
A Rule-based System Integrating Case-Based 

Reasoning for Adaptive User Interfaces in 

Personalized Educational Software 
 

Christos Troussas, Akrivi Krouska, Phivos Mylonas, Cleo Sgouropoulou 

Department of Informatics and Computer Engineering 

University of West Attica 

Egaleo, Greece 

{ctrouss, akrouska, mylonasf, csgouro}@uniwa.gr 

 

 
Abstract—This article introduces a personalized learning 

framework which employs case-based reasoning (CBR) and rule-

based logic to facilitate adaptive user interfaces within 

educational software, designed for Java programming. While 

there has been progress in adaptive learning, it is limited when 

effectively combining cognitive theories and personalization 

strategies to adapt the instructional process with fidelity. Case-

based reasoning serves to model human problem-solving through 

the process of retrieving and reusing solutions of prior similar 

cases. Rule-based logic can apply structured pedagogical rules 

that shape the cue to initiate the adaptation. Our framework 

consists of three components, each serving an important purpose 

in the cycle of interpersonal interactions that occur in 

educational settings. The Case Retrieval Module (CRM) 

identifies and selects a similar case from a prior learner 

interaction. The Rule-Based Inference Engine (RIE) identifies an 

appropriate option for adaptation in response to the prior case. 

Lastly, the Adaptive UI Controller (AUIC), executes the 

adaptations onto the user interface in real time. Real-time 

adaptations may include task difficulty, the provision of hints, or 

structure content presented based on the assessed proficiency of 

the learner. For more proficient learners, the task may be 

complex and hints omitted, while the adaptation might provide 

mediating support for novices. The evaluation of the prototype 

showed improved learner engagement, reduction in errors, and 

positive learning outcomes. The study highlights the role of 

cognitively grounded adaptations within an interactive learning 

environment and introduces a transparent and modular 

framework that extends prior case-based and rule-driven 

educational systems with real-time, interface-level 

personalization. 

Keywords—Adaptive learning systems; Case-based reasoning; 

Rule-based personalization; Intelligent user interfaces; Human-

computer interaction 

I. INTRODUCTION 

The proliferation of educational software has reshaped the 
landscape of learning, offering dynamic, accessible, and 
scalable platforms that cater to a broad range of academic 
disciplines [1]. These tools have evolved from static content 
delivery systems to interactive environments that support 
diverse learning activities, including programming exercises, 

quizzes, simulations, and collaborative tasks [2]. As digital 
learning environments become more integrated into formal 
education, their design must go beyond content delivery to 
actively support the learning process. 

A critical factor in enhancing the efficacy of educational 
software is personalization—the capability to tailor learning 
experiences to the unique needs, preferences, and behaviors of 
individual students [3, 4]. Personalized learning environments 
have shown to increase motivation, engagement, and academic 
performance by presenting content that aligns with a learner’s 
current knowledge state, cognitive style, and pace of 
progression. As students differ in prior experience, confidence 
levels, and response to feedback, static instructional strategies 
often fail to provide optimal support for all learners [5-8]. 

To address this challenge, researchers have proposed the 
use of adaptive user interfaces (UIs) [9] within educational 
software [10, 11]. Adaptive UIs dynamically modify system 
behavior and presentation based on real-time user data, thus 
supporting differentiated instruction [12]. Such adaptations 
may include adjusting task difficulty, changing the presentation 
format, offering context-sensitive hints, or modifying feedback 
strategies. These mechanisms aim to reduce cognitive overload 
for novices while offering sufficient challenge for advanced 
learners. 

However, achieving effective adaptation may require the 
integration of cognitive theories with personalization 
techniques to ensure pedagogically sound and user-aware 
behavior [13]. Cognitive theories such as constructivism, 
metacognition, and cognitive load theory inform how learners 
process information and respond to different forms of 
assistance. Techniques employed in personalized learning 
systems range from machine learning and bayesian networks to 
fuzzy logic and learner modeling [14]. These techniques are 
instrumental in inferring learner states and making informed 
adaptation decisions, yet their application is often disconnected 
from established cognitive frameworks. 

While there is increased interest, the literature indicates 
there are few developed systems that legitimate integrate 
cognitive theories into personalization, particularly in terms of 
adaptive UIs for learning [15-20]. While there has been some 



work to combine artificial intelligence with modelling of 
learners, the adoption of human-like reasoning paradigms, such 
as case-based reasoning (CBR), and rule-based pedagogical 
logic is less developed. This area is ripe for innovation in 
developing adaptive systems that respond to behavior in ways 
that are not only credible, but that act in cognitively plausible 
and transparent ways.  

To meet this demand, the paper proposes a framework that 
combines case-based reasoning (CBR) with rule-based logic 
for the purpose of supporting adaptive user interfaces in 
educational software for the teaching of the Java programming 
language. CBR is a way of accomplishing the human ability to 
solve new problems by looking back on previous experiences 
that have similar characteristics. The rule-based logic provides 
these systems with the ability to impose structured pedagogical 
decisions using pre-defined rules. The proposed architecture 
consists of three primary components; (i) a Case Retrieval 
Module (CRM), which practices interaction data based on time 
on task, error rates and hint use to sort through and return 
previously used cases, (ii) a Rule-based Inference Engine (RIE) 
which reviews the case(s) and utilizes rules tied to the domain 
to recommend appropriate instructional actions, and (iii) an 
Adaptive UI Controller (AUIC) which implements the 
recommendation by changing the interface in real time such as 
modifying problem complexity, hints and/or content framing 
techniques. The system has been used and piloted with a 
postgraduate course on the Java programming language which 
produced favorable outcomes for student engagement and their 
learning. 

II. EASE OF USE 

The proposed system is a smart educational platform for 
providing personalized learning experiences for Java 
programming. The main purpose of these features is to adapt 
the user interface and instructional content to suit learner 
characteristics and real-time interaction data. The system’s 
intelligence relies on CBR in combination with Rule-Based 
Logic, support experience-based and structured approaches for 
decision-making. 

The system architecture is organized into three modules 
that are interdependent to achieve this functionality: 

•  The CRM collects, stores and retrieves data from 
previous student actions in learning environments to 
find suitable learning cases. 

• The RIE takes and processes these retrieved cases to 
determine the most suitable adaptive actions according 
to pedagogically-based rules. 

• The AUIC implements the chosen adaptations in real-
time by changing different components of the user 
interface for instance task difficulty, hints, and types of 
content based on the outcomes of the inferences. 

All of the modules have unique but designed in a 
complementary manner to contribute to the adaptive behavior 
of the configuration system (Fig. 1). Each of the subsections 
will go into detail specifying how each component works and 
the rationale they followed into designing each section. 

 

Fig. 1. System architecture. 

A. Case Retrieval Module (CRM) 

The CRM forms the foundational component of the 
reasoning architecture of the system. It implements the 
principles of CBR by maintaining an ongoing case base that 
serves as a structured archive of records of past experiences 
between the learner and the system. Each instance in this case 
base reflects a single learning experience, and it is recorded in 
a standard form, by a case object. Each case is a record of the 
state and performance of a learner in a specific activity. 
Formally, a case C is structured as a tuple: 

 

where 

• Ts: Time spent on the activity (in seconds), 

• Er: Error rate, defined as the ratio of incorrect submissions 

to total attempts, 

• Hu: Hint usage pattern, represented by both frequency and 
type (e.g., “on-request”, “auto-displayed”), 

• Oc: Outcome classification, such as “success”, “partial 
success”, or “failure”, 

• Np: Navigation path, i.e., the sequence of UI elements 
accessed, 

• A: Adaptation actions previously applied (e.g., “difficulty 
increased”, “hints suppressed”). 

When a learner initiates a new activity, the CRM computes a 
feature vector Fcurrent representing the learner’s real-time interaction 
profile. It then performs nearest-neighbor retrieval over the case base 
using a weighted similarity function: 

 

Here,  is the value of the k-th attribute in case i,  is 

the corresponding value from the current session, wk is the 

weight assigned to attribute k, and simk is the similarity function 

for that attribute (e.g., inverse Euclidean distance for numeric 

values, Jaccard similarity for categorical patterns). 



Suppose a current learner spends 7 minutes on an exercise, makes 

2 syntax errors, and uses 1 on-request hint. The system encodes 

this as: 

 

The CRM compares this profile with historical cases. For 

instance: 

• Case A: ⟨400, 0.20, “low-on-request”, “success”, 
“[hint, compile, retry]”, “difficulty increased”⟩ 

• Case B: ⟨800,0.50, “high-auto”, “partial success”, 
“[hint, hint, give up]”, “show scaffold”⟩ 

The CRM may be inclined to choose Case A because of the close 
time and error rate as well as the same hint behavior within Case A. 
The similarities will factor into the selection of precedent adaptation 
actions in that case (i.e., increased difficulty) and the next reasoning 
stage. 

B. Rule-based Inference Engine 

The Rule-Based Inference Engine (RIE) acts as the 
system’s main decision-making process. The RIE elements 
convert the learner interaction patterns that are retrieved into 
specific, adaptive UI actions relying on a predetermined 
collection of manually constructed inference rules. These 
inference rules are based on pedagogy theory, and aim to 
imitate human-tutor decision heuristics in a clear and 
reproducible way. 

The rule base was developed through an iterative, 
knowledge-based process that involved 

• An empirical analysis of student interaction logs (from 
previous deployments of programming courses in 
Java) concentrating on time-on-task, clustered errors, 
and hint usage patterns. 

• Conversations with domain experts (instructors and 
instructional designers) to identify possible 
pedagogical actions in response to observable 
behaviours. 

• Integration of cognitive and instructional theories to 
inform the design, including Cognitive Load Theory, 
the Zone of Proximal Development, and Scaffolding 
Theory, to provide a theoretical foundation 

• Simulation of scenarios with rule validation through 
walkthroughs and mock sessions with synthetic 
learners to confirm coverage and resolution of rules. 

The resulting rule base consists of 24 inference rules, 
divided into three main domains of rules: 

• Difficulty Management (9 rules): Modifies the level of 
difficulty for the next learning task. 

• Guidance and Scaffolding (10 rules): Manages hint 
visibility, step-based support, and prioritization of 
concepts. 

• Motivational and Engagement Support (5 rules): 
Initiates motivational feedback and simpler UI when 
users disengage. All rules follow a regular IF-AND-

THEN format, and each rule is embedded in the 
system as a triplet: 

Ri=⟨Conditions, Actions, Priority⟩ 

The Conditions specify whether the parameter is from the 
current learner profile or a retrieved case or cases. The Actions 
are deterministic and can be directly executed by the AUIC. 
The Priority is there to address conflicts. The priorities were 
established through expert consensus, based on the pedagogical 
significance, and intended instructional effect, of each rule 
within scenario-based simulations. 

Five illustrative rules are shown below that demonstrate a 
range of adaptation intentions (Table 1). 

TABLE I.  REPRESENTATIVE RULES 

Rule Name Category Rule 

R1 - Difficulty 

Escalation 

Difficulty 

Management 

IF time_spent < 300 

seconds AND error_rate < 
0.15 

AND hint_usage = "none" 

THEN increase 
difficulty_level by one 

tier, disable hints by 

default. 

R2 - Maintain 

Progression 

Difficulty 

Management 

IF 300 ≤ time_spent ≤ 900 
AND 0.15 ≤ error_rate ≤ 

0.40 

AND hint_usage = "on-
request" 

THEN keep current 
difficulty, keep hints 

available on demand. 

R3 - Activate 

Scaffolding 

Mode  

Guidance and 

Scaffolding 

IF error_rate > 0.50 

AND hint_usage = "auto-
displayed" 

AND task_completed = 

false 
THEN enable step-by-

step guidance, show 

syntax highlight, display 

related solved example. 

R4 - Decrease 
Complexity & 

Visual 

Simplification 

Guidance and 

Scaffolding 

IF time_spent > 900 

seconds 
AND navigation_pattern 

= "repeated back-and-

forth" 
THEN decrease 

difficulty_level, simplify 

layout, show only key 

concepts. 

R5 - Provide 

Motivational 

Feedback 

Motivation 

IF inactivity_period > 120 

seconds 
AND last_action = 

"task_abort" 

THEN display 
motivational message 

("You’ re making 

progress!"), highlight next 

recommended task. 

 

The RIE executes evaluations of multiple rules for each 
instance, and selects non-conflicting rules using a confidence-



based and priority-aware prioritization approach. When 
multiple rules are triggered with conflicting outcomes, the 
engine will utilize one or more of the following criteria: 

• Preference for specificity (the rules with the most 
conditions are preferred), 

• Pruning based on outcomes (the rules demonstrate 
poor outcomes historically are deprioritized), 

• Priority tags assigned to rules as defined. 

The resulting output is a single coherent adaptation plan that is 
then passed to the AUIC for immediate execution. 

C. Adaptive UI Controller 

The AUIC is the last operational phase of the adaptive 
system pipeline and acts as the executor at the interface level 
for pedagogical decisions made through reasoning upstream. 
While the RIE enacts a pedagogical action plan given retrieved 
cases and rules, the AUIC interprets and executes these plans 
as concrete, visible, and interactive elements of the educational 
software interface. In other words, the AUIC serves as a 
connection between intelligent reasoning and the user’s 
immediate experiences, enabling responses that are adaptive 
and purposeful in real time for each learner.  

To support responsive adaptation of the interface, the 
AUIC is built upon a modular, state-aware UI architecture that 
can respond in real time without interrupting the user’s task. 
This system receives structured adaptation directives, including 
precise values for parameters from the RIE, for example, the 
complexity level of the next task, hint delivery mode, the 
extent to which instructional scaffolding is warranted, and 
formatting of the UI components. The AUIC receives and 
parses the directives from the RIE to implement them in real 
time using a component-based rendering engine that can 
selectively enable or disable UI features. 

A major asset of the AUIC is its formal integration of 
Human-Computer Interaction (HCI) design principles into the 
adaptation logic. Adaptations are not made arbitrarily, or 
mechanically; instead, the system guarantees all interface 
alterations abide by the consistency, continuity, and usability 
expectations that are prerequisites for the “inflow moments” of 
learning. For example, layout consistency is maintained even 
as content changes in real time, preventing spatial 
disorientation. Visual transitions, for instance when a 
scaffolded hint or an annotation on a piece of code appears, are 
animated/rendered in a fluid manner, making the change 
apparent, but without distorting the learner's attention. 
Similarly, responsiveness of the interface is key—adaptation 
decisions are implemented with minimum delay, and 
signals/feedback are given to the user as quickly as possible, 
enabling perceived seamless flow and awareness.  

The AUIC allows for a broad range of adaptive behaviors 
to support the user. For example, when a learner is performing 
at a high level, indicated by a consistent error rate well below 
the threshold, short completion times, and not having heavily 
relied on hints, the AUIC will sometimes modify the task to 
become more complex. This could be in the form of an extend 
exercise to one that is more abstract, seamlessly transitioning to 

a more expansive programming activity, disabling inline hints, 
or optimizing coding interfaces to eliminate unnecessary 
scaffolding. Equally important, these changes are made without 
losing the predictability of the interface—buttons, panels, and 
interaction zones are all still anchored in the same familiar 
positioning, so the user is never visually lost, despite the 
challenge increasing. 

On the other hand, for learners who show signs of difficulty 
(e.g., repeated submission errors, too long of a pause, or 
reliance on hints), the AUIC decreases the difficulty gradient 
and supports incremental scaffolding (i.e., turning long task 
instructions into sequenced input, providing on-demand code 
examples, or using syntax-aware highlights in the editor). 
These scaffolding factors are thoughtfully designed into the 
existing UI platform, creating a compromise between visibility 
and cognitive load while maintaining a consistent visual 
hierarchy to direct attention without overloading the learner. 

The AUIC enacts alterations in a transparent and 
explainable way. All alterations of the interfaces are recorded 
with specificity with timestamp, triggers, and adaptations 
made. The recorded alterations support instructor review and 
evaluation of the system while providing learner-facing 
features like tooltips, or an expandable feature with the 
rationale for the change (e.g. “the hints were turned off because 
you were efficient at solving similar problems.”). This credible 
transparency builds trust and helps encourage learner 
interrogation of one's own progress. 

Additionally, the AUIC was designed with incremental 
extensibility in mind. The system is modular, so that 
developers and instructional designers can create new UI 
adaptation patterns, or integrate other modalities of input (e.g., 
emotion detection, eye-tracking) without having to change or 
remake the core system. This ultimately positions the AUIC to 
be more than just an adaptive controller but flexible 
experimentation layer for future research in designing adaptive 
interaction. 

In summary, the AUIC offers more than merely a device to 
reconfigure the interface. The system represents an HCI-aware 
philosophy of adaptation, in which the decisions make by the 
system are realized in a pedagogically informed, interactionally 
fluid, and responsive to learner perception and behavior. The 
AUIC is an active force in sustaining a coherent, motivating, 
and personalized learning experience, that advances the 
intersection of intelligent decision making and user-centered 
design of educational interface. 

 

III. EVALUATION 

In order to assess the utility of the proposed adaptive 
framework, we incorporated it in a custom-designed 
educational software platform where the subject matter is the 
Java programming language. This platform contains all of the 
system modules, including the CRM, RIE, and AUIC, and 
served as the primary learning context during a postgraduate 
course in object-oriented programming. 



A. Experimental Setup 

The assessment involved 60 students who were 
postgraduate students with at least basic programming 
experience, although Java proficiency varied. The research was 
conducted over a four-week period and consisted of 
compulsory weekly lab sessions, which students were also 
encouraged to use outside of class. Participants were assigned 
to either a testing group or a control group: 

• The experimental group (n = 40) utilized the complete 
adaptive version of the system, where the interface was 
adapted to the learner model in real-time.  

• The control group (n = 20) used the same system with 
a fixed interface. In the fixed interface, task difficulty 
was fixed with difficulty not connected to its level, 
hints were provided and could be obtained on demand 
and the interface provided no scaffolding or 
progression logic. 

Both participant groups received the same instructional 
content and were asked to complete the same sequence of 
similar programming exercises. 

We gathered both quantitative and qualitative data. Our key 
performance indicators included:  

• Percentage of successful task completion 

• Percentage of incorrect submissions for each task 

• Minutes on task 

• Number of hints used for each task 

• Percentage of students who completed all tasks 

• Learner satisfaction, assessed with a post-study 
questionnaire on a 5-point Likert scale. 

We anonymized and analyzed interaction logs to determine 
behavior patterns and trends in engagement. The AUIC 
(Adaptive User Interface Components) also provided logs of 
adaptation traces that could be analyzed after the study. 

B. Results 

The quantitative evidence suggests that the adaptive system 
had a positive impact on performance and engagement. The 
main findings are represented in Table 2 and Figure 2. The 
control group used an adaptive version of the system with a 
fixed UI and no personalized features. The success rate of the 
adaptive version (87.2%) was significantly higher than the 
static version (74.5%), confirming that learners were benefiting 
from personalized difficulty and scaffolding. Furthermore, 
errors decreased almost 50%, which suggested that adaptive 
guidance exemplified fewer errors and better conceptual 
understanding. Learners using the adaptive version spent less 
time on a task, and therefore, gained efficiency, primarily 
among more proficient learners who were adequately 
challenged. The number of hints in the adaptive version 
decreased, which mainly occurred due to students who 
struggled needing scaffolding and students who were proficient 
having their hints suppressed. 

The exercises completion rate was significantly higher for 
the adaptive group than the non-adaptive group; while this was 
true (95%), almost all subject also scored the survey measures 
higher using the adaptive system (mean score: 4.42 out of 5). 

TABLE II.  QUANTITATIVE RESULTS. 

Metric 

Adaptive 

System 

(n=60) 

Control 

Group 

(n=20) 

p-value 

(t-test) 

Task Success 

Rate (%) 
89.5 74.0 

p<0.01 

Average Error 

Rate (%) 
10.3 20.6 

p<0.01 

Average Time 

per Task (min) 
8.4 10.7 

p<0.01 

 

Hint Requests 

per Task 

1.1 2.5 

p<0.01 

Completion 

Rate (%) 
95.0 82 

n.s. 

Satisfaction 

Score (1–5) 
4.4 3.6 

p<0.01 

 

 

Fig. 2. Performance comparison between Adaptive and Control Group. 

Statistical comparisons were conducted with independent 
two-sample t-tests test with unequal variance. The results 
showed statistical differences improving task success, error 
counts, time, and customer satisfaction in the adaptive 
condition. The difference in completion rates, despite the 
adaptive group having more successful completion rates over 
the traditional group, was not statistically significant. 

C. User Feedback and Observations 

Qualitative feedback received from open response questions and 
interviews shed some light on user experience. A number of learners 

describe feeling “guided but not bombarded” and appreciated the 
step-by-step explanations as well as the hints that were context-
sensitive in the environment. Advanced users noted the system 
“removed the unnecessary help” and “the level of challenge was just 
right”. A small percentage (about 8%) reported that they preferred 
more control over seeing hints in the environment, suggesting there 
may be an opportunity for customizable adaptation preferences in the 
next iteration. 



D. Discussion 

The evaluation findings lend support to the hypothesis that 
the inclusion of case-based reasoning into rule-based logic may 
serve to enhance personalization of learning experiences. In 
terms of pedagogy, the system was able to both accelerate 
proficient learners and scaffold struggling learners, which 
aligns well with the goals of differentiated instruction. With the 
reduced error rates and the reduced frequency and dependence 
on hints, together with greater engagement and satisfaction, 
suggest that the adaptive decisions were, at least largely 
appropriate and well-executed by the AUIC. Overall, this study 
appears to provide some educational benefit and could 
potentially apply to other content areas that have structured 
problem-solving tasks. While the outcome of the evaluation is 
promising, it does have limitations in that it was of relatively 
short duration and was only focused on one subject area. 
Future studies might examine long-term retention, the 
transparency of adequate adaptation, and the leverage of 
learner-controlled personalization in conjunction with 
automated adaptation. 

IV. CONCLUSIONS AND FUTURE WORK 

This paper introduced a rule-driven, case-based adaptive 
framework for personalized user interfaces in educational 
environments, to improve the learning experience within 
programming education. The framework leverages CBR and 
rule-based logic to provide context-sensitive adaptations to 
users' learning, behavioral patterns, and pedagogical principles 
of the learning task. The architecture was developed with three 
main modules in parallel, the CRM, the RIE, and AUIC, which 
worked together in real time to monitor, reason, and adapt to 
learners. 

The framework was implemented within an educational 
software system for learning about Java programming, and 
evaluated in a study with 60 postgraduate students. The 
analysis demonstrated significantly better learning 
performance, reduced errors, increased task completion, and 
positive levels of user satisfaction. The results corroborated the 
advantages of integrating cognitively plausible reasoning 
mechanisms to adaptive user interfaces. 

While we are encouraged by the initial findings, several 
directions remain available for future work. First, we designed 
and validated the rule base manually, and next, we will 
examine data-driven optimization methods, such as 
reinforcement learning, to tune the weights of rules or even 
identify new rules. Second, the current version of the system is 
limited to unidimensional adaptation, primarily based on the 
use of time and errors, and hints, but future iterations could 
include multi-modal interaction features such as eye tracking, 
keystroke dynamics, and emotional feedback to better assess 
cognitive states and affective engagement. 

Next, we plan to investigate learner-controlled 
personalization, so that learners can modify some of adaptive 
behaviors or override them altogether. This blended approach 
may be able to take advantage of some of the benefits of 
automation, however balance these advantages with 
transparency and agency, which may be preferred by some 
users. A final contribution for future iterations of the system is 

expanding the framework to process additional subject areas 
and learner populations to check for generalizability and 
robustness across educational contexts. 

In summary, our proposed system represents a promising 
advancement in the direction toward bringing together 
cognitive models and adaptive educational technologies. With 
its transparent, and interpretable logic, and modular design our 
proposed system provides both pedagogical grounding and 
technical scalability for a promising path forward in adaptive 
learning environments. 
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