmad, “An interactive augmented reality framework to 
enhance the user experience and operational skills in electronics 

https://doi.org/10.3390/machines12100706
https://doi.org/10.1016/j.ijinfomgt.2022.102542
https://doi.org/10.3390/systems12010007
https://doi.org/10.3390/app11041738
https://doi.org/10.1007/978-3-031-23161-2_365
https://doi.org/10.1007/978-3-031-23161-2_365
https://doi.org/10.1007/s10055-024-01044-6
https://doi.org/10.1007/s10055-024-01044-6
https://doi.org/10.1007/s10590-020-09250-0
https://doi.org/10.1016/j.apergo.2022.103842
https://doi.org/10.1016/j.xcrm.2021.100348
https://doi.org/10.3934/mbe.2023241
https://doi.org/10.1177/15533506241238263
https://doi.org/10.3390/computers12050091
https://doi.org/10.32604/cmc.2024.058036
https://doi.org/10.3389/frvir.2024.1322543
https://doi.org/10.3390/s22187059


laboratories,” Smart Learn. Environ., vol. 11, p. 5, 2024. Available: 
https://doi.org/10.1186/s40561-023-00287-1. 

[19] L. Tanzi, P. Piazzolla, F. Porpiglia, et al., “Real-time deep learning 
semantic segmentation during intra-operative surgery for 3D augmented 
reality assistance,” Int. J. Comput. Assist. Radiol. Surg., vol. 16, pp. 
1435–1445, 2021. Available: https://doi.org/10.1007/s11548-021-02432-
y. 

[20] D. Park and K. Namkung, “Exploring users’ mental models for 
anthropomorphized voice assistants through psychological approaches,” 
Appl. Sci., vol. 11, no. 23, p. 11147, 2021. Available: 
https://doi.org/10.3390/app112311147. 

[21] N. Karhu, J. Rantala, A. Farooq, et al., “The effects of haptic, visual and 
olfactory augmentations on food consumed while wearing an extended 
reality headset,” J. Multimodal User Interfaces, 2024. Available: 
https://doi.org/10.1007/s12193-024-00447-8. 

[22] W. Kim and S. Xiong, “Pseudo-haptic button for improving user 
experience of mid-air interaction in VR,” Int. J. Hum.-Comput. Stud., 

vol. 168, p. 102907, 2022. Available: 
https://doi.org/10.1016/j.ijhcs.2022.102907. 

[23] K. Lyu, A. Brambilla, A. Globa, and R. de Dear, “An immersive 
multisensory virtual reality approach to the study of human-built 
environment interactions,” Autom. Constr., vol. 150, p. 104836, 2023. 
Available: https://doi.org/10.1016/j.autcon.2023.104836. 

[24] J. K. Gibbs, M. Gillies, and X. Pan, “A comparison of the effects of 
haptic and visual feedback on presence in virtual reality,” Int. J. Hum.-
Comput. Stud., vol. 157, p. 102717, 2022. Available: 
https://doi.org/10.1016/j.ijhcs.2021.102717. 

[25] A. Watkins, R. Ghosh, A. Ullal, et al., “Instilling the perception of 
weight in augmented reality using minimal haptic feedback,” Sci. Rep., 
vol. 14, p. 24894, 2024. Available: https://doi.org/10.1038/s41598-024-
75596-7. 

[26] J. Li, “Beyond sight: Enhancing augmented reality interactivity with 
audio-based and non-visual interfaces,” Appl. Sci., vol. 14, no. 11, p. 
4881, 2024. Available: https://doi.org/10.3390/app14114881. 

 

https://doi.org/10.1186/s40561-023-00287-1
https://doi.org/10.1007/s11548-021-02432-y
https://doi.org/10.1007/s11548-021-02432-y
https://doi.org/10.3390/app112311147
https://doi.org/10.1007/s12193-024-00447-8
https://doi.org/10.1016/j.ijhcs.2022.102907
https://doi.org/10.1016/j.autcon.2023.104836
https://doi.org/10.1016/j.ijhcs.2021.102717
https://doi.org/10.1038/s41598-024-75596-7
https://doi.org/10.1038/s41598-024-75596-7
https://doi.org/10.3390/app14114881

