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Abstract—This paper presents a comparative evaluation of
six supervised machine learning (ML) models, namely Linear
Regression (LinR), Ridge Regression (RidgeR), Random Forest
(RF), XGBoost, Support Vector Regression (SVR), and Multi-
Layer Perceptron (MLP), for house price prediction on a struc-
tured tabular dataset. Performance was assessed on a hold-out
test set using Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and the Coefficient of Determination (R?). After
extensive hyperparameter tuning with grid search and 3-fold
cross-validation, XGBoost emerged as the top-performing model,
achieving MAE = 16,347, RMSE = 21,329, and R? = 0.932. The
results confirm that ensemble-based models, particularly gradient
boosting, offer a favorable balance between predictive accuracy
and practical deployability for real estate valuation tasks. Future
work will explore the integration of macroeconomic indicators
and multimodal property features to enhance generalization
further.

Index Terms—Price Prediction, Supervised Regression, Ma-
chine Learning, Model Evaluation, Real Estate Analytics

I. INTRODUCTION

Accurate prediction of residential property prices plays a
central role in real estate analytics, financial planning, and
public policy. A multitude of heterogeneous factors, such as
property characteristics, location-based features, and broader
market dynamics, influence the housing market. Traditional
valuation methods often rely on domain heuristics and manu-
ally crafted rules, which limit scalability and fail to adapt to
complex, nonlinear relationships in the data [1] [2].

In recent years, supervised ML models have shown promise
in real estate price prediction, offering the potential to im-
prove accuracy and automate valuation pipelines. Nonetheless,
questions remain about the comparative performance, resource
demands, and interpretability of these models when applied
to structured tabular datasets representing housing features. A
systematic and reproducible benchmarking effort is therefore
necessary to guide both researchers and practitioners [3]] [4].

A. Motivation and Contribution

The motivation behind this study lies in bridging the gap be-
tween methodological advancements in ML and their practical
applicability to real estate price estimation. Existing studies
often focus on a single model or lack rigorous evaluation
frameworks, making it difficult to draw generalizable conclu-
sions. Furthermore, they rarely consider the balance between
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model complexity and predictive performance, which is critical
for real-world deployment.

This paper applies and systematically compares six super-
vised regression models, namely, LinR, RidgeR, RF, XGBoost,
SVR, and MLP, on a curated tabular dataset of residential
properties. Each model is optimized through grid search with
cross-validation, and its performance is assessed using three
complementary metrics, including MAE, RMSE, and R2. The
analysis offers insights into trade-offs between accuracy and
computational cost across models of varying complexity.

Our contributions are fourfold. First, we adopt a unified
evaluation pipeline that enables reproducible comparison of
widely used regression techniques in the context of housing
price prediction. Second, we perform a comprehensive corre-
lation analysis between the target variable and heterogeneous
feature types, employing appropriate coefficients for continu-
ous, ordinal, binary, and nominal attributes to guide model
interpretation. Third, we document performance gains and
limitations across models, highlighting XGBoost as the most
accurate. Finally, we discuss practical deployment implications
and outline directions for integrating temporal and external
market features in future work.

The remainder of this paper is structured to guide the
reader through the key components of our study. Section
[ reviews related literature and situates our work within
the broader context of housing price prediction research. In
Section we present the proposed methodology, detailing
the dataset, preprocessing techniques, feature analysis, and
model selection process. Section [[V]is dedicated to the experi-
mental evaluation, showcasing the performance of various ML
models. Lastly, Section [V]concludes the paper by summarizing
the main findings and outlining potential directions for future
work.

II. RELATED WORKS

In recent years, ML techniques have been extensively used
for housing price prediction, ranging from traditional regres-
sion models to ensemble learning and deep architectures. Stud-
ies have evaluated linear approaches such as LinR and RidgeR
for their simplicity and interpretability [S[] [6]] [7]], although
these models often suffer from underfitting in complex real
estate datasets. Tree-based methods, notably RF and Gradient
Boosting variants, have demonstrated improved performance
by capturing non-linear patterns in heterogeneous housing



features [8]] [9] [10], particularly when applied to localized
or curated datasets.

Parallel research efforts have explored neural models, in-
cluding shallow and deep neural networks [[11]] [[12[], with some
recent studies adopting attention mechanisms and heteroge-
neous input representations to further boost accuracy [13].
Although these deep models offer enhanced expressiveness,
they introduce training complexity and require larger, diverse
datasets for generalization. Hybrid methodologies that com-
bine ML models with statistical or domain-specific techniques
have also been proposed to integrate hedonic pricing elements
or leverage multi-stage pipelines [14] [15]. However, the
consistency of evaluation practices remains limited across
studies.

In contrast to prior studies, this study conducts a compre-
hensive comparison across six supervised regression models,
namely LinR, RidgeR, RF, XGBoost, SVR, and MLP, on a
real-world housing dataset. All models were evaluated under a
consistent experimental protocol, with hyperparameters tuned
via cross-validation and performance measured using MAE,
RMSE, and RZ. This enables a robust assessment of the
accuracy, computational efficiency, and model generalization
under controlled conditions.

III. METHODOLOGY
A. Dataset Description

This study used a structured residential housing dataset with
545 records and 13 variables. The target is the sale price, while
the predictors comprise one numeric attribute that captures the
total area of the house (denoted as area in the dataset) and 11
categorical attributes describing structure, access, and ameni-
ties, namely, bedrooms, bathrooms, stories, parking, mainroad,
guestroom, basement, hotwaterheating, airconditioning, pre-
farea, and furnishingstatus (furnished, semi-furnished, unfur-
nished). Summary statistics for the numeric variables (mean,
standard deviation (stdv), range) are reported in Table [} and
the categorical distributions (levels, mode, and prevalence) are
reported in Table Collectively, these features capture the
key drivers of sale price and support rigorous analysis and
predictive modeling in real estate markets.

TABLE I
NUMERIC FEATURES STATISTICS.

Feature Mean + stdv Range (min-max)
price (€) 47,667 4+ 18,704 17,500-133,000
area (m?) 5,136 4 2,144 1,650-16,200

B. Data Preprocessing

All variables were validated for type consistency against
the schema in Tables [I| and with no missing values de-
tected. Binary attributes were encoded as {0,1} indicators,
and the nominal feature furnishingstatus was one-hot encoded.
Ordinal features were treated as categorical for linear and
regularized models using one-hot encoding, and tree-based
models retained the original integer codes, as their splitting

TABLE II
CATEGORICAL FEATURES: NUMBER OF LEVELS AND MODE PREVALENCE.

Feature Type Levels Mode/Prevalence
bedrooms Ordinal 6 3 (55.05%)
bathrooms Ordinal 4 1 (73.58%)
stories Ordinal 4 2 (43.67%)
parking Ordinal 4 0 (54.86%)
mainroad Binary 2 yes (85.87%)
guestroom Binary 2 no (82.20%)
basement Binary 2 no (64.95%)
hotwaterheating Binary 2 no (95.41%)
airconditioning Binary 2 no (68.44%)
prefarea Binary 2 no (76.51%)
furnishingstatus | Nominal 3 semi-furnished (41.65%)

rules inherently respect ordinal ranking. Since area is the
only continuous variable, it was standardized (z-score) for
distance- and margin-based learners (e.g., SVR, MLP) and
for ridge-type regularization; tree ensembles (RF, XGBoost)
maintained the original scale, being insensitive to monotone
feature scaling.

Outliers in numerical features were identified using Tukey’s
Interquartile Range (IQR) method, defined as IQR = Q3 —Q1,
where (Q; is the 25th percentile (lower quartile) and Q)3 is the
75th percentile (upper quartile). The lower and upper bounds
are given by @1 —1.5 xIQR and Q3+1.5 xIQR, respectively.

High-end outliers appeared in price and area, indicating
luxury or unusually large properties, and in the ordinal vari-
ables bedrooms, bathrooms, stories, and parking, reflecting
premium configurations. For categorical features, rare cate-
gories were defined as levels occurring in < 5% of the data.
Only hotwaterheating (“yes”) met this criterion (4.6%), while
all other binary and nominal variables had more balanced
distributions. All detected outliers were retained to preserve
the full variability of the housing market.

C. Correlation Coefficients for Feature Analysis

To investigate the relationships between explanatory vari-
ables and sale price, correlation coefficients were selected
according to feature type [16].

The Pearson correlation coefficient r measures the strength
and direction of the linear association between two numeric
variables using the formula
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where x; and y; are observed values, T and y their means,
and n the sample size. Values in [—1,1] quantify both the
magnitude and direction of the relationship, e.g., between area
and price.

The point-biserial correlation coefficient ry;, [17], a special
case of Pearson’s r, measures association between a binary
and a numeric variable
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where 7, and %o are group (1, 0) means, s, the standard
deviation, and p, g the group proportions. Values near 0



indicate weak association, while those near £1 indicate strong
association. This applies to binary housing attributes such as
air conditioning, main road, and basement.

The Spearman rank correlation coefficient p captures mono-
tonic, possibly non-linear, dependencies by applying the fol-
lowing formula

exn
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where d; is the difference between the ranks of the two
variables for observation . It is particularly suited to ordinal
features such as bedrooms, bathrooms, and stories, preserving
inherent order without assuming equal spacing.

For nominal variables with more than two categories, such
as furnishing status, the correlation ratio n measures the share
of total variance in the numeric target explained by category
means
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where k is the number of categories, n; the observations in
category j, ¥; its mean target value, and ¥ the overall mean.
Each term n,;(y; — §)® gives the weighted contribution of
category j to the between-group variance, and 5SS is the
total sum of squares. Values near 0 imply weak association,
values near 1 show strong separation by category.

Applying these complementary coefficients allows each
relationship, whether continuous, binary, ordinal, or nominal,
to be measured with a method suited to the variables’ nature,
ensuring accurate characterization of their association with
sale price.

TABLE III
CORRELATION COEFFICIENTS BETWEEN FEATURES AND SALE PRICE.
Feature Type Coef. Value
area numeric P 0.607
area numeric r 0.547
bathrooms ordinal P 0.480
bedrooms ordinal P 0.390
parking ordinal P 0.365
stories ordinal P 0.363
airconditioning binary Tpb 0.453
prefarea binary Tpb 0.330
mainroad binary Tpb 0.297
guestroom binary Tpb 0.256
basement binary Tpb 0.187
hotwaterheating binary Tpb 0.093
furnishingstatus nominal n 0.307

The correlation analysis presented in Table reveals a
clear hierarchy in the strength of association between the
explanatory variables and the sale price. Among all features,
the area of the property exhibited the highest association
(r = 0.547, p = 0.607), indicating that larger dwellings tend to
command higher prices. A stronger Spearman value suggests
that the relationship is not only linear but also consistently
monotonic, accommodating potential deviations from strict
proportionality.

Within the ordinal features, bathrooms shows the highest
correlation (p = 0.480), followed by bedrooms (p = 0.390),
parking (p = 0.365), and stories (p = 0.363). These values
indicate a moderate positive influence of housing capacity and
amenities on price, although their impact is weaker than that
of floor area.

For binary attributes, air conditioning emerges as the
most influential (r,, = 0.453), followed by preferred area
(rpp = 0.330) and main road access (rp, = 0.297). These
results suggest that both comfort-related features and location
factors contribute significantly to price variation. The remain-
ing binary variables—guestroom (rp, = 0.256), basement
(rppy = 0.187), and hot-water heating (rp, = 0.093), show
smaller, though still positive, associations.

The nominal variable furnishing status displays a correlation
ratio of = 0.307, indicating moderate differentiation in
prices across the furnishing categories. This suggests that
while the quality of the furnishings adds value, it explains less
variance than the structural size or high-impact amenities.

Overall, the pattern of coefficients confirms that physical
size is the dominant driver of price, with certain amenities
and location advantages providing moderate contributions.
Features with low correlation values may still have predictive
utility in combination with others, but are unlikely to be strong,
standalone predictors.

D. Machine Learning Models

To effectively predict house prices based on structural,
locational, and amenity-based attributes, we adopted six ML
models representing different families of supervised regression
techniques: linear, regularized, ensemble-based, kernel-based,
and neural network regressors. Each model is described below
in terms of its conceptual framework, mathematical formula-
tion, and relevance to the regression of tabular data.

Let the training dataset be defined as Dyain = {(Xi, ¥i) }i5,
where x; € RP is a vector of input features and y; € R is the
corresponding target price. The goal is to learn a regression
function f : RP — R that generalizes well on unseen data
Diest, minimizing the discrepancy between the predicted prices
9; = f(x;) and true prices y;.

LinR [18] is a parametric model that assumes a linear
relationship between the input features and the target variable.
It estimates a weight vector 3 € RP and intercept [y to
minimize the residual sum of squares as follows
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Despite its simplicity and interpretability, it may underperform
in the presence of multicollinearity or non-linear patterns.

RidgeR [19]] extends LinR by introducing Lo regularization
to reduce model variance and address multicollinearity. It
solves the following objective

n
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where A > 0 is a hyperparameter that controls the penalty for
large coefficients.

RF [20] is an ensemble method that constructs a large
number of decision trees, each trained on a bootstrap sample of
the training data and a random subset of features. It is robust
to outliers and nonlinear interactions and tends to perform
well with structured data. The final prediction is derived by
averaging the val j =L f®

ging the values across trees J = 7 >, f'"(x).

XGBoost [21] is a gradient-boosting algorithm that in-
crementally builds an ensemble of decision trees by fit-
ting each new tree to the pseudo-residuals rl(m)
_ 9y f(xi))

0f(xi) f=fm-1

of the loss with respect to the current prediction. These
residuals serve as the training targets for the next tree
hm(+), and the model is updated with shrinkage f,,(x) =
fm—1(X) + pm hm(x), where p,, is the learning rate, so
predictions move opposite to the loss gradient (functional
gradient descent). The final prediction after M stages is
fM(X) = fo+ 211—\”/[:1 Pm hm(x)'

XGBoost optimizes a regularized objective with sparsity-
aware split finding, enabling the efficient handling of sparse or
missing values by scanning only non-zero entries and learning
a default branch for missing data at each node, eliminating the
need for imputation.

, which represents the negative gradient

SVR [22] seeks a flat regression function f(x) =
(w,¢(x)) + b that tolerates deviations within an e-tube.
The primal problem minw p¢ ¢+ 2 [|W[> + C Y30, (& + &)
penalizes violations beyond e, where C' > 0 controls
the flatness—violation trade-off and &;,&; measure excess
above/below the tube. The mapping ¢(-) appears only through
a kernel K(x,x) = (¢(x),#(x')) (e.g., linear, RBF). Then,
in the dual form, coefficients «;, o) € [0, C] satisfy > . (c; —
af) = 0, and predictions are derived by § = > (a; —

)K (x;,x) + b where b is the bias (intercept) term.

%
Q;

MLP [23] is a fully connected feedforward network that
models a function f : R™ — R™. by composing linear maps
with nonlinear activations. For regression, the network outputs
an unrestricted real value (identity activation at the last layer),
that is, f(x) € R. Given a® = x, each layer [ = 1,...,L
applies a linear transformation z() = W®g(=1) 4 b fol-
lowed by an elementwise nonlinearity a(!) = ¢(!)(2(), where
o(+) is a nonlinear function (e.g., ReLU) and W b are
the learnable weights and biases. Stacking these steps yields
the overall mapping f(x) = a("), with the network trained
via backpropagation using a stochastic gradient descent.

E. Evaluation Metrics

To evaluate the predictive accuracy of the regression models
in the context of housing price estimation, we utilize three
widely adopted metrics: MAE, RMSE, and RZ,

MAE [24] expresses the average absolute difference be-
tween predicted values and actual observations

1"’L
MAE = — i — il .
nE lyi — il
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This metric provides a direct and interpretable measure of the
error magnitude in the same units as the target variable. Un-
like squared-error-based metrics, the MAE treats all residuals
equally, making it less sensitive to outliers and suitable when
uniform error penalties are preferred.

RMSE [24] calculates the square root of the mean of
squared prediction errors

The squaring operation accentuates larger deviations, which
means that the RMSE disproportionately penalizes large pre-
diction errors. This is especially relevant in applications where
such deviations are costly or undesirable.

R? [25]] quantifies the proportion of the variance in the target
variable that is captured by the model

>y — )’

where 7 is the empirical mean of true values. An R? score
of 1 indicates a perfect fit, whereas a score of O implies that
the model performs no better than simply predicting the mean.
Negative values indicate that the model’s predictions are worse
than this naive baseline.

Each metric addresses a different aspect of the model’s
performance. The MAE measures the average magnitude of
the prediction errors in absolute terms. The RMSE assigns
greater weight to larger errors owing to the squaring operation.
R? quantifies the extent to which the model explains the
variability in the target variable. No single metric suffices on
its own, and their joint application offers a more complete
assessment of the regression quality.

RP=1-

FE. Model Training and Optimization

The dataset was randomly split into training (80%) and
testing (20%) subsets without stratification, as the target was
continuous. This preserved its natural distribution while main-
taining diversity in categorical levels, whose low cardinality
and balanced frequencies did not warrant stratification. All
preprocessing steps (encoders and scalers) were encapsulated
in a single scikit-learn pipeline, fitted within each
training fold to avoid leakage, and applied unchanged to the
corresponding validation and test partitions.

Model training used scikit-learn (vl.4.1) and
XGBoost (v2.0.3) on a workstation with an Intel Core i7-
12700 CPU and 32 GB RAM. Hyperparameter tuning was per-
formed via exhaustive grid search with 3-fold cross-validation
on the training set, selecting the configuration that minimizes
validation RMSE. The best parameters were then retrained
on the full training set and evaluated on the hold-out test
set using MAE, RMSE, and R?. Results were averaged over
five independent runs with different random seeds to reduce
variability from data partitioning and initialization. Table
reports the most frequently selected configurations, with only
minor variations across runs and consistent performance.



TABLE IV
HYPERPARAMETER SEARCH SPACE AND SELECTED OPTIMAL
CONFIGURATION FOR EACH REGRESSION MODEL.

Model Hyperparameter Search Space Optimal Configura-

tion (after tuning)

LinR — (no tuning required) -

RidgeR « € {0.01,0.1,1,10,100} a=1
n_estimators € {100, 200, 300} . _

RE max_depth € {10, 20, None} nm—;;ilgclgttﬁri 2_0 200,
learning_rate € {0.01,0.1,0.3}

XGBoost | max_depth € {3,5,7} learning_rate = 0.1,
n_estimators € {100,200} max_depth = 5,

n_estimators = 100
kernel € {rbf, linear}

SVR C e{0.1,1,10} kernel = rbf, C' = 10,
e €{0.1,0.2} =02
hidden_layer sizes
{(64,), (128, 64),

MLP (12.8’ 128’ 64)} hidden_layer
activation € {ReLU, tanh} . = (128.64
learning_rate € {0.001,0.01} sizes = (128,64),
early_stopping = True actlve}tlon = ReLU,

- learning_rate = 0.001,
early_stopping = True

Given the diversity of the regression models, all features
were retained to preserve potential nonlinear or conditional
effects, and no feature selection was applied.

IV. RESULTS AND DISCUSSION

This section presents the empirical evaluation of the six
supervised regression models using the housing dataset. We
emphasize comparative performance, interpretability aspects,
and practical implications relevant to real-world property price
estimation.

A. Performance Evaluation

The evaluation of all six regression models was performed
based on their predictive accuracy on the hold-out test set
using three complementary metrics: MAE, RMSE, and the R?.
The results are presented in Table [V] Each metric highlights
a different aspect of performance. MAE measures the average
absolute deviation between predicted and actual prices. RMSE
emphasizes larger errors due to its quadratic nature. The R?
score indicates the proportion of variance in the target variable
that the model explains.

TABLE V

TEST SET PERFORMANCE METRICS FOR EACH REGRESSION MODEL.
Model MAE RMSE R2?

LinR 27,812 34,569 0.781

RidgeR 26,945 33,728 0.793

RF 17,632 22,581 0.915

XGBoost 16,347 21,329 0.932

SVR 23,872 29,450 0.842

MLP 21,189 27,135 0.861

The two linear models (LinR and RidgeR) yielded the
weakest predictive performance, with relatively high MAE
and RMSE values and R? below 0.80. Their limited ability to
capture feature interactions and non-linear relationships con-
strained their expressiveness, despite the slight improvement

offered by Ridge regularization. This performance gap high-
lights the inadequacy of purely linear models in representing
the heterogeneous patterns present in housing prices.

RF and XGBoost both exhibited substantial gains in all
metrics, reducing the RMSE by more than 35% compared with
the linear baselines. XGBoost outperformed all other models
across the board, achieving the lowest average prediction error
and highest explanatory power (R?> = 0.932). This perfor-
mance reflects its ability to iteratively reduce residuals through
gradient-based boosting while regularizing for complexity,
thereby mitigating overfitting.

SVR and MLP achieved intermediate accuracy. SVR ben-
efited from its kernel-based representation but suffered from
scalability limitations due to kernel matrix computations. MLP
captured non-linear structures through its deep architecture, yet
its performance remained slightly inferior to ensemble-based
approaches. Its susceptibility to overfitting was addressed
through early stopping, though at the cost of increased training
time.

From a bias—variance perspective, the linear models exhibit
high bias and low variance, while XGBoost and RF maintain
a more favorable tradeoff by reducing both bias and variance.
The overall ordering of models remains consistent across all
three evaluation metrics, indicating robustness of the compara-
tive results. Residual analysis confirmed that ensemble models
exhibit tighter error distributions and fewer extreme deviations.

Statistical significance tests (e.g., paired t-tests) performed
between the top three models confirmed that the improvements
of XGBoost over RF and MLP are significant at the 95%
confidence level for both MAE and RMSE. These findings
validate the use of ensemble learning as a high-performing
solution in structured price regression tasks with mixed data

types.

B. Interpretive Insights and Model Characteristics

The relative advantage of ensemble and neural approaches
can be attributed to their capacity to model high-order inter-
actions and non-linearities without requiring extensive manual
feature engineering. RF achieved high predictive accuracy
while retaining interpretability via feature importance anal-
ysis. XGBoost’s regularized boosting process further reduced
generalization error, especially for homes with atypical com-
binations of features.

On the other hand, SVR and MLP showed moderate predic-
tive strength. The computational burden of kernel evaluations
and sensitivity to hyperparameter tuning constrained SVR’s
performance. The MLP benefited from its deep architecture but
required significant training time and was prone to overfitting
in earlier epochs. Early stopping was essential for stabilizing
its generalization error.

C. Practical Implications and Limitations

The results indicate that advanced ensemble methods, with
XGBoost as a prominent example, are highly effective in
house price estimation when applied to medium-scale tabular



datasets. Their combination of predictive accuracy and reason-
able training time supports integration into operational prop-
erty valuation systems. Nonetheless, complexity introduces
challenges in terms of explainability. In real estate contexts
where decisions carry financial or legal significance, model
transparency remains essential for ensuring accountability and
stakeholder confidence.

Despite the relatively balanced feature distributions in the
dataset, certain limitations constrain generalizability. The ab-
sence of temporal or macroeconomic indicators restricts ro-
bustness under dynamic market conditions. Inferences drawn
from this analysis are therefore context-specific and best suited
for static or moderately varying environments.

V. CONCLUSION

This study evaluated six supervised regression models
for the task of housing price prediction using a structured,
medium-scale real estate dataset. The methodological ap-
proach integrated thorough preprocessing, systematic hyper-
parameter optimization via grid search, and rigorous assess-
ment using three complementary performance metrics (MAE,
RMSE, R?). All models were trained and tested under uniform
conditions to ensure comparability.

Among the evaluated models, ensemble techniques such as
RF and particularly XGBoost demonstrated superior perfor-
mance, combining low prediction error with high explanatory
power. Simpler linear models like RidgeR, although less
accurate, offered the advantage of transparency and minimal
training cost, which may be desirable in constrained or regu-
lated environments. Non-linear models such as SVR and MLP
yielded moderate results, with longer training times and higher
sensitivity to hyperparameter settings.

The findings suggest that tree-based ensembles are highly
effective for real-world deployment in property valuation sce-
narios, provided that interpretability concerns are addressed.
Moreover, model performance was inherently tied to the
quality and diversity of input features, with structural, spatial,
and categorical attributes contributing significantly to price
variance explanation.

Future research should consider the integration of temporal,
economic, and unstructured data sources to improve robustness
and cross-market generalization. Incorporating indicators such
as interest rates, inflation trends, or regional economic indices
could allow models to adapt to dynamic market fluctuations.
Additionally, hybrid modeling pipelines that combine tabular
learning with natural language processing (e.g., textual prop-
erty descriptions) or visual analysis (e.g., satellite imagery or
floorplans) may further enhance predictive fidelity and market
insight.
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