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ABSTRACT This paper introduces TinyGreekNewsBERT, a 14.1 M-parameter distilled Transformer
that performs both Named Entity Recognition (NER) and multiclass news-topic classification in Greek.
We first compile and annotate a 20 000 article corpus with 32 IOB2 entity labels and 19 thematic
categories, accompanied by a transparent, reproducible preprocessing pipeline. On this benchmark,
TinyGreekNewsBERT reaches 81% micro F1 for NER and 78% classification accuracy, coming within
five percentage points of GreekBERT (86% / 83%) while delivering comparable performance to mBERT
(82% / 77%) and approaching XLM-RoBERTa (85% / 82%). Crucially, compared with GreekBERT, our
model is 8 × smaller, requires 15 × fewer FLOPs (1.3 BFLOPs at 128 tokens), and yields a median CPU
latency of 14.7 ms per article, a 10 × speed-up that makes it the first genuinely edge-deployable solution
for Greek NER and news classification. Because the distillation and training pipeline is language-agnostic,
the approach can be ported to other mid-resource languages and domains, offering a cost-effective path to
multilingual, real-time NLP systems.

INDEX TERMS Distilled transformer, edge-deployable model, multiclass news-topic classification, named
entity recognition.

I. INTRODUCTION
A. MOTIVATION AND CONTEXT
Recent advancements in news analytics show that news
outlets produce over 5 000 English articles each day [1].
In the span of a year these articles exceed 1.5 million,
making it infeasible for humans to effectively tag them
in both entity and article level. While the leading news
outlets embed Natural Language Processing Tools in their
content management system to provide thematic categories
and tag entities, others leave it at the authors which leads to
inconsistencies.

In addition to that, the end users expect efficient nav-
igation, precise search results and accurate personalized
recommendations. Modern NLP solutions often rely on big
transformers models that demand significant computational
resources. While these models achieve great results their
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application requires high-end servers, making them unsuit-
able for low end servers and real time deployment.

When it comes to personalized recommendations its also
important to note that edge-deployed models fully align
with GDPR’s data-minimization principle. Companies can
provide accurate and engaging recommendations that keep
users coming back, while users enjoy a smoother experience,
knowing their personal data never travels to remote servers.

Recent reports in low-resource or small-data settings [20]
also show that compact non-Transformer models (for exam-
ple, CNN/RNN with static embeddings) can be competitive,
especially when interpretability or simplicity matters.

B. SCOPE AND IMPORTANCE
This work focuses on automatic tagging of Greek news
under strict deployment constraints. Specifically, the target
environment is CPU-only (on-device or low-cost servers),
so latency, memory footprint, and portability outweigh
marginal accuracy gains.

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 155031

https://orcid.org/0009-0004-2684-5607
https://orcid.org/0000-0002-9604-2015
https://orcid.org/0000-0002-8620-5255
https://orcid.org/0000-0002-6916-3129


I. Katranis et al.: NER and News Article Classification: A Lightweight Approach

To this end, we assemble and clean a 20 000-article, dual-
labeled corpus, train and evaluate static word embeddings,
build and evaluate BiLSTM baselines and finally distill and
evaluate Transformer-based models.

Additionally, we report deployment-oriented metrics,
including CPU latency, throughput, compute (FLOPs) and
on-disk size alongside accuracy to reflect real-world perfor-
mance.

In day-to-day use, entity and topic labels power the features
users interact with: reliable search and navigation, alerts and
trend tracking, de-duplication of near-identical stories and
recommendations. A lightweight model that runs in real time
on commodity CPUs enables CMS tagging without GPUs,
supports on-device personalization that keeps reading history
local and GDPR-aligned and reduces cost and energy for
smaller publishers. Our results show that a sub-15 M joint
model can deliver competitive performance with 14.7 ms
median CPU latency and a 54 MB on-disk size, meeting our
deployment constraints.

C. WHY GREEK?
NLP has made significant headway on widely spoken lan-
guages like English and Chinese. However, lesser-supported
languages like Greek remain comparatively under-served.
One of the main reasons for this is the lack of large
open licensed corpora, which makes the development and
evaluation of robust NLP tools particularly challenging.

Moreover, Greek’s rich morphology and complex vocab-
ulary also oppose a challenge. Popular multilingual trans-
former models such as mBERT [2] and XLM-RoBERTa [3]
support over 100 languages but often under perform on purely
Greek tasks compared to monolingual alternatives. The
primary reason for this is subword fragmentation. Subword
fragmentation occurs when a tokenizer breaks a single word
into many smaller pieces because it doesn’t have that word
in its fixed vocabulary. For example, mBERT’s 110 thousand
WordPiece vocabulary allocates only about 1 200 tokens (1%)
to Greek and even XLM-RoBERTa’s expanded 250 thousand
vocabulary covers just 4 800 (2%) Greek subwords.

As [4] shows, Greek-BERT1 and its 35 000 Greek-only
WordPiece vocabulary, outperforms the multilingual models
on NLP tasks, demonstrating the clear advantage of models
explicitly trained and fine-tuned on Greek data. This gap
matters even more in the context of a lightweight architecture
where every parameter counts.

D. GENERALIZATION
Our pipeline is language-agnostic by design. Every step from
web scraping to model distillation and fine-tuning relies on
raw text and task specific labels, so nothing is tied to Greek.

Greek’s rich morphology, tricky punctuation and complex
vocabulary make it a demanding setting for NER and classi-
fication. Recent work by [5] underlines that advancements

1https://github.com/nlpaueb/greek-bert, last accessed at: 05/13/2025.

made in Greek NLP can serve as a roadmap for other
low-resource languages. Our pipeline can be transferred to
other low-resource languages without architectural changes,
by swapping the teacher (monolingual where available;
otherwise a strong multilingual encoder), adopting its
tokenizer and keeping the joint student fixed at 14.1 M
parameters. In practice, languages that are morphologically
closer to Greek will transfer more directly, whereas highly
agglutinative or templatic languages may need tokenizer or
knowledge-distillation tuning to counter increased subword
fragmentation that can modestly degrade NER. In Sec. V-E.
we discuss tokenizer effects and code-mix robustness.

On top of that, our pipeline can be applied to other domains
such as legal and clinical text. With an appropriate label
schema (for example, DRUG, DOSAGE, PROCEDURE
or STATUTE, CASE_CITATION, PARTY) a lightweight
student of similar size and performance can be trained
and deployed. A model with this footprint can materially
cut operating cost in a law firm or hospital as it runs on
commodity CPUs, reduces the manual cataloging workload
and supports real-time sorting of high-priority cases/patients.
Beyond cost, it can run on-device, server-local and offline so
documents stay in-house and aligned with GDPR/HIPAA.

It’s important to be noted that the domain shift introduces
new challenges. Biomedical Latinisms, legal citation formats
and multi-word entities increase subword fragmentation
and make span boundaries harder. Furthermore, datasets
are rare due to privacy and label distributions are often
unbalanced. The cost of mistakes is also higher. These risks
can be reduced without increasing the deployed footprint via
domain-adaptive pretraining on unlabeled in-domain text and
fine-tuning on a small schema-aligned set.

Fig. 1 summarizes our methodology.

E. DESIGN CHOICE: FULLY NEURAL VS. HYBRID
Our architectural choices were driven by the deployment
requirements of a lightweight model: fast CPU inference,
a low memory footprint and competitive accuracy. Given
our deployment target, one option is a hybrid pipeline that
combines rule-based components with neural predictions.

On the NER side, hybrid rule-plus-model pipelines can
yield good results on structured entity types such as dates,
times and numbers [6], but they generalize poorly to
open-class entities such as person, location, events and
products [7]. Additionally, this approach increases the
deployment load andwould require ongoingmaintenance [7].
For text classification, recent transformers-based neural
models generally outperform rule / lexicon based systems on
classification benchmarks [8], [9].
To avoid these limitations, we adopt a fully neural design

that performs both tasks jointly. A shared encoder produces
both outputs in a single forward pass, reducing the model’s
compute requirements and inference latency while keeping
the on-device footprint small.
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FIGURE 1. Summary of the proposed methodology.

F. SHORTCOMINGS AND DIFFERENCES
Prior work on Greek NLP typically targets a single task
and relies on large transformer encoders. To our knowledge,
no prior Greek work reports a sub 15-M parameter joint
model for 19 way news topic classification and 16 type NER.
Reporting also tends to emphasize accuracy while omitting
deployment metrics (CPU median/p95 latency, throughput,
FLOPs, on-disk size) and it rarely examines accuracy to size
trade-offs.

Filling this gap, our key contributions can be summarized
as:

Data & reproducibility. We release a step-by-step guide
for scraping and document the cleaning, labeling pipeline so
comparable datasets can be built under similar constraints.

Strong non-Transformer baselines. We train, evaluate
and release lightweight Greek Word2Vec (CBOW) embed-
dings and benchmark non-Transformer models alongside
Transformers to anchor the accuracy/latency curve.

Joint compact student. We introduce a distilled 14.1 M-
parameter Transformer can deliver near state-of-the-art Greek
NER and topic classification while running in real time on a
CPU-only edge device.

Deployment-grade evaluation. We report CPU median/
p95 latency, docs/s, on-disk size, and FLOPs vs. sequence
length side-by-side for TinyGreekNewsBERT, GreekBERT,
DistilGreekBERT, mBERT, and XLM-R, coverage that,
to our knowledge, prior Greek work does not provide.

Tokenizer & code-mix diagnostics. We analyze code-
mix and tokenizer effects (whole-word rate, pieces per word,
entity-split rate, [UNK] tokens per 1 000 words) and tie
subword fragmentation to NER boundary errors.

Ambiguity-focused error analysis. We include con-
fusion heatmaps for classification and span-level NER
(PERSON/ORG/LOC and extended groups, token-overlap
matching), exposing topical confusions and entity-type
overlap.

The novelty is practical: a lightweight joint model and
deployment-oriented pipeline with reproducible data, CPU
benchmarks, tokenizer/code-mix diagnostics, and ambiguity
analysis. It also serves as a strong testbed for other low-
resource languages.

G. RESEARCH QUESTIONS AND CONTRIBUTION
Motivated by the challenges and goals outlined above, our
study is guided by the following research questions:

1) How can we train a lightweight model that performs
both NER and topic classification without a substantial
drop in accuracy for either task?

2) Does a distilled Transformer outperform a similar sized
RNN on Greek NER & classification?

3) What is the trade-off curve between model size and
performance and where is the optimal ‘‘sweet spot’’?.

The remainder of this paper is organized as follows.
In Section II, we review related work and underline where
our work differs. Section III describes our dataset creation,
preprocessing steps and our labeling strategy. Section IV
details our methodology, covering word embedding training,
model distillation, training and fine tunning. In Section V,
we present our results, compare performance to size trade
offs and analyze errors. Section VI discusses the implications
of our findings for real world applications and finally,
Section VII concludes the paper and outlines directions for
future work.

II. LITERATURE REVIEW
Joint models train more than one NLP objective on a single
shared encoder, typically a BERT-style Transformer, using
separate task-specific heads. For NER and text classification
this setup offers two clear benefits: (a) a single forward pass
yields both outputs, cutting inference time and parameter
count and (b) the tasks can reinforce each other, since
topical cues help entity boundaries and vice-versa. Recent
studies therefore explore BERT-based joint-task setups, often
reporting gains over separate models [10]. In what follows,
we survey the most relevant of these approaches and
highlight where our lightweight pipeline fills the remaining
gaps.
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A. RELATED WORK
Below, we survey relevant studies, grouping them by their
underlying model architecture.

Wunnava et al. [11] propose a dual-attention BiL-
STM that jointly performs Named Entity Recognition and
sentence-level classification for adverse drug event (ADE)
detection. The model tags ten entity types (9 ADE categories
plus the O label) and predicts a binary label indicating
whether a sentence describes an ADE. Evaluated on the
MADE1.0 benchmark dataset [12] which contains 1 089 de-
identified EHR notes from 21 cancer patients (876 for
training, 213 for testing), the joint model reaches an
F1-score of 63% for NER and 75% for sentence classi-
fication, outperforming single-task baselines and demon-
strating the benefit of shared representations in a medical
domain.

Chen et al. [10] employ the English uncased BERT-
Base (12 layers, 768 hidden units, 12 attention heads)
with two output heads, one for intent classification and
one for slot filling. A CRF layer was also tested, though
the base joint model performs best. On the Snips dataset,
Joint BERT achieves 98.6% intent accuracy, 97.0% slot-
filling F1 and 92.8% sentence-level accuracy. On the ATIS
corpus [13], Joint BERT reaches 97.5% intent accuracy,
96.1% slot-filling F1 and 88.2% sentence accuracy. These
results underscore the effectiveness of a shared Transformer
encoder for joint sentence-level classification and token-level
tagging.

Goo et al. [14] introduce a BiLSTM model with slot-gated
attention that does joint slot filling (token-level tagging) and
intent classification. They compare two variants, one with
separate dual attention for both tasks and one with attention
only on the intent head. On the ATIS corpus (5 871 utterances,
120 slot labels, 21 intents), the intent-attention variant
achieves a slot filling F1 of 95.2%, intent accuracy of 94.1%
and sentence-level classification accuracy of 82.6%. On the
Snips dataset (14 484 utterances, 72 slot labels, 7 intents)
[15], the dual-attention variant attains a slot-filling F1 of
88.8%, intent accuracy of 97.0% and sentence accuracy of
75.5%. These results show that slot-gated attention yields
substantial gains over a standard joint RNN.

Gan et al. [16] propose a multi-task framework for
Sentence Classification (SC) and Named Entity Recognition
that casts sentence classification and token level entity
labeling as one unified sequence generation problem. They
extend an existing Japanese Wikipedia NER corpus (5
343 sentences, 8 entity types) [17] by tagging each sentence
with one of five classification labels (Social, Literature &
Art, Academic, Technical, Natural). They use a T5-base
Transformer, a format converter to merge SC and NER into a
single prompt and a constraint mechanism to enforce correct
formatting. Prior to fine-tuning, they apply incremental
learning on the Shinra2020-JP NER corpus [18] to sharpen
span predictions. The proposed model achieves a score of
88.89% for SC Accuracy and 81.96% for NER Accuracy
outperforming their single task variants.

Faria et al. [19] introduce MultiBanFakeDetect, a mul-
timodal Bangla fake-news dataset of 9 600 text–image
pairs and evaluate fusion models that combine DenseNet-
169 (images) with mBERT (text). Their early-fusion variant
(MultiFusionFake) achieves 79.69% accuracy, a +6.56-
point gain over a text-only mBERT baseline (73.13%), and
they compare early, late and intermediate fusion strategies.
As one of the first multimodal studies for an under-
resourced language, it shows that adding visual signals can
meaningfully improve news classification beyond text-only
baselines.

Hasib et al. [20] study clinical screening for specific
language impairment (SLI) in Bangla. They work with a
small child-speech dataset (252 samples: 160 typical, 92
SLI) and compare classic ML, shallow/deep neural baselines,
Transformer models and a deep CNN. The deep CNN comes
out best at 90.47% accuracy (vs. 88.88% for a DNN and
87.30% for a shallow neural net), while Transformers lag on
this limited data. They also add SHAP/LIME explanations,
underscoring cases where data scarcity and interpretability
make compact CNNs a better fit than heavier Transformer
setups.

Koutsikakis et al. introduce Greek-BERT [4], a mono-
lingual BERT-base model (12 layers, 768 hidden units,
12 attention heads) trained on 29 GB of Greek text
(Wikipedia, Europarl, OSCAR). Evaluated on Greek PoS
tagging, NER and NLI, GREEK-BERT matches or exceeds
multilingual baselines (mBERT, XLM-R), attaining state-of-
the-art results on NER and NLI (XLM-R is marginally higher
on PoS).

Loukas et al. present GR-NLP-TOOLKIT [21], an open-
source toolkit for Greek nlp that reports state-of-the-art
performance on PoS tagging, morphological tagging, depen-
dency parsing, NER and Greeklish-to-Greek transliteration.
It uses GREEK-BERT with task-specific heads and a BYT5
transliterator. In head-to-head comparisons with spaCy and
Stanza on Greek benchmarks, the toolkit outperforms spaCy
(NER) and Stanza (dependency parsing), and is on par or
slightly better on POS andmorphological tagging (Stanza has
no Greek NER).

Gkolfopoulos et al. [22] fine-tune GreekBERT (113M
parameters) on a private, manually annotated corpus of 3
992 news articles spanning 16 thematic categories (each
article truncated to its first 512 tokens), achieving an overall
F1 90%. They further report an average inference time of 1 s
per article on an AMD FX-8320 CPU.

Table 1 summarizes the above related work.

B. COMPLEMENTARY WORK
Below, we cite complementary studies on multilingual
resources, model compression, and on-device deployment
that further contextualize our work.

Kuzman and Ljubešić [23] follow supervised fine-tuning
with a teacher-student setup. In more detail, they use GPT-
4o zero-shot predictions to label 21 000 Catalan, Croatian,
Greek and Slovenian news articles with 17 IPTC Media
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TABLE 1. Related work.

Topic categories.2 For their student model they used an
XLM-RoBERTa-large model. On a manually annotated test
set, their best student model yielded 74.6% macro F1, one
and a half point ahead of its teacher (73.1%). When the
target language is omitted, zero-shot transfer remains strong,
66–74% macro-F1 across the four held-out languages.

Sarkar et al. [24] present a performance study on how
popular transformers models (BERT, RoBERTa, DistilBERT
and TinyBERT) perform on low-resource devices. The
devices tested were Raspberry Pi, Jetson, UP2 and UDOO
with 2 GB and 4 GB memory. They test the models
performance across various NLP tasks, including intent
classification, NER and sentiment classification and they
report energy consumption, memory usage and inference
time. Notably, their study is among the first to systematically
assess the practical feasibility of deploying BERT-based
models on resource-constrained embedded devices.

Multilingual baselines such as mBERT [2] and XLM-
RoBERTa [3] cover 100+ languages and remain the default
starting point for cross-lingual NLP. Several studies however,
show that language-specific models consistently outperform
their multilingual counterparts. Some of the main examples
include: Turkish [25], Finnish [26], Dutch [27],French [28]
and Greek [4].

Leeb and Schölkopf [29] introduce Diverse Multilingual
News Headlines, a corpus of 4.7 million news articles in
30 languages. Using the NewsAPI metadata, each article is
labelled with one of seven (business, entertainment, general,
health, science, sports and technology) thematic categories,
providing a large-scale cross-lingual benchmark for news
classification.

Jiao et al. [30] distill BERTBASE into a 4 layer ‘‘Tiny-
BERT4’’ via a novel two-stage Transformer-level distillation
(general-domain pre-training onWikipedia followed by task-
specific fine-tuning on the GLUE benchmark). TinyBERT4
retains 96.8% of BERTBASE’s average GLUE score while
being 7.5 × smaller and 9.4 × faster at inference.

Hinton et al. [31] introduce the original distillation
framework which includes training a small student to match a
large teacher’s softened output distribution via cross-entropy
or L2 on logits which underlies nearly all subsequent
knowledge distillation work.

Sun et al. [32] use a teacher-student setup and perform
knowledge transfer fromBERT-base intoMobileBERT. Their
MobileBERT yields 25.3 M parameters, has over 5 × faster
inference time and performs within 0.6% below BERT-base
on the GLUE benchmark [33]. They further report that

2https://iptc.org/standards/media-topics/, last accessed at: 05/13/2025

their lightest model with 15 million parameters, achieves an
inference time of 40 ms on a Google Pixel 4 smartphone and
requires only 3.1 billion FLOPs per input. Lan et al. [34]
compress the 109 M parameter BERT-base and the 334 M
parameter BERT-large into ALBERT, a family of models
ranging from 235 M to 10 M parameters. They achieve this
via factorized embedding parameterization and cross-layer
parameter sharing. The resulting ALBERT models set new
state-of-the-art results on the GLUE, versions 1.1 and 2.0 of
SQuAD ( [35], [36]) and RACE [37] benchmarks.

C. DIFFERENCES OF OUR WORK
Our work differs in four key ways:

• Dataset scale & coverage. Our corpus is significantly
larger than prior work and also includes more thematic
categories and entity types.

• Joint NER & classification. Instead of just topic tags,
our pipeline labels both entity spans and article topics in
one go.

• True lightweight inference. Our 14.1 M parameter
model, reduces the response latency, thus enabling
real-time use on mobile and edge devices.

• Generalizable pipeline. We provide an end-to-end
workflow from data scraping and labeling through
model distillation and fine-tuning that can be applied to
any language or domain by swapping in a new corpus
and label set.

III. DATASET
Note: Due to licensing and copyright constraints we will
not be releasing our dataset. However, we provide all
necessary scripts and step-by-step instructions to enable
others to reproduce our data collection and preprocessing
pipeline using publicly available news sources. The proposed
methodology is flexible and can be applied to assemble
comparable datasets for other domains or languages.

A. DATASET CHARACTERISTICS AND LABELING STRATEGY
We compiled a diverse set of Greek news texts, each
annotated for both its topic and its named entities:

• Size & length. 20 000 articles (averaging 559 words
each), split into 412 word chunks. We pick 412 words
so that, once the GreekBERT tokenizer applies sub-
word splitting, each chunk stays under the 512-token
maximum (common words remain whole, rare words
break into subwords e.g. ‘‘unwanted’’ ‘‘un’’, ‘‘want’’,
‘‘##ed’’).

• Labels. Our dataset features 19 high-level news cate-
gories and 32 IOB NER labels, as shown in table 2.
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• Sources. We scraped from 31 distinct news domains,
limiting ourselves to at most 250 articles per site so that
each of our 19 categories has links drawn from at least
4 different sources.

• Data split. We split the data to the train, test and
validation split before chunking to prevent leakage: 70%
/ 15% /15 % by article (14 287 / 3 062 / 3 062 articles),
yielding 26 486 / 5 680 / 5 680 chunks respectively.

TABLE 2. Classification and NER label mappings.

B. DATA COLLECTION AND PREPROCESSING
We began by collecting ∼1 000 article URLs for each of
our 19 topics, sourcing links from at least four different
news websites per topic and logged every URL with its
corresponding category label in a CSV file. We then used a
simple Python scraper built on newspaper3k to download the
raw article texts.

For the NER labels (see label frequencies in Table 3),
we first ran the elNER18model [38]3 over the full corpus and
manually reviewed 20 sample articles per source to validate
its outputs. Finally, we dropped the three least frequent entity
types LAW, LANGUAGE and WORK OF ART from our tag
set.

To clean up source specific noise (leftover HTML tags,
inline ads and scripts, stray links, emojis, errant punctuation,
etc.), we hand-reviewed 20 articles from each domain and
then created set of regex filters for each source, ultimately
covering 31 distinct news websites. After cleaning the data,
we added each article’s headline to its body and deleted

3https://huggingface.co/pprokopidis/elNER18-bert-base-greek-uncased-
v1-bs8-e150-lr5e-06, last accessed at: 05/13/2025

duplicates and empty rows. Finally, we applied a global rule
that allows one space at most between words in every article.

TABLE 3. Frequencies of classification and NER labels in our corpus.

C. ADDITIONAL DATASETS
To create high quality static word embeddings for our RNN
model baseline we augmented our 20 000 news corpus with
three publicly available Greek resources:

• GreekWikipedia (93 000): extracted from the IMISLab
Greek Wikipedia dump [39].4

• Kaggle News (70 000): general audience news from
Kaggle. This dataset was also used for the distillation
process.5

• CGL Ta Nea (9 000): articles from the Modern Greek
Texts Corpora.6

These combined sources provide over 400 000 sentences
and over 100 million words, ensuring our Continuous Bag of
Words (CBOW) Word2Vec embeddings capture both formal
and colloquial Greek usages across domains and leaving us
freedom to optimize the sequence-length to minimum word
frequency trade-off.

IV. METHODOLOGY
A. WORD EMBEDDINGS
When it comes to static word representations themost popular
options are Word2Vec [40], GloVE [41] and FastText [42].
Eachmodel provides denseword vectors, but they differ in the
way they capture lexical information and handle morphology.

• Word2Vec learns a single vector for each word by
predicting its context.

• GloVe derives word vectors from global word co-
occurrence statistics.

4https://huggingface.co/datasets/IMISLab/GreekWikipedia, last accessed
at: 05/13/2025

5https://www.kaggle.com/datasets/kpittos/news-articles, last accessed at:
05/13/2025

6https://inventory.clarin.gr/corpus/910, last accessed at: 05/13/2025

155036 VOLUME 13, 2025



I. Katranis et al.: NER and News Article Classification: A Lightweight Approach

• fastText represents each word as a combination of its
character n-grams and a whole-word vector.

The original GloVe paper reports that on English bench-
marks, GloVe outperforms Word2Vec when both are trained
on the same corpus under identical hyper-parameters [41].
Studies done on more complex languages however, paint a
different picture:

• Greek: Rizou et al. [43] evaluate BiLSTM and
Transformer-based models for intent classification and
slot filling on both English and Greek (translated by
the authors) versions of the ATIS dataset. Among other
findings, they benchmark fastText andword2vec embed-
dings on their unified (joint-task) models, observing
that while fastText performs better in English, word2vec
comes out ahead for Greek.

• Turkish: Sarıtaş et al. [44] compared Word2Vec, GloVe
and fastText in a single layer LSTM on PoS tagging,
NER and sentiment analysis across three Turkish
datasets. All three models achieved nearly identical
scores with a margin of error of only 0.5%.

• Finnish: Venekoski and J. Vankka [45] evaluated the
same models on similarity judgements, analogies and
word-intrusion tasks using four Finnish corpora. They
found that Skip-gram Word2Vec and fastText consis-
tently outperformed GloVe and CBOWWord2Vec.

• Pashto: Haq et al. [46] benchmarked Word2Vec,
GloVe and fastText in the embedding layer of multiple
models (CNN, LSTM, GRU, BiLSTM, BiGRU) on
a 34 000 offensive tweet dataset. Their results show
that all three embedding models yield nearly identical
classification performances with the best F1 scores
across differing by less than 1%.

• Bengali: Lima et al. [47] evaluate BiLSTM/BiGRU
NER models using Word2Vec (CBOW and Skip-gram),
GloVe and fastText on a large Bengali NER corpus.They
report that Word2Vec (CBOW) and GloVe tie on partial-
match F1 (92.31%), but Word2Vec (CBOW) yields the
best exact-match F1 (87.50%, +0.56 over GloVe) and the
best micro-F1 (98.32%, +0.09 over GloVe), concluding
thatWord2Vec (CBOW) generally outperforms the other
embeddings for Bengali NER.

Based on the above and our empirical tests we chose CBOW
Word2Vec.

B. EMBEDDING TRAINING
We first applied a set of regex filters to remove noise
from the data. Next, we broke the text into sentences with
the sent_tokenize function of the nltk toolkit [48]7 and
normalized each sentence by lower casing. Finally, we split
each sentence into tokens and passed this list of lists to the
Word2Vec’s trainer to train our CBOW embeddings.

Given that the vast majority of our RNNmodels parameters
come from the embedding matrix, we set an upper limit
on the embedding matrix size: 10.5 M parameters for the

7www.ntlk.org, last accessed at: 05/13/2025

72-dimensional embeddings and 12.5 M parameters for the
128-dimensional ones. This way, the total model size would
stay under 12 M and 14.1 M parameters respectively. The
hyperparameters used for training the embeddings were:

• window = 5
• sg = 0 (CBOW mode)
• cbow_mean = 1
• workers = 8
• negative = 10
• sample = 1e-4
• epochs = 50

Table 4 shows the results of our embedding benchmarks.
Alongside the basic statistics (sentences, vocabulary size,
min_count), we also report the out of vocabulary (OOV)
pairs and the Pearson/Spearman correlations produced by
Gensim’s KeyedVectors.evaluate_word_pairs benchmark8 to
highlight howwell embeddings capture real-world semantics.
Lastly, we include the RNN model’s classification accuracy
and NER Micro F1-score for each embedding setting.

C. MODEL ARCHITECTURES
Our RNN baseline is an attention-augmented BiLSTM that
shares a frozen CBOW embedding layer between tasks.
Rather than using one shared encoder, we use two separate
BiLSTM encoders (one for NER, one for classification.
Empirically in our experiments this setup yielded a 10%
boost in NER Micro F1 without harming classification).
Input processing. Sequences are padded to a fixed length of
412 tokens; a custom mask multiplies the embedding matrix
by 0 on padding positions, so no padding signal reaches
the encoders. NER branch. A single 256-unit bidirectional
LSTM (return-sequences) feeds a time-distributed soft-max
layer that emits 32 IOB logits per token. Classification
branch. A second BiLSTM with L2 regularization is fol-
lowed by a dot-product self-attention layer. We concatenate
the global-max-pooled BiLSTM states with the max-pooled
attention outputs, apply 10 % dropout and pass the result
to a soft-max layer for 19-way topic classification. Loss
calculation. The total training loss is the combination of two
components:

Ltotal = LCLS + LNER, (1)

• Classification branch: standard SparseCategorical-
Crossentropy over the 19 topic labels

(
LCLS

)
.

• NERbranch: padding-aware cross-entropy (masked_loss)
that ignores positions whose gold label is PAD

(
LNER

)
.

No additional weighting is applied, so both terms contribute
equally.

D. STUDENT-TEACHER RATIONALE
Teacher model. As noted in Sections I and II, GreekBERT
remains the strongest widely used encoder for Greek tasks
and underpins recent SOTA toolkits. Therefore we chose it
for our teacher model and added two task specific heads. The

8https://radimrehurek.com/gensim, last accessed at: 05/13/2025
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TABLE 4. Embedding benchmarks.

head used for classification applies 30% dropout to the [CLS]
vector then passes the output to a fully connected layer with
768 units and ReLU activation and finally to a linear layer that
maps the output to category logits. The NER head consists of
a linear layer that operates on the token level, mapping the
output to NER logits.

Student model. We adopt a small budget in the 12–15M
range, as used by TinyBERT ( 14M), Tiny-MobileBERT
( 15M) and ALBERT-base ( 12M). Two constraints drove
the choice. First, CPU-only deployment with under 20 ms
per article and an on-disk footprint around 50–60 MB.
Second, preserving the teacher’s 35k WordPiece vocabulary
to maintain Greek coverage. The embedding table alone
is 35,000×256= 9.0 M parameters, which leaves 5 M for the
encoder and heads under a 14 M cap. Under these constraints
we chose a 6×256 encoder (6 Transformer layers, hidden =

256, FFN = 1024, 4 heads), totaling 14.1 M parameters and
meeting our latency target. Table 5 summarizes the models.

TABLE 5. Summary of model architectures and parameter counts.

E. DISTILLATION
To distill our teacher we set it to evaluation mode, freeze its
weights and follow prediction layer distillation [31]. In this
form of model distillation the student is trained to reproduce
the teachers outputs. Data. We run both models on the 70
000 unlabeled news articles from Kaggle, obtaining a pair of
logits for every example, one from the teacher and one from
the student. Soft targets. For classification (the sequence-
level head) the teacher probabilities are given by the softmax
function:

P(i) =
exp

(
zTi /T

)∑
j exp

(
zTj /T

) (2)

The student produces probabilities with the log softmax
function:

logQ(i) = log
exp

(
zSi /T

)∑
j exp

(
zSj /T

) (3)

(because PyTorch’s kl_div expects logQ as its first argu-
ment). For the NER head we flatten the sequence dimension,
mask out padding tokens and apply the same soft/log softmax
(masking ensures that only real tokens contribute to the
NER term). Loss. We minimise the Kullback–Leibler (KL)
divergence between the two softened distributions.

Lclass
KD = T 2 KL

(
PTclass

∥∥∥QSclass) (4)

LNER
KD = T 2 KL

(
PTNER

∥∥∥QSNER)
(5)

The final distillation loss is a simple convex combination:

Ltotal = αLclass
KD + (1 − α)LNER

KD (6)

With α =0.5 and T=4 in all experiments. The factor T 2 fol-
lows [31] and rescales gradients so that different temperatures
are comparable. Validation during distillation. To measure
the studentmodels performance in the real world we also used
a validation set of 5 680 labeled articles from our dataset.
Every 500 optimizer steps we run the student model on the
validation set and report its loss.

Epochs & Early stopping. The distillation runs for
20 epochs and with early stopping patience=20 optimizer
steps (the value monitored is validation loss).Optimizer. We
use AdamW with an initial learning rate of 5e-5 and a batch
size of 8.

F. TRAINING
The hardware setup includes an AMD Ryzen 7900 × 3D
CPU, anRTX4060-Ti GPU and 32 gigabytes of DDR5RAM.
We trained all models on our 20 000 article corpus.
The following settings were used to train our RNN based
models:

• Optimizer: Adam with learning rate 1e-3, no weight
decay.

• Batch size: 128
• Sequence length: Fixed to 412 tokens so all the models
will have identical data splits.

• Regularization: Dropout = 0.1 after pooling, L2=0.01
on the classification BiLSTM weights.

• Loss:

155038 VOLUME 13, 2025



I. Katranis et al.: NER and News Article Classification: A Lightweight Approach

– Classification: standard sparse categorical cross-
entropy on topic labels.

LCLS = −
1
B

B∑
n=1

log pθ

(
y(n)cls | x(n)

)
(7)

– NER: masked sparse categorical cross-entropy,
normalized by the number of real tokens.

LNER = −
1∑

n,t mn,t

B∑
n=1

L∑
t=1

mn,t log pθ

(
y(n)t | x(n)

)
(8)

where B is the batch size, L the (padded) sequence
length,mn,t ∈ {0, 1}masks out padding tokens, and
y(n)cls , y

(n)
t are the classification and NER labels. The

two terms are summed with equal weight:

Ltotal = LCLS + LNER (9)

• Metrics: token-level masked accuracy for NER,
sequence-level accuracy for classification.

• Early stopping:monitor validation loss with patience=
7 optimizer steps, restoring best weights.

• Training length: up to 30 epochs.
For the fine-tuning of XLM-RoBERTa, mBERT, Greek-

BERT, DistilBERT and TinyGreekNewsBERT model we
used the following settings.

• Optimizer: Adam with learning rate 5e-5, weight
decay=0.01.

• Batch size: 8
• Sequence length: 412 tokens tokenized and padded to
512.

• Regularization: Dropout=0.3 on the classification
head (on top of the encoder’s built-in 0.1).

• Loss: identical formulation for LCLS and LNER. The
two loss terms are normalized by their initial values
observed at the start of training and then summed, with
the NER loss weighted by a factor of 3 (wNER = 3).
In our experiments 3 yielded the best results. The term
ϵ is used as a safeguard against division by zero.

Ltotal =
LCLS

L(0)
CLS + ϵ

+ wNER
LNER

L(0)
NER + ϵ

(10)

• Metrics: token-level masked accuracy for NER,
sequence-level accuracy for classification.

• Early stopping:monitor validation loss with patience=
7, restoring best weights.

• Training length: up to 10 epochs.
• Precision: mixed FP16 training (NVIDIA AMP).

G. EVALUATION PROTOCOL
We report the usual macro Precision/Recall/F1 defined below
plus the two aggregates that the sklearn [49]9 and seqeval10

reports print by default:

9https://scikit-learn.org, last accessed a: 05/13/2025
10https://github.com/chakki-works/seqeval, last accessed at: 05/13/2025

• Micro average: computed globally by counting all true
positives, false positives and false negatives. Because
every instance has equal weight, large classes dominate.

• Weighted average: per-class scores weighted by sup-
port; a middle ground between micro (size-dominated)
and macro (plain mean).

Let C be the number of examples for each class and let c ∈

{1, 2, . . . ,C} index a particular class. We denote by sc the
support (the number of examples) of class c:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Precisionc =
TPc

TPc + FPc
(12)

Recallc =
TPc

TPc + FNc
(13)

F1c =
2 Precisionc Recallc
Precisionc + Recallc

(14)

Macro average:

Precisionmacro =
1
C

C∑
c=1

Precisionc (15)

Recallmacro =
1
C

C∑
c=1

Recallc (16)

F1macro =
1
C

C∑
c=1

F1c (17)

Micro average:

Precisionmicro =

∑
c TPc∑

c
(
TPc + FPc

) (18)

Recallmicro =

∑
c TPc∑

c
(
TPc + FNc

) (19)

F1micro =
2 Precisionmicro Recallmicro
Precisionmicro + Recallmicro

(20)

Weighted average:

Precisionweighted =

∑
c sc Precisionc∑

c sc
(21)

Recallweighted =

∑
c sc Recallc∑

c sc
(22)

F1weighted =

∑
c sc F1c∑
c sc

(23)

For the NER head we simply replace the class index c with
the entity label and compute TP/FP/FN at the span level with
seqeval.

V. RESULTS
A. BASELINE PERFORMANCE
We benchmark against strong Greek-capable encoders that
represent current practice. GreekBERT (113 M) is the mono-
lingual reference and as stated in section II, remains central
in recent Greek NLP resources. XLM-RoBERTa (278.6 M)
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and mBERT (178.4 M) are standard multilingual baselines
with broad tokenizer coverage. DistilGREEKBERT (70M) is
a distilled GreekBERT targeting efficiency. We also include
two BiLSTM + Word2Vec models as non-Transformer
lightweight comparators. Table 6 summarizes results on the
joint topic-classification + NER task. The remaining models
mentioned in section II (MobileBERT and ALBERT) don’t
support Greek and thus cannot be directly compared.

Given that our NER labels were created using the elNER18
model, we decided to also evaluate our models on a higher
quality dataset created by industry specialists.

Table 7 shows the results of the previously shown
models on the elNER18 dataset [38]. The entities LAW,
LANGUAGE and WORK OF ART were dropped.

B. PERFORMANCE-SPEED TRADE-OFF
We chose a benchmarking setup that reflects the low resource
and real time use scenarios, where one article at a time is
processed on a CPU (1 batch of 512 tokens). To ensure the
credibility of our numbers we ran the benchmark 10 000 times
and report: (a) the median, which represents typical inference
time (b) the 95-th percentile, which represents the latency
spikes. For capacity planning we also convert latency to
throughput as docs/s =

1000
msmedian

(batch=1).
In addition to that, we also measured how the total

inference time scales as the number of articles increases
from 1 to 200. Specifically, each model sequentially pro-
cessed batches of identical, tokenized inputs (fixed length of
512 tokens per article) without batch-level parallelism, sim-
ulating a scenario where articles are continuously streamed
to the model. This benchmark highlights how each model’s
inference latency accumulates under continuous usage.

All numbers were collected on an AMD Ryzen 7900× 3D
runningUbuntu 22.04, Python 3.9 and PyTorch 2.6, following
these additional parameters:

• Warm-up 20 forward passes (weights paged into
cache).

• Latency sample 10 000 timed passes. We report the
median and the 95-th percentile (to capture the worst-
case spikes).

• Model size: on-disk size of model.safetensors + con-
fig.json.

Furthermore, to calculate the computational demands
of each model, we benchmarked floating-point operations
(FLOPs) using DeepSpeed’s [50]11 FLOPs profiler. The
setup processes a single batch of 128, 256, or 512 tokens.
To ensure a fair comparison, we tokenize a dummy input
of the specified length and run the profiler on the model in
evaluation mode with gradients disabled.

C. CONTRAST WITH CURRENT METHODS AND POSITION
VS SOTA
Relative to GreekBERT (113 M), TinyGreekNewsBERT
(14.1 M) is 8 × smaller, 10 × faster on CPU (14.7 ms vs

11https://www.deepspeed.ai/, last accessed at: 05/24/2025

151.6 ms at 512 tokens), and 15 × lower FLOPs (6.4 G vs
96.6 G), for −5 pts NER micro-F1 (81 vs 86) and −5 pts
classification (78 vs 83). Versus DistilGREEKBERT (70 M),
it’s 5 × smaller and 5 × faster (14.7 ms vs 77.3 ms), with
−4 pts CLS (78 vs 82) and −1 pt NER (81 vs 82). Compared
to XLM-RoBERTa (278.6 M), TinyGreekNewsBERT is 19×
smaller and 11× faster on CPU (14.7ms vs 161ms), at−4 pts
CLS (78 vs 82) and −4 pts NER (81 vs 85). Versus mBERT
(178.4 M), it is 12× smaller and 11 × faster (14.7 ms vs
161ms), while slightly outperforming on classification (78 vs
77) and sitting within −1 pt on NER (81 vs 82). On elNER18
it reaches 82%NERmicro-F1, belowGreekBERT (87%) and
XLM-R (85%) but above DistilGREEKBERT (81%).

Recent Greek NER systems(for example, the elNER18
tagger and the GR-NLP-TOOLKIT) are GreekBERT-based
and report state-of-the-art NER results. Because the
toolkit does not provide a 19 way news topic clas-
sifier or a joint NER+classification head, we treat
GreekBERT as the strongest monolingual reference and
compare TinyGreekNewsBERT directly against Greek-
BERT/DistilGREEKBERT and multilingual baselines
(mBERT, XLM-RoBERTa) under a unified joint protocol.

D. QUALITATIVE ERROR ANALYSIS
Quantitative metrics hide which mistakes the models make.
To delve deeper, we inspected 50 examples from the dev set
to get a better idea of where our models (RNN-128d and
TinyGreekNewsBERT) make errors. Both models sometimes
mix up categories that are closely related. For example,
‘‘Mental Health & Wellness’’ often gets confused with
‘‘Family&Relationships’’ or ‘‘Food&Drink’’. Some articles
that underline this difference are ‘‘10 foods that help your
mental health’’ or ‘‘tips to improve your relationship’’ which
could easily fall into more than one category. The same
thing occurs with ‘‘Business & Industry’’, ‘‘Economics &
Finance’’ and ‘‘Politics & Government’’ with articles like
‘‘tips to boost your company’s sales’’ or articles about new
tax legislation.

In our model we use a flat BIO tagger with per-token
argmax decoding so the NER head stays lightweight and
suitable for real-time deployment. In ambiguous or nested
cases (for example, a person’s name inside a business name),
the decoder picks the locally most probable tag and outputs
single flat set of spans.

Organizations can often times include a person’s name
(‘‘John’s Canteen’’) which leads to the same phrase being
labeled as both ORG and PER. Additionally ORG can get
mixed up with LOC as well. For example (‘‘Plaka’s Tavern’’)
can be labeled as LOC and ORG. In some cases, both
interpretations are technically correct.

The classification confusion matrix appears in Figure 2.
For NER, Figure 3 reports span-level confusion among
PERSON, ORG and LOC, and Figure 4 provides extended
heatmaps for places, people and groups, events and products
and numeric and time. Overall, most errors arise from

155040 VOLUME 13, 2025



I. Katranis et al.: NER and News Article Classification: A Lightweight Approach

TABLE 6. Parameter counts and performance of our models.

FIGURE 2. Normalized confusion matrix.

TABLE 7. Performance on the elNER18 dataset.

overlapping categories and nuanced language rather than
model capacity.

TABLE 8. Inference time to size trade-off (CPU, 512-token input).

E. ROBUSTNESS TO CODE-MIXING AND TOKENIZER
LIMITATIONS
To measure how our models perform on inputs that are
code-mixed, we calculate, for each article, a Greek-English
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TABLE 9. Floating point operations.

FIGURE 3. Span-level confusion among {PERSON, ORG, LOC}.

code-mix score via unicode script detection on word tokens
and then evaluate on the held-out test split in three buckets:
pure-EL (0% code-mixing) low (<10% code-mixing) and
mid-high (≥ 10% code-mixing). The bucket sizes are uneven
(pure-EL and low are large; mid–high is small), so we report
accuracy for classification and micro-F1 for NER, and treat
mid–high as exploratory. Table 10 shows how all models
tested perform on the code-mixed test sets.

Under light EL–EN mixing, performance is stable. From
pure-EL to low mixing, TinyGreekNewsBERT shifts by -
2% in classification accuracy (78 to 76) and +4% in NER
micro-F1 (77 to 81). GreekBERT shows a similar trend
(-2% on CLS and +2% on NER). mBERT and XLM-R
also gain a bit on NER at low mixing, which matches their
stronger English subword coverage. At mid-high mixing the
bucket is small and label support is sparse. All models show
inflated classification accuracy (around 88–92%) because a
few classes dominate and several are absent. NER there is
roughly flat or slightly lower.

Tokenization largely explains the pattern. At low mixing,
most English tokens are names, numerals, locations, organi-
zations or brands that the GreekBERT WordPiece tokenizer
segments cleanly (rarely [UNK]). As the English share grows,
subword fragmentation increases (more wordpieces per
word), which degrades NER, while class-prior imbalance in
the smaller mid–high bucket inflates classification accuracy.

Additionally, we analyze GreekBERT’s WordPiece tok-
enizer across the same code-mix buckets. For each bucket,
we report whole-word rate (share of words kept as a single
subword), average wordpieces per word, the entity split rate

(fraction of entity words split into ≥ 2 pieces) and the
[UNK] tokens per 1 000 subwords (table 11). Whole-word
tokenization stays high (about 85-89%) and true OOVs are
rare (about 0.14–0.25 [UNK] tokens per 1 000 subwords).
What changes with mixing is the share of entity words that
get split across multiple subwords. The entity split rate rises
from 21.1% (pure-EL) to 25.3% (low) and 37.4% (mid–high),
while mean pieces per word only nudges from 1.14 to 1.21.
This increased fragmentation, makes span boundaries harder
to detect and explains the small NER drop under heavier
code-mixing.

VI. DISCUSSION
A. RESULTS INTERPRETATION
Among the multilingual models, XLM-RoBERTa delivers
strong results with 82% classification accuracy and 85%
micro F1 for NER, but also comes with the largest parameter
count at 278.6 million. mBERT performs noticeably lower,
with 77% classification accuracy and 82%micro F1 for NER,
at 178.4 million parameters.

GreekBERT outperforms both multilingual models,
achieving 83% classification accuracy and 86% Micro F1
NER with a more compact 113M parameters. DistilGREEK-
BERT closely follows GreekBERT on the classification task
(just 1% behind), but lags by 4% on Micro F1 NER. Our
TinyGreekNewsBERT, achieves 78% on the classification
task and 81% Micro F1 NER.

On the elNER18 dataset, GreekBERT still leads with
a NER micro F1 of 87%, followed by XLM-RoBERTa
and mBERT at 85% and 84%, respectively. Notably, our
TinyGreekNewsBERT achieves 82%, edging out Distil-
GREEKBERT, which scores 81%. More specifically, Tiny-
GreekNewsBERT delivers better F1 scores for nearly all
entity types, except for PERSON, where DistilGREEKBERT
holds a slight edge (0.90% vs 0.85%).

Our RNN models show robust NER performance on our
dataset but they generalize poorly. The main reason for
this is that our RNN models depend on static word2vec
embeddings to predict entities and anyword that is not in their
embeddingmatrix is effectively invisible to them. This lack of
generalization power explains why the RNN variants struggle
compared to their Transformer counterparts in the elNER18
benchmark, as shown in Table 7.

B. RESULT COMPARISONS
Table 8 compares inference time, model size and parameter
count across all evaluated Transformers models. Notably
GreekBERT, XLM-RoBERTa and mBERT all require almost
similar inference time even though their parameter counts
differ significantly. This occurs because architecturally the
models are similar (12 Transformer layers, 12 attention head
per layer and hidden size of 768), with the only difference
being in their vocabularies.

GreekBERT has a median inference time of 151.6 ms.
DistilGreekBERT reduces themedian inference time to 76ms
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FIGURE 4. Extended span-level confusion heatmaps.

TABLE 10. Robustness to Greek-English code-mixing by model on the held-out test split. Buckets are defined by the share of non-Greek tokens per
article, n is the support of articles before chunking.

TABLE 11. GreekBERT WordPiece diagnostics on held-out test split (by code-mix bucket).

FIGURE 5. Inference time vs article count.

per article. Our model achieves the lowest inference time,
with a median of 14.7 ms per article making it the most
efficient solution when it comes to resource constrained
environments.

Table 9 reports the computational demands of each
model. GreekBERT, XLM-RoBERTa and mBERT all require
identical FLOPs because of their architectural similarity
explained above. DistilGREEKBERT halves FLOPs across
all sequence lengths. Our TinyGreekNewsBERT requires the
fewest FLOPs, representing a substantial efficiency gain.

FIGURE 6. Accuracy vs model size.

Our FLOPsmeasurements for GreekBERT, DistilGREEK-
BERT and TinyGreekNewsBERT closely align with the
values reported for BERT-base, DistilBERT and TinyBERT
in the original TinyBERT [30] and MobileBERT [32]
papers. At sequence length 128, they report 22.5, 11.3 and
1.2 billion FLOPs, while we report 22.3, 11.1 and 1.3 billion
FLOPs, respectively. It should be noted that our FLOPs
measurements include the task-specific heads in addition to
the encoder, and there are minor architectural differences
between TinyGreekNewsBERT and the reference TinyBERT
model as discussed in Section IV-C.

Finally, figure 5 further illustrates how inference time
scales with an increasing number of articles (up to 200) and
figure 6 compares accuracy with model size.
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C. PRACTICAL USES
Some practical uses of our TinyGreekNewsBERT include:

• On-device news recommendation in mobile apps with-
out sending text to servers, preserving the users privacy.

• Automatic generation of article tags and thematic cat-
egories on incoming stories for newsroom dashboards
that are running commodity CPUs or Raspberry Pi
clusters.

• Real time trend detection for media-monitoring firms.

VII. CONCLUSION AND FUTURE WORK
In conclusion, first we present an end-to-end procedure for
dataset construction (scraping, cleaning, tokenization and
labeling). Although the full dataset cannot be shared due to
copyright and licensing restrictions, our methodology is fully
described so researchers working under similar constraints
can adapt it into to other domains and languages.

Second, we benchmark and release lightweight Greek
static Word2Vec embeddings trained on a∼470 000 sentence
corpus, filling a resource gap for Greek NLP.

Third, we develop lightweight joint-task models and verify
their generalization by evaluating them on our corpus and on
external datasets.

Finally, to emphasize the accuracy–cost trade-off,
we report median/p95 CPU latency, docs/s (per core), FLOPs,
and model size.

A. FUTURE WORK
In future work, we plan to collaborate with industry experts
to create a manually annotated subset of our dataset, a step
which we believe will improve our TinyGreekNewsBERT’s
performance.

Additionally, we aim to develop a human-in-the-loop
feedback system. we will add a simple feedback loop in the
CMS, in which editors can confirm or override the topic label
and edit entity spans/types. We accumulate these corrections
and periodically fine-tune on a curated feedback set, then
re-export the same 14.1 M student so deployment size and
latency remain unchanged. This allows accuracy to improve
over time under real use.

Furthermore, we plan to combine structured pruning and
post-training INT8 quantization to reduce the deployed
footprint. We will quantize only the heavy projection and
feed-forward layers, keep embeddings, LayerNorm and logits
in full precision and use per-channel weight scales with
activation calibration on a representative set that includes
code-mixed articles. For pruning, we will gradually remove
low-importance attention heads andMLP channels, with brief
recovery fine-tunes guided by knowledge distillation and a
boundary-aware NER loss.

We will quantize only the attention projections and
feed-forward layers to INT8, keep embeddings, LayerNorm
and logits in full precision and use per-channel weight
scales with activation calibration on a representative set that
includes code-mixed articles. For pruning, we will gradually
remove low-importance attention heads and MLP channels,

followed by short recovery fine-tunes guided by knowledge
distillation and a boundary-aware NER loss. We will cap
accuracy impact at ≤ 1 point and if PTQ exceeds this budget,
wewill fall back to light QAT on the encoder or keep sensitive
layers in full precision, keeping the deployed footprint and
latency unchanged.

Another path for future work is beyond logit-level KD.
We plan to explore size-neutral, head-aware distillation
refinements that keep the deployed student fixed at 14.1 M
parameters and latency unchanged. Concretely, we will
use head-specific KD weights/temperatures (αcls, αner and
Tcls,Tner ) so CLS and NER can be tuned independently,
make NER KD boundary-aware by up-weighting gold B-
* tokens to improve span starts, add a subword-consistency
regularizer to stabilize fragmented mentions and minimally
align one teacher/student encoder layer via a projection used
only during training. We will also look at LoRA in a size-
neutral way, LoRA-tune the teacher on code-mixed text
before distillation, or LoRA-tune the student during KD and
merge adapters into the base weights at export, so parameters,
FLOPs and latency at deployment stay the same.

DATA AND CODE AVAILABILITY
As previously noted, the raw dataset cannot be shared
due to licensing and copyright constraints. All models
and the scripts required for reproducing similar datasets
using publicly available sources will be made available at
https://huggingface.co/katrjohn upon publication.
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