
A Rule-based System Integrating Case-Based

Reasoning for Adaptive User Interfaces in

Personalized Educational Software

Christos Troussas, Akrivi Krouska, Phivos Mylonas, Cleo Sgouropoulou

Department of Informatics and Computer Engineering

University of West Attica

Egaleo, Greece

{ctrouss, akrouska, mylonasf, csgouro}@uniwa.gr

Abstract—This article introduces a personalized learning

framework which employs case-based reasoning (CBR) and rule-

based logic to facilitate adaptive user interfaces within

educational software, designed for Java programming. While

there has been progress in adaptive learning, it is limited when

effectively combining cognitive theories and personalization

strategies to adapt the instructional process with fidelity. Case-

based reasoning serves to model human problem-solving through

the process of retrieving and reusing solutions of prior similar

cases. Rule-based logic can apply structured pedagogical rules

that shape the cue to initiate the adaptation. Our framework

consists of three components, each serving an important purpose

in the cycle of interpersonal interactions that occur in

educational settings. The Case Retrieval Module (CRM)

identifies and selects a similar case from a prior learner

interaction. The Rule-Based Inference Engine (RIE) identifies an

appropriate option for adaptation in response to the prior case.

Lastly, the Adaptive UI Controller (AUIC), executes the

adaptations onto the user interface in real time. Real-time

adaptations may include task difficulty, the provision of hints, or

structure content presented based on the assessed proficiency of

the learner. For more proficient learners, the task may be

complex and hints omitted, while the adaptation might provide

mediating support for novices. The evaluation of the prototype

showed improved learner engagement, reduction in errors, and

positive learning outcomes. The study highlights the role of

cognitively grounded adaptations within an interactive learning

environment and introduces a transparent and modular

framework that extends prior case-based and rule-driven

educational systems with real-time, interface-level

personalization.

Keywords—Adaptive learning systems; Case-based reasoning;

Rule-based personalization; Intelligent user interfaces; Human-

computer interaction

I. INTRODUCTION

The proliferation of educational software has reshaped the
landscape of learning, offering dynamic, accessible, and
scalable platforms that cater to a broad range of academic
disciplines [1]. These tools have evolved from static content
delivery systems to interactive environments that support
diverse learning activities, including programming exercises,

quizzes, simulations, and collaborative tasks [2]. As digital
learning environments become more integrated into formal
education, their design must go beyond content delivery to
actively support the learning process.

A critical factor in enhancing the efficacy of educational
software is personalization—the capability to tailor learning
experiences to the unique needs, preferences, and behaviors of
individual students [3, 4]. Personalized learning environments
have shown to increase motivation, engagement, and academic
performance by presenting content that aligns with a learner’s
current knowledge state, cognitive style, and pace of
progression. As students differ in prior experience, confidence
levels, and response to feedback, static instructional strategies
often fail to provide optimal support for all learners [5-8].

To address this challenge, researchers have proposed the
use of adaptive user interfaces (UIs) [9] within educational
software [10, 11]. Adaptive UIs dynamically modify system
behavior and presentation based on real-time user data, thus
supporting differentiated instruction [12]. Such adaptations
may include adjusting task difficulty, changing the presentation
format, offering context-sensitive hints, or modifying feedback
strategies. These mechanisms aim to reduce cognitive overload
for novices while offering sufficient challenge for advanced
learners.

However, achieving effective adaptation may require the
integration of cognitive theories with personalization
techniques to ensure pedagogically sound and user-aware
behavior [13]. Cognitive theories such as constructivism,
metacognition, and cognitive load theory inform how learners
process information and respond to different forms of
assistance. Techniques employed in personalized learning
systems range from machine learning and bayesian networks to
fuzzy logic and learner modeling [14]. These techniques are
instrumental in inferring learner states and making informed
adaptation decisions, yet their application is often disconnected
from established cognitive frameworks.

While there is increased interest, the literature indicates
there are few developed systems that legitimate integrate
cognitive theories into personalization, particularly in terms of
adaptive UIs for learning [15-20]. While there has been some

work to combine artificial intelligence with modelling of
learners, the adoption of human-like reasoning paradigms, such
as case-based reasoning (CBR), and rule-based pedagogical
logic is less developed. This area is ripe for innovation in
developing adaptive systems that respond to behavior in ways
that are not only credible, but that act in cognitively plausible
and transparent ways.

To meet this demand, the paper proposes a framework that
combines case-based reasoning (CBR) with rule-based logic
for the purpose of supporting adaptive user interfaces in
educational software for the teaching of the Java programming
language. CBR is a way of accomplishing the human ability to
solve new problems by looking back on previous experiences
that have similar characteristics. The rule-based logic provides
these systems with the ability to impose structured pedagogical
decisions using pre-defined rules. The proposed architecture
consists of three primary components; (i) a Case Retrieval
Module (CRM), which practices interaction data based on time
on task, error rates and hint use to sort through and return
previously used cases, (ii) a Rule-based Inference Engine (RIE)
which reviews the case(s) and utilizes rules tied to the domain
to recommend appropriate instructional actions, and (iii) an
Adaptive UI Controller (AUIC) which implements the
recommendation by changing the interface in real time such as
modifying problem complexity, hints and/or content framing
techniques. The system has been used and piloted with a
postgraduate course on the Java programming language which
produced favorable outcomes for student engagement and their
learning.

II. EASE OF USE

The proposed system is a smart educational platform for
providing personalized learning experiences for Java
programming. The main purpose of these features is to adapt
the user interface and instructional content to suit learner
characteristics and real-time interaction data. The system’s
intelligence relies on CBR in combination with Rule-Based
Logic, support experience-based and structured approaches for
decision-making.

The system architecture is organized into three modules
that are interdependent to achieve this functionality:

• The CRM collects, stores and retrieves data from
previous student actions in learning environments to
find suitable learning cases.

• The RIE takes and processes these retrieved cases to
determine the most suitable adaptive actions according
to pedagogically-based rules.

• The AUIC implements the chosen adaptations in real-
time by changing different components of the user
interface for instance task difficulty, hints, and types of
content based on the outcomes of the inferences.

All of the modules have unique but designed in a
complementary manner to contribute to the adaptive behavior
of the configuration system (Fig. 1). Each of the subsections
will go into detail specifying how each component works and
the rationale they followed into designing each section.

Fig. 1. System architecture.

A. Case Retrieval Module (CRM)

The CRM forms the foundational component of the
reasoning architecture of the system. It implements the
principles of CBR by maintaining an ongoing case base that
serves as a structured archive of records of past experiences
between the learner and the system. Each instance in this case
base reflects a single learning experience, and it is recorded in
a standard form, by a case object. Each case is a record of the
state and performance of a learner in a specific activity.
Formally, a case C is structured as a tuple:

where

• Ts: Time spent on the activity (in seconds),

• Er: Error rate, defined as the ratio of incorrect submissions

to total attempts,

• Hu: Hint usage pattern, represented by both frequency and
type (e.g., “on-request”, “auto-displayed”),

• Oc: Outcome classification, such as “success”, “partial
success”, or “failure”,

• Np: Navigation path, i.e., the sequence of UI elements
accessed,

• A: Adaptation actions previously applied (e.g., “difficulty
increased”, “hints suppressed”).

When a learner initiates a new activity, the CRM computes a
feature vector Fcurrent representing the learner’s real-time interaction
profile. It then performs nearest-neighbor retrieval over the case base
using a weighted similarity function:

Here, is the value of the k-th attribute in case i, is

the corresponding value from the current session, wk is the

weight assigned to attribute k, and simk is the similarity function

for that attribute (e.g., inverse Euclidean distance for numeric

values, Jaccard similarity for categorical patterns).

Suppose a current learner spends 7 minutes on an exercise, makes

2 syntax errors, and uses 1 on-request hint. The system encodes

this as:

The CRM compares this profile with historical cases. For

instance:

• Case A: ⟨400, 0.20, “low-on-request”, “success”,
“[hint, compile, retry]”, “difficulty increased”⟩

• Case B: ⟨800,0.50, “high-auto”, “partial success”,
“[hint, hint, give up]”, “show scaffold”⟩

The CRM may be inclined to choose Case A because of the close
time and error rate as well as the same hint behavior within Case A.
The similarities will factor into the selection of precedent adaptation
actions in that case (i.e., increased difficulty) and the next reasoning
stage.

B. Rule-based Inference Engine

The Rule-Based Inference Engine (RIE) acts as the
system’s main decision-making process. The RIE elements
convert the learner interaction patterns that are retrieved into
specific, adaptive UI actions relying on a predetermined
collection of manually constructed inference rules. These
inference rules are based on pedagogy theory, and aim to
imitate human-tutor decision heuristics in a clear and
reproducible way.

The rule base was developed through an iterative,
knowledge-based process that involved

• An empirical analysis of student interaction logs (from
previous deployments of programming courses in
Java) concentrating on time-on-task, clustered errors,
and hint usage patterns.

• Conversations with domain experts (instructors and
instructional designers) to identify possible
pedagogical actions in response to observable
behaviours.

• Integration of cognitive and instructional theories to
inform the design, including Cognitive Load Theory,
the Zone of Proximal Development, and Scaffolding
Theory, to provide a theoretical foundation

• Simulation of scenarios with rule validation through
walkthroughs and mock sessions with synthetic
learners to confirm coverage and resolution of rules.

The resulting rule base consists of 24 inference rules,
divided into three main domains of rules:

• Difficulty Management (9 rules): Modifies the level of
difficulty for the next learning task.

• Guidance and Scaffolding (10 rules): Manages hint
visibility, step-based support, and prioritization of
concepts.

• Motivational and Engagement Support (5 rules):
Initiates motivational feedback and simpler UI when
users disengage. All rules follow a regular IF-AND-

THEN format, and each rule is embedded in the
system as a triplet:

Ri=⟨Conditions, Actions, Priority⟩

The Conditions specify whether the parameter is from the
current learner profile or a retrieved case or cases. The Actions
are deterministic and can be directly executed by the AUIC.
The Priority is there to address conflicts. The priorities were
established through expert consensus, based on the pedagogical
significance, and intended instructional effect, of each rule
within scenario-based simulations.

Five illustrative rules are shown below that demonstrate a
range of adaptation intentions (Table 1).

TABLE I. REPRESENTATIVE RULES

Rule Name Category Rule

R1 - Difficulty

Escalation

Difficulty

Management

IF time_spent < 300

seconds AND error_rate <
0.15

AND hint_usage = "none"

THEN increase
difficulty_level by one

tier, disable hints by

default.

R2 - Maintain

Progression

Difficulty

Management

IF 300 ≤ time_spent ≤ 900
AND 0.15 ≤ error_rate ≤

0.40

AND hint_usage = "on-
request"

THEN keep current
difficulty, keep hints

available on demand.

R3 - Activate

Scaffolding

Mode

Guidance and

Scaffolding

IF error_rate > 0.50

AND hint_usage = "auto-
displayed"

AND task_completed =

false
THEN enable step-by-

step guidance, show

syntax highlight, display

related solved example.

R4 - Decrease
Complexity &

Visual

Simplification

Guidance and

Scaffolding

IF time_spent > 900

seconds
AND navigation_pattern

= "repeated back-and-

forth"
THEN decrease

difficulty_level, simplify

layout, show only key

concepts.

R5 - Provide

Motivational

Feedback

Motivation

IF inactivity_period > 120

seconds
AND last_action =

"task_abort"

THEN display
motivational message

("You’ re making

progress!"), highlight next

recommended task.

The RIE executes evaluations of multiple rules for each
instance, and selects non-conflicting rules using a confidence-

based and priority-aware prioritization approach. When
multiple rules are triggered with conflicting outcomes, the
engine will utilize one or more of the following criteria:

• Preference for specificity (the rules with the most
conditions are preferred),

• Pruning based on outcomes (the rules demonstrate
poor outcomes historically are deprioritized),

• Priority tags assigned to rules as defined.

The resulting output is a single coherent adaptation plan that is
then passed to the AUIC for immediate execution.

C. Adaptive UI Controller

The AUIC is the last operational phase of the adaptive
system pipeline and acts as the executor at the interface level
for pedagogical decisions made through reasoning upstream.
While the RIE enacts a pedagogical action plan given retrieved
cases and rules, the AUIC interprets and executes these plans
as concrete, visible, and interactive elements of the educational
software interface. In other words, the AUIC serves as a
connection between intelligent reasoning and the user’s
immediate experiences, enabling responses that are adaptive
and purposeful in real time for each learner.

To support responsive adaptation of the interface, the
AUIC is built upon a modular, state-aware UI architecture that
can respond in real time without interrupting the user’s task.
This system receives structured adaptation directives, including
precise values for parameters from the RIE, for example, the
complexity level of the next task, hint delivery mode, the
extent to which instructional scaffolding is warranted, and
formatting of the UI components. The AUIC receives and
parses the directives from the RIE to implement them in real
time using a component-based rendering engine that can
selectively enable or disable UI features.

A major asset of the AUIC is its formal integration of
Human-Computer Interaction (HCI) design principles into the
adaptation logic. Adaptations are not made arbitrarily, or
mechanically; instead, the system guarantees all interface
alterations abide by the consistency, continuity, and usability
expectations that are prerequisites for the “inflow moments” of
learning. For example, layout consistency is maintained even
as content changes in real time, preventing spatial
disorientation. Visual transitions, for instance when a
scaffolded hint or an annotation on a piece of code appears, are
animated/rendered in a fluid manner, making the change
apparent, but without distorting the learner's attention.
Similarly, responsiveness of the interface is key—adaptation
decisions are implemented with minimum delay, and
signals/feedback are given to the user as quickly as possible,
enabling perceived seamless flow and awareness.

The AUIC allows for a broad range of adaptive behaviors
to support the user. For example, when a learner is performing
at a high level, indicated by a consistent error rate well below
the threshold, short completion times, and not having heavily
relied on hints, the AUIC will sometimes modify the task to
become more complex. This could be in the form of an extend
exercise to one that is more abstract, seamlessly transitioning to

a more expansive programming activity, disabling inline hints,
or optimizing coding interfaces to eliminate unnecessary
scaffolding. Equally important, these changes are made without
losing the predictability of the interface—buttons, panels, and
interaction zones are all still anchored in the same familiar
positioning, so the user is never visually lost, despite the
challenge increasing.

On the other hand, for learners who show signs of difficulty
(e.g., repeated submission errors, too long of a pause, or
reliance on hints), the AUIC decreases the difficulty gradient
and supports incremental scaffolding (i.e., turning long task
instructions into sequenced input, providing on-demand code
examples, or using syntax-aware highlights in the editor).
These scaffolding factors are thoughtfully designed into the
existing UI platform, creating a compromise between visibility
and cognitive load while maintaining a consistent visual
hierarchy to direct attention without overloading the learner.

The AUIC enacts alterations in a transparent and
explainable way. All alterations of the interfaces are recorded
with specificity with timestamp, triggers, and adaptations
made. The recorded alterations support instructor review and
evaluation of the system while providing learner-facing
features like tooltips, or an expandable feature with the
rationale for the change (e.g. “the hints were turned off because
you were efficient at solving similar problems.”). This credible
transparency builds trust and helps encourage learner
interrogation of one's own progress.

Additionally, the AUIC was designed with incremental
extensibility in mind. The system is modular, so that
developers and instructional designers can create new UI
adaptation patterns, or integrate other modalities of input (e.g.,
emotion detection, eye-tracking) without having to change or
remake the core system. This ultimately positions the AUIC to
be more than just an adaptive controller but flexible
experimentation layer for future research in designing adaptive
interaction.

In summary, the AUIC offers more than merely a device to
reconfigure the interface. The system represents an HCI-aware
philosophy of adaptation, in which the decisions make by the
system are realized in a pedagogically informed, interactionally
fluid, and responsive to learner perception and behavior. The
AUIC is an active force in sustaining a coherent, motivating,
and personalized learning experience, that advances the
intersection of intelligent decision making and user-centered
design of educational interface.

III. EVALUATION

In order to assess the utility of the proposed adaptive
framework, we incorporated it in a custom-designed
educational software platform where the subject matter is the
Java programming language. This platform contains all of the
system modules, including the CRM, RIE, and AUIC, and
served as the primary learning context during a postgraduate
course in object-oriented programming.

A. Experimental Setup

The assessment involved 60 students who were
postgraduate students with at least basic programming
experience, although Java proficiency varied. The research was
conducted over a four-week period and consisted of
compulsory weekly lab sessions, which students were also
encouraged to use outside of class. Participants were assigned
to either a testing group or a control group:

• The experimental group (n = 40) utilized the complete
adaptive version of the system, where the interface was
adapted to the learner model in real-time.

• The control group (n = 20) used the same system with
a fixed interface. In the fixed interface, task difficulty
was fixed with difficulty not connected to its level,
hints were provided and could be obtained on demand
and the interface provided no scaffolding or
progression logic.

Both participant groups received the same instructional
content and were asked to complete the same sequence of
similar programming exercises.

We gathered both quantitative and qualitative data. Our key
performance indicators included:

• Percentage of successful task completion

• Percentage of incorrect submissions for each task

• Minutes on task

• Number of hints used for each task

• Percentage of students who completed all tasks

• Learner satisfaction, assessed with a post-study
questionnaire on a 5-point Likert scale.

We anonymized and analyzed interaction logs to determine
behavior patterns and trends in engagement. The AUIC
(Adaptive User Interface Components) also provided logs of
adaptation traces that could be analyzed after the study.

B. Results

The quantitative evidence suggests that the adaptive system
had a positive impact on performance and engagement. The
main findings are represented in Table 2 and Figure 2. The
control group used an adaptive version of the system with a
fixed UI and no personalized features. The success rate of the
adaptive version (87.2%) was significantly higher than the
static version (74.5%), confirming that learners were benefiting
from personalized difficulty and scaffolding. Furthermore,
errors decreased almost 50%, which suggested that adaptive
guidance exemplified fewer errors and better conceptual
understanding. Learners using the adaptive version spent less
time on a task, and therefore, gained efficiency, primarily
among more proficient learners who were adequately
challenged. The number of hints in the adaptive version
decreased, which mainly occurred due to students who
struggled needing scaffolding and students who were proficient
having their hints suppressed.

The exercises completion rate was significantly higher for
the adaptive group than the non-adaptive group; while this was
true (95%), almost all subject also scored the survey measures
higher using the adaptive system (mean score: 4.42 out of 5).

TABLE II. QUANTITATIVE RESULTS.

Metric

Adaptive

System

(n=60)

Control

Group

(n=20)

p-value

(t-test)

Task Success

Rate (%)
89.5 74.0

p<0.01

Average Error

Rate (%)
10.3 20.6

p<0.01

Average Time

per Task (min)
8.4 10.7

p<0.01

Hint Requests

per Task

1.1 2.5

p<0.01

Completion

Rate (%)
95.0 82

n.s.

Satisfaction

Score (1–5)
4.4 3.6

p<0.01

Fig. 2. Performance comparison between Adaptive and Control Group.

Statistical comparisons were conducted with independent
two-sample t-tests test with unequal variance. The results
showed statistical differences improving task success, error
counts, time, and customer satisfaction in the adaptive
condition. The difference in completion rates, despite the
adaptive group having more successful completion rates over
the traditional group, was not statistically significant.

C. User Feedback and Observations

Qualitative feedback received from open response questions and
interviews shed some light on user experience. A number of learners

describe feeling “guided but not bombarded” and appreciated the
step-by-step explanations as well as the hints that were context-
sensitive in the environment. Advanced users noted the system
“removed the unnecessary help” and “the level of challenge was just
right”. A small percentage (about 8%) reported that they preferred
more control over seeing hints in the environment, suggesting there
may be an opportunity for customizable adaptation preferences in the
next iteration.

D. Discussion

The evaluation findings lend support to the hypothesis that
the inclusion of case-based reasoning into rule-based logic may
serve to enhance personalization of learning experiences. In
terms of pedagogy, the system was able to both accelerate
proficient learners and scaffold struggling learners, which
aligns well with the goals of differentiated instruction. With the
reduced error rates and the reduced frequency and dependence
on hints, together with greater engagement and satisfaction,
suggest that the adaptive decisions were, at least largely
appropriate and well-executed by the AUIC. Overall, this study
appears to provide some educational benefit and could
potentially apply to other content areas that have structured
problem-solving tasks. While the outcome of the evaluation is
promising, it does have limitations in that it was of relatively
short duration and was only focused on one subject area.
Future studies might examine long-term retention, the
transparency of adequate adaptation, and the leverage of
learner-controlled personalization in conjunction with
automated adaptation.

IV. CONCLUSIONS AND FUTURE WORK

This paper introduced a rule-driven, case-based adaptive
framework for personalized user interfaces in educational
environments, to improve the learning experience within
programming education. The framework leverages CBR and
rule-based logic to provide context-sensitive adaptations to
users' learning, behavioral patterns, and pedagogical principles
of the learning task. The architecture was developed with three
main modules in parallel, the CRM, the RIE, and AUIC, which
worked together in real time to monitor, reason, and adapt to
learners.

The framework was implemented within an educational
software system for learning about Java programming, and
evaluated in a study with 60 postgraduate students. The
analysis demonstrated significantly better learning
performance, reduced errors, increased task completion, and
positive levels of user satisfaction. The results corroborated the
advantages of integrating cognitively plausible reasoning
mechanisms to adaptive user interfaces.

While we are encouraged by the initial findings, several
directions remain available for future work. First, we designed
and validated the rule base manually, and next, we will
examine data-driven optimization methods, such as
reinforcement learning, to tune the weights of rules or even
identify new rules. Second, the current version of the system is
limited to unidimensional adaptation, primarily based on the
use of time and errors, and hints, but future iterations could
include multi-modal interaction features such as eye tracking,
keystroke dynamics, and emotional feedback to better assess
cognitive states and affective engagement.

Next, we plan to investigate learner-controlled
personalization, so that learners can modify some of adaptive
behaviors or override them altogether. This blended approach
may be able to take advantage of some of the benefits of
automation, however balance these advantages with
transparency and agency, which may be preferred by some
users. A final contribution for future iterations of the system is

expanding the framework to process additional subject areas
and learner populations to check for generalizability and
robustness across educational contexts.

In summary, our proposed system represents a promising
advancement in the direction toward bringing together
cognitive models and adaptive educational technologies. With
its transparent, and interpretable logic, and modular design our
proposed system provides both pedagogical grounding and
technical scalability for a promising path forward in adaptive
learning environments.

REFERENCES

[1] N. Chondamrongkul, G. Hristov, and P. Temdee, “Addressing technical

challenges in large language model-driven educational software
system,” IEEE Access, vol. 13, pp. 12846–12858, 2025. [Online].
Available: http://dx.doi.org/10.1109/ACCESS.2025.3531380

[2] A. Venugopal, “Impact of digital learning platforms on student
academic performance,” Medicon Eng. Themes, vol. 6, no. 5, pp. 19–21,
2024. [Online]. Available: http://dx.doi.org/10.55162/MCET.06.208

[3] D. Vallet, P. Mylonas, M. A. Corella, J. M. Fuentes, P. Castells, and Y.
Avrithis, “A semantically-enhanced personalization framework for
knowledge-driven media services,” in Proc. IADIS Int. Conf.
WWW/Internet (ICWI), 2005. [Online]. Available:
http://hdl.handle.net/10486/665989

[4] C. Troussas, A. Krouska, and C. Sgouropoulou, “Dynamic detection of
learning modalities using fuzzy logic in students’ interaction activities,”
in Proc. 15th Int. Conf. Intelligent Tutoring Systems (ITS), V. Kumar
and C. Troussas, Eds., Lecture Notes in Computer Science, vol. 12149,
Springer, Cham, pp. 276–286, 2020. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-49663-0_24

[5] E. T. Khor and K. M., “A systematic review of the role of learning
analytics in supporting personalized learning,” Educ. Sci., vol. 14, no. 1,
p. 51, 2024. [Online]. Available:
http://dx.doi.org/10.3390/educsci14010051

[6] R. I. Fariani, K. Junus, and H. B. Santoso, “A systematic literature
review on personalised learning in the higher education context,” Tech.
Knowl. Learn., vol. 28, pp. 449–476, 2023. [Online]. Available:
http://dx.doi.org/10.1007/s10758-022-09628-4

[7] M. Gunawardena, P. Bishop, and K. Aviruppola, “Personalized learning:
The simple, the complicated, the complex and the chaotic,” Teach.
Teach. Educ., vol. 139, p. 104429, 2024. [Online]. Available:
http://dx.doi.org/10.1016/j.tate.2023.104429

[8] K. Bayly-Castaneda, M.-S. Ramirez-Montoya, and A. Morita-
Alexander, “Crafting personalized learning paths with AI for lifelong
learning: a systematic literature review,” Front. Educ., vol. 9, Aug.
2024. [Online]. Available:
http://dx.doi.org/10.3389/feduc.2024.1424386

[9] D. Gaspar-Figueiredo, M. Fernández-Diego, R. Nuredini, S. Abrahao,
and E. Insfran, “Reinforcement learning-based framework for the
intelligent adaptation of user interfaces,” in Companion Proc. 16th ACM
SIGCHI Symp. Eng. Interactive Computing Systems (EICS '24
Companion), ACM, New York, NY, pp. 40–48, 2024. [Online].
Available: http://dx.doi.org/10.1145/3660515.3661329

[10] S. V. Kolekar, R. M. Pai, and M. P. M. M., “Rule based adaptive user
interface for adaptive e-learning system,” Educ. Inf. Technol., vol. 24,
pp. 613–641, 2019. [Online]. Available: https://doi.org/10.1007/s10639-
018-9788-1

[11] B. A. Bagustari and H. B. Santoso, “Adaptive user interface of learning
management systems for Education 4.0: a research perspective,” in
Proc. 3rd Int. Conf. Computing and Applied Informatics (ICCAI),
Medan, Indonesia, Sep. 18–19, 2018, J. Phys.: Conf. Ser., vol. 1235, p.
012033, 2019. [Online]. Available: http://dx.doi.org/10.1088/1742-
6596/1235/1/012033

[12] S. Abrahão, E. Insfran, A. Sluÿters, et al., “Model-based intelligent user
interface adaptation: challenges and future directions,” Softw. Syst.

http://dx.doi.org/10.1109/ACCESS.2025.3531380
http://dx.doi.org/10.55162/MCET.06.208
http://hdl.handle.net/10486/665989
http://dx.doi.org/10.1007/978-3-030-49663-0_24
http://dx.doi.org/10.3390/educsci14010051
http://dx.doi.org/10.1007/s10758-022-09628-4
http://dx.doi.org/10.1016/j.tate.2023.104429
http://dx.doi.org/10.3389/feduc.2024.1424386
http://dx.doi.org/10.1145/3660515.3661329
https://doi.org/10.1007/s10639-018-9788-1
https://doi.org/10.1007/s10639-018-9788-1
http://dx.doi.org/10.1088/1742-6596/1235/1/012033
http://dx.doi.org/10.1088/1742-6596/1235/1/012033

Model., vol. 20, pp. 1335–1349, 2021. [Online]. Available:
http://dx.doi.org/10.1007/s10270-021-00909-7

[13] C. Troussas, A. Krouska, and C. Sgouropoulou, “Cognitive styles as a
factor of effective learning,” in Human-Computer Interaction and
Augmented Intelligence, Cognitive Systems Monographs, vol. 34,
Springer, Cham, 2025. [Online]. Available:
http://dx.doi.org/10.1007/978-3-031-84453-9_4

[14] A. Almalawi, B. Soh, A. Li, and H. Samra, “Predictive models for
educational purposes: a systematic review,” Big Data Cogn. Comput.,
vol. 8, no. 12, p. 187, 2024. [Online]. Available:
http://dx.doi.org/10.3390/bdcc8120187

[15] A. Ezzaim, A. Dahbi, A. Haidine, and A. Aqqal, “AI-based adaptive
learning: a systematic mapping of the literature,” J. Univers. Comput.
Sci., vol. 29, no. 10, pp. 1161–1198, 2023. [Online]. Available:
http://dx.doi.org/10.3897/jucs.90528

[16] M. Y. Mustafa, A. Tlili, G. Lampropoulos, et al., “A systematic review
of literature reviews on artificial intelligence in education (AIED): a
roadmap to a future research agenda,” Smart Learn. Environ., vol. 11, p.
59, 2024. [Online]. Available: http://dx.doi.org/10.1186/s40561-024-
00350-5

[17] K. I. Vorobyeva, S. Belous, N. V. Savchenko, L. M. Smirnova, S. A.
Nikitina, and S. P. Zhdanov, “Personalized learning through AI:
pedagogical approaches and critical insights,” Contemp. Educ. Technol.,
vol. 17, no. 2, p. ep574, 2025. [Online]. Available:
http://dx.doi.org/10.30935/cedtech/16108

[18] D. Koutsantonis, K. Koutsantonis, N. P. Bakas, V. Plevris, A.
Langousis, and S. A. Chatzichristofis, “Bibliometric literature review of
adaptive learning systems,” Sustainability, vol. 14, no. 19, p. 12684,
2022. [Online]. Available: http://dx.doi.org/10.3390/su141912684

[19] H. Lin and Q. Chen, “Artificial intelligence (AI)-integrated educational
applications and college students’ creativity and academic emotions:

students and teachers’ perceptions and attitudes,” BMC Psychol., vol.
12, p. 487, 2024. [Online]. Available: http://dx.doi.org/10.1186/s40359-
024-01979-0

[20] L. Major and G. A. Francis, “Technology-supported personalised
learning: a rapid evidence review,” EdTech Hub Rapid Evidence
Review, 2020. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.4556925

[21] N. Md Noh, A. Ahmad, S. Ab. Halim, and A. Mohd Ali, “Intelligent
tutoring system using rule-based and case-based: a comparison,”
Procedia Soc. Behav. Sci., vol. 67, pp. 454–463, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.sbspro.2012.11.350

[22] N. B. M. Noh, R. Yusof, O. Ono, and T. Tojo, “Feedback preferences in
case-base construction for intelligent lab tutor,” in Proc. AsiaSim 2014,
S. Tanaka, K. Hasegawa, R. Xu, N. Sakamoto, and S. J. Turner, Eds.,
Commun. Comput. Inf. Sci., vol. 474, Springer, Berlin, Heidelberg,
2014. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-45289-
9_25

[23] D. Soto Forero, S. Ackermann, M.-L. Betbeder, and J. Henriet, “The
intelligent tutoring system AI-VT with case-based reasoning and real-
time recommender models,” in Proc. Int. Conf. Case-Based Reasoning,
Mérida, Mexico, Jul. 2024. [Online]. Available: https://hal.science/hal-
04693047

[24] V. Aleven, “Rule-based cognitive modeling for intelligent tutoring
systems,” in Advances in Intelligent Tutoring Systems, R. Nkambou, J.
Bourdeau, and R. Mizoguchi, Eds., Stud. Comput. Intell., vol. 308,
Springer, Berlin, Heidelberg, pp. 33–62, 2010. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14363-2_3

[25] Shweta, et al., “Agent-based distributed intelligent tutoring system using
case-based reasoning,” in Artificial Intelligence Applications in Distance
Education, U. Kose and D. Koc, Eds., IGI Global, pp. 211–236, 2015.
[Online]. Available: http://dx.doi.org/10.4018/978-1-4666-6276-6.ch013

http://dx.doi.org/10.1007/s10270-021-00909-7
http://dx.doi.org/10.1007/978-3-031-84453-9_4
http://dx.doi.org/10.3390/bdcc8120187
http://dx.doi.org/10.3897/jucs.90528
http://dx.doi.org/10.1186/s40561-024-00350-5
http://dx.doi.org/10.1186/s40561-024-00350-5
http://dx.doi.org/10.30935/cedtech/16108
http://dx.doi.org/10.3390/su141912684
http://dx.doi.org/10.1186/s40359-024-01979-0
http://dx.doi.org/10.1186/s40359-024-01979-0
http://dx.doi.org/10.5281/zenodo.4556925
http://dx.doi.org/10.1016/j.sbspro.2012.11.350
http://dx.doi.org/10.1007/978-3-662-45289-9_25
http://dx.doi.org/10.1007/978-3-662-45289-9_25
http://dx.doi.org/10.1007/978-3-642-14363-2_3
http://dx.doi.org/10.4018/978-1-4666-6276-6.ch013

