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Abstract—As conversational AI systems, like ChatGPT, 

become embedded in everyday activities such as education, 

decision-making, and communication, trust between users and 

these systems is emerging as a critical factor in their sustained 

effectiveness and acceptance. However, trust is not static; it can 

degrade when users encounter ambiguous, incorrect, or 

misaligned responses. While prior research has extensively 

addressed trust formation and erosion, little is known about how 

trust can be actively repaired during dialogue. This paper 

addresses that gap by introducing the concept of trust 

recalibration – the process through which conversational agents 

recover user trust after a breakdown in interaction. We analyze 

four distinct repair strategies (explicit correction, clarification, 

apology with rephrasing, and meta-cognitive reflection) using 

simulated ChatGPT dialogues with annotated trust trajectories. 

Based on this analysis, we propose a lightweight rule-based 

model for predicting trust drift and recovery, supported by both 

quantitative metrics and qualitative dialogue evidence. Our 

results show that timely, context-appropriate repair strategies 

significantly enhance trust recovery, especially when matched to 

the domain of interaction. The paper concludes with a trust 

recalibration flow model and design recommendations for 

building more transparent, self-aware AI dialogue systems. 
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I. INTRODUCTION 

Artificial Intelligence (AI) systems – particularly Large 
Language Models (LLMs) such as ChatGPT – are increasingly 
embedded in everyday digital experiences. From educational 
tutoring and professional writing assistance to healthcare triage 
and customer support, these systems now serve as 
conversational partners across diverse domains [1-7]. As their 
role expands, so too does the importance of understanding how 
humans interact with and place trust in such systems, 
especially when critical tasks or sensitive information are 
involved. 

Trust is a foundational component in Human-AI Interaction 
(HAI) [8], yet it is neither static nor binary. Rather, trust 
evolves over time, is sensitive to context, and is highly 
dependent on the perceived competence, reliability, and 
transparency of the AI system. Importantly, trust can degrade 

rapidly when users encounter errors, vague responses, or 
perceived evasiveness – issues that are not uncommon in open-
domain AI dialogue [9]. While initial trust formation is well 
studied, comparatively less is known about what happens after 
a trust breakdown: can trust be repaired, and if so, how? 

Prior research in HAI has explored various dimensions of 
trust, including computational models of trust calibration, 
factors influencing user trust in autonomous systems, and the 
consequences of over-reliance or under-reliance on AI [10-21]. 
These studies typically examine user attitudes over time or 
assess trust through task-based performance. However, many 
of these models treat trust as a coarse, session-level variable 
rather than a dynamic property that can shift at the level of 
individual interactions. Particularly in the domain of language 
models, existing work has not adequately addressed how trust 
fluctuates during ongoing dialogue or how conversational 
repair mechanisms might mediate trust recovery in real time. 

This creates a critical gap in our understanding. While 
much has been written about how trust is built and eroded in 
AI interactions, far less attention has been given to how trust 
can be recalibrated – especially within the fluid, natural 
language exchanges that characterize modern conversational 
AI [22-26]. As users engage in increasingly longer and more 
complex interactions with systems like ChatGPT, the ability of 
these systems to recognize, respond to, and repair trust-
damaging moments becomes essential to sustaining user 
engagement and confidence. 

In this paper, we address this gap by introducing the 
concept of trust recalibration in AI dialogue. We propose that 
conversational agents can and should engage in active 
strategies to restore user trust following moments of 
misunderstanding, inaccuracy, or misalignment. Drawing on 
insights from dialogue repair theory, we analyze the 
effectiveness of different conversational repair strategies – 
such as clarification, explicit correction, and meta-cognitive 
reflection – in recovering user trust. Based on these insights, 
we propose a lightweight, interpretable model that captures 
trust drift and predicts the trajectory of trust recovery in 
response to specific repair behaviors. This work lays the 
foundation for the next generation of conversational AI 
systems – systems that are not only capable of minimizing 
harm but also of actively repairing trust in situ. 



II. METHODOLOGY 

To investigate the mechanisms and effectiveness of trust 
recalibration through conversational repair in ChatGPT, we 
developed a simulation-based study framework using 
controlled dialogue prompts, synthetic user responses, and 
systematic annotation of trust-related interaction features. This 
methodology was designed to emulate naturalistic interactions 
with ChatGPT in a way that captures both the conditions under 
which trust is disrupted and the dynamics through which it is 
repaired via language. In order to maintain a high degree of 
internal validity while also ensuring realistic interaction 
patterns, we constructed a corpus of scripted and semi-scripted 
conversations between human users and ChatGPT, 
incorporating a diverse set of task scenarios, prompt styles, and 
intentional ambiguities or errors introduced by the AI system. 

Data collection began with the design of a scenario bank 
consisting of 40 distinct dialogue tasks, each representing a 
different thematic context (e.g., educational tutoring, travel 
planning, coding assistance, moral reasoning, medical 
inquiries, and general knowledge). Each scenario was 
formulated to contain at least one critical moment where 
ChatGPT would be prompted in a way that elicited a plausible, 
yet suboptimal or incorrect, response. These prompts were 
carefully crafted to ensure ambiguity or knowledge challenges 
likely to trigger conversational breakdowns without 
compromising ethical boundaries or safety constraints. For 
example, a medical scenario might include a prompt such as, 
“Can I take ibuprofen and aspirin together for a headache?” – a 
question known to produce varied AI responses depending on 
phrasing. The goal was not to generate outright hallucinations 
but rather to reproduce subtle misunderstandings or 
oversimplified answers that a user might reasonably question. 

To simulate user interaction, we constructed a dataset of 
200 dialogue transcripts, each involving 5 to 10 conversational 
turns, where a turn was defined as one user message and one 
AI response. These dialogues were drawn from both real user 
logs (under appropriate terms of use and anonymization where 
permitted) and from researcher-created synthetic conversations 
that mirrored realistic phrasing, response timing, and dialogue 
flow. In all cases, dialogues were filtered to include at least one 
moment of trust vulnerability – defined operationally as a point 
in the conversation where the AI response either contained a 
factual error, was overly vague, demonstrated poor reasoning, 
or failed to address the user's intention accurately. 

To clarify the composition of our dataset, Table I 
summarizes the distribution of the 200 simulated dialogues 
across the four repair strategies and the four task domains. 
Each strategy was applied in an approximately balanced 
fashion across the dataset, with slight variation due to domain-
appropriateness (e.g., meta-cognitive reflection was more 
relevant in ethics-related prompts). The dialogues varied in 
length from 5 to 10 turns, with an average of 7.1 turns per 
dialogue. This balanced structure ensured that the performance 
of each strategy could be analyzed both globally and in relation 
to specific content contexts. 

 

TABLE I.  DISTRIBUTION OF SIMULATED DIALOGUES BY REPAIR 

STRATEGY, DOMAIN, AND LENGTH 

Repair Strategy # Dialogues 
Avg. 

Turns/Dialogue 

Primary 

Domains 

Explicit 
Correction 

50 
7.2 STEM, Task-

Oriented 

Clarification 50 

7.0 Open 

Knowledge, 
Task-Oriented 

Apology + 

Rephrasing 
50 

6.8 Ethics/Social, 

General 
Knowledge 

Meta-Cognitive 

Reflection  
50 

7.5 Ethics/Social, 

Open 
Knowledge 

Total 200 7.1 (avg) – 

 

Following data collection, a simulated user behavior layer 
was implemented. Because this study does not rely on live 
participants, we used behavioral modeling to simulate typical 
user reactions to errors, including hesitation, clarification 
requests, corrections, or expressions of dissatisfaction (e.g., 
“That doesn't seem right,” “Can you clarify what you mean?”). 
These reactions were based on empirical studies of user 
responses to AI errors in past HAI literature and were validated 
through consultation with experts in user modeling and 
conversational design. This approach enabled us to recreate 
plausible user trust trajectories without conducting a full-scale 
live experiment, which would be both resource-intensive and 
ethically complex given the need to induce errors deliberately. 

Each dialogue was manually annotated by a team of three 
trained annotators with backgrounds in linguistics, human-
computer interaction, or AI ethics. Annotations focused on 
three key constructs: breakdown events, repair strategies, and 
trust signals. A breakdown event was marked whenever an AI 
response was judged to fail the user’s expectation in content 
relevance, factual correctness, or clarity. These were further 
classified into types: factual inaccuracy, pragmatic 
misalignment (e.g., answering the wrong question), or overly 
generic response. For each breakdown event, the subsequent 1–
3 turns were examined to determine whether a repair strategy 
was employed. The taxonomy of repair strategies was 
developed iteratively based on the dialogue data and included 
four main categories: (1) explicit correction (e.g., “I apologize, 
I was incorrect. The correct answer is…”), (2) clarification 
(e.g., “Could you please clarify what you mean by ‘dose’?”), 
(3) apology with rephrasing (e.g., “Sorry for the confusion. Let 
me rephrase that…”), and (4) meta-cognitive reflection (e.g., 
“Sometimes these topics are complex, and my answers may 
need to be revisited depending on context.”). 

Trust signals were coded as either positive, negative, or 
neutral. Positive signals included user utterances such as 
“Thanks, that clears it up,” or continued engagement with no 
hesitancy. Negative signals included expressions of doubt or 
disengagement (e.g., “That doesn’t help,” or abrupt end to the 
conversation). Neutral signals were marked when no clear trust 
cue was detectable. In addition to these textual cues, we 
embedded a synthetic post-dialogue survey at the end of each 
scenario, assigning a Likert-scale trust score (1–5) based on the 
user’s simulated satisfaction with the interaction, their 



willingness to consult the AI again on a similar topic, and their 
perceived reliability of the system. 

To ensure annotation reliability, each conversation was 
independently annotated by two reviewers, with inter-annotator 
agreement measured using Cohen’s kappa for categorical 
labels (e.g., presence of breakdown, type of repair, polarity of 
trust signal). Discrepancies were resolved through consensus 
discussion involving a third annotator. The overall agreement 
was high (κ = 0.83), indicating a robust and consistent 
annotation process. This annotated dataset of 200 dialogues 
thus formed the basis for our analysis of trust recalibration 
patterns. 

For trust measurement, we implemented a dual approach: 
(1) behavioral trust indicators within the dialogue, and (2) 
scalar trust evaluation via the post-task survey. The former 
allowed us to model trust trajectories in a fine-grained, 
moment-to-moment fashion, while the latter provided a 
summary-level perspective suitable for correlation analysis and 
aggregate comparisons across repair strategies. In addition to 
manual coding, we applied a sentiment analysis tool trained on 
conversational AI interactions to automatically assess the 
emotional valence of user turns. This allowed us to cross-
validate the human-coded trust signals with affective markers, 
increasing the robustness of our labeling. Specifically, we used 
a fine-tuned RoBERTa model optimized for short-form, 
informal text, achieving over 90% accuracy in detecting 
valence shifts. 

Importantly, to make the model outputs more interpretable, 
we defined a trust trajectory vector for each dialogue session. 
This vector captured the state of trust at each conversational 
turn on a 5-point scale, updated dynamically based on the 
combination of user reactions, presence of repair, and type of 
strategy used. For instance, a breakdown event might lower the 
trust score by 1.5 points, while an effective repair could 
increase it by up to 2 points, depending on user response. This 
trajectory modeling allowed us to visualize the evolution of 
trust over time and to compare patterns across dialogue types. 
These values were not absolute but normalized within each 
session to reflect relative movement rather than fixed scores. 
Trust trajectory vectors were then used to generate aggregated 
visualizations, such as trust drift curves and heatmaps of repair 
strategy effectiveness. 

All simulations and analyses were conducted in Python 
using standard NLP libraries (spaCy, NLTK, HuggingFace 
Transformers), annotation interfaces built with Prodigy, and 
visualizations rendered using Matplotlib and Seaborn. The data 
and code will be made available upon reasonable request to 
support reproducibility and encourage further research on 
conversational trust modeling. 

Ethical considerations were embedded throughout the 
methodological pipeline. Although real user data was not 
directly involved, all simulated user behaviors were designed 
with respect for typical conversational norms and without 
inserting sensitive content. The study design was reviewed by 
an internal ethics advisory group to ensure compliance with 
institutional best practices for AI behavior evaluation. In a 
future phase involving real users, informed consent and data 
protection protocols will be strictly followed, particularly 

regarding the intentional use of ambiguous or misleading 
prompts to assess trust recalibration. 

To summarize, our methodology combines a structured 
scenario design, simulated but behaviorally grounded user 
interactions, rigorous manual annotation, and dual-mode trust 
measurement. This design enables us to trace the moment-by-
moment dynamics of trust degradation and recovery in AI 
dialogue systems, offering a concrete basis for evaluating the 
effectiveness of conversational repair strategies. By working 
within a simulated environment, we can isolate specific 
variables and control for confounds in ways that are difficult in 
real-time, user-facing systems – making this approach both 
methodologically sound and practically valuable as a 
foundation for future empirical work with live participants. 

 

III. TRUST RECALIBRATION MODEL 

To model the dynamic process through which user trust is 
lost and subsequently recalibrated in dialogue with ChatGPT, 
we introduce a conceptual and computational framework that 
formalizes trust drift, repair strategies, and adaptive trust 
trajectories. This model is designed to capture the temporal 
evolution of user trust as a latent state, updated turn-by-turn, in 
response to both errors in AI output and subsequent reparative 
actions. Our aim is to propose a lightweight yet expressive 
structure that can serve as a basis for both interpretive analysis 
and future real-time implementations in large-scale 
conversational agents. 

We begin by defining two foundational constructs: trust 
drift and repair trajectory. Trust drift refers to the gradual or 
abrupt change in a user's perceived reliability of the AI system, 
influenced by the content, tone, and responsiveness of the 
dialogue. Unlike binary trust classification (e.g., trust/distrust), 
drift accounts for the continuous and context-sensitive nature 
of user trust, allowing for fluctuations based on the evolving 
interaction. Formally, let Ti∈ℝ denote the trust level of a user 
at conversational turn i, where Ti∈[0,5] corresponds to a 
Likert-style scale reflecting user confidence, ranging from 
complete distrust (0) to full trust (5). Trust drift at turn i is then 
defined as: 

ΔTi=Ti – Ti-1 

This formulation allows us to model both positive and 
negative trust movements. A negative drift indicates erosion of 
trust, typically following an error or ambiguous response, 
while a positive drift suggests recovery – potentially resulting 
from an effective repair. 

The second construct, repair trajectory, captures the pattern 
of trust movement across multiple turns following a breakdown 
event. It reflects the success or failure of the system’s attempt 
to restore trust through conversational repair strategies. Let R 
be a repair event initiated by the system at turn j, with its 
influence extending over a window of n subsequent turns. The 
repair trajectory is represented as a sequence: 

{Tj, Tj+1, …, Tj+n} 



This sequence can then be analyzed to determine whether 
trust was successfully recalibrated (i.e., if Tj+n>Tj) or further 
degraded. 

To operationalize trust recalibration, we model the 
interaction as a cycle: Breakdown → Repair Strategy → User 
Response → Trust Update. This flow allows us to simulate, 
analyze, and ultimately predict the outcome of different repair 
actions in response to detected breakdowns. A breakdown is 
detected when an AI output is flagged (by human annotators or 
automated mechanisms) as containing an error or 
misalignment. Upon detection, the system selects an 
appropriate repair strategy from a predefined set. The user’s 
subsequent response is analyzed for trust signals (positive, 
negative, or neutral), which then inform the trust update 
function. 

We classify repair strategies into four primary types based 
on our earlier annotation schema and literature in dialogue 
repair and HAI: 

• Explicit Correction: Direct acknowledgment of the error 
followed by a corrected response. This strategy is most 
appropriate when the error is factual and the correction 
is clear. Example: “Apologies, my previous answer was 
incorrect. The correct dosage is 500mg, not 200mg.”. 

• Clarification: When ambiguity is present, the system 
prompts the user to clarify their intention, reducing the 
likelihood of compounding the error. Example: “Could 
you clarify whether you mean physical or digital 
security?” 

• Apology + Rephrasing: A softer corrective move where 
the AI acknowledges confusion or user dissatisfaction 
and rephrases the previous answer. This is useful for 
subjective or stylistic breakdowns. Example: “Sorry for 
the confusion. Let me explain that more clearly.” 

• Meta-Cognitive Reflection: A higher-level explanation 
that acknowledges limitations or contextual uncertainty. 
This strategy signals transparency and humility. 
Example: “This topic can be interpreted in different 
ways, and my response may not fully capture all 
perspectives.”. 

Each strategy is associated with a trust impact function fs, 
where s∈S \in Ss∈S and S is the set of strategies. The function 
fs defines the expected change in trust given a specific repair 
strategy under a particular user response type. For modeling 
purposes, we define a set of trust deltas δ∈{−2, −1, 0, +1, +2}, 
corresponding to strong negative, mild negative, neutral, mild 
positive, and strong positive adjustments, respectively. 

To facilitate computational simulation, we implement a 
rule-based trust update model that maps combinations of 
breakdown types, repair strategies, and user response cues to 
trust delta values. Below is a simplified pseudocode 
representation of the model: 

def trust_update(breakdown_type, repair_strategy, 

user_response): 

    if user_response == "positive": 

        if repair_strategy == 

"explicit_correction": 

            return +2 

        elif repair_strategy == "clarification": 

            return +1 

        elif repair_strategy == 

"apology_rephrase": 

            return +1 

        elif repair_strategy == "meta_cognitive": 

            return +2 

    elif user_response == "neutral": 

        if repair_strategy in 

["explicit_correction", "meta_cognitive"]: 

            return +1 

        else: 

            return 0 

    elif user_response == "negative": 

        if repair_strategy == 

"explicit_correction": 

            return -1 

        elif repair_strategy == 

"apology_rephrase": 

            return -1 

        else: 

return -2 

This rule base is derived from aggregated empirical 
annotations and aims to capture realistic user reactions based 
on common expectations in HAI. The model is intentionally 
lightweight to support interpretability and to enable potential 
integration into production systems with minimal 
computational overhead. 

To illustrate this process, Fig. 1 presents the Trust 
Recalibration Flow, a state diagram that maps how dialogue 
moves through breakdown detection, repair, user response, and 
trust update, ultimately determining whether the interaction 
continues or ends. 

 

Fig. 1. Trust Recalibration Flow. 



The repair trajectory for each dialogue is visualized as a 
line plot with trust level on the y-axis and dialogue turn on the 
x-axis. When aggregated over many dialogues, we produce 
heatmaps of trust recovery likelihood as a function of repair 
strategy and user response type. These visualizations provide 
insight into which strategies are most effective under specific 
conditions. For instance, meta-cognitive reflection was highly 
effective in cases where the AI’s previous answer addressed a 
subjective or controversial topic, whereas explicit correction 
performed better for factual errors in STEM contexts. 

To refine this model further, we also evaluated the time 
delay between the breakdown and repair as a variable. In many 
conversations, the promptness of the repair action significantly 
impacted its effectiveness. Delayed repairs (e.g., those issued 
two or more turns after the breakdown) were associated with 
lower trust recovery rates, likely due to perceived 
inattentiveness or lack of self-awareness by the system. As 
such, we introduce a temporal decay function φ(d)=e-λd where 
d is the number of turns delayed and λ is a decay constant 
tuned via grid search. This multiplier is applied to the trust 
delta from the repair strategy to reflect the reduced impact of 
delayed interventions. 

Integrating all components, the final trust update function 
for turn i is given by: 

Ti=Ti-1+δs⋅φ(d) 

where δs is the delta from the strategy-rule map and ϕ(d) is 
the decay factor. This formula enables the dynamic modeling 
of trust trajectories over an entire session and allows us to 
simulate counterfactuals – for example, what would have 
happened if the system had chosen a different repair strategy or 
responded one turn earlier. 

To evaluate the model's predictive performance, we applied 
it to 50 held-out dialogue transcripts annotated for trust 
trajectories. The model's predictions of final trust scores after 
repair were compared to annotated scores using mean absolute 
error (MAE). Results showed a high degree of alignment, with 
an average MAE of 0.42 on the 5-point Likert scale, suggesting 
that the rule-based model, while simple, captures core aspects 
of user trust recalibration behavior. 

Finally, this model is intended to serve not only as an 
analytical framework but also as a design blueprint for 
conversational systems. By embedding a lightweight version of 
this model into a dialogue management module, developers 
could create systems that recognize when trust is at risk and 
select optimal repair strategies in context. Moreover, this 
framework supports future extensions, including learning-
based calibration (e.g., reinforcement learning or bandit-based 
adaptation), personalization (e.g., user profiles influencing 
strategy choice), and cross-cultural variations in repair 
expectations. 

In conclusion, the proposed trust recalibration model offers 
a formalized, interpretable, and extensible foundation for 
understanding and engineering trust dynamics in AI dialogue. 
By incorporating elements of human dialogue theory, empirical 
annotation, and computational modeling, it advances the state 
of the art in trust-aware conversational AI and opens the door 

to new research and applications in trustworthy human-
machine communication. 

 

IV. RESULTS AND ANALYSIS 

This section presents the outcomes of our simulated 
evaluation of trust recalibration mechanisms in ChatGPT 
dialogues, drawing on both quantitative trust metrics and 
qualitative assessments of dialogue structure and user response 
behavior. The goal of this analysis is to assess the effectiveness 
of different conversational repair strategies in restoring user 
trust following interactional breakdowns, and to identify 
emergent patterns in trust dynamics based on timing, strategy 
type, and contextual alignment. Our results indicate that while 
all repair strategies contributed to some level of trust recovery, 
their effectiveness varied significantly depending on how and 
when they were applied. 

A. Quantitative Results: Trust Score Recovery 

As described in Section 2, each dialogue in our corpus was 
annotated for pre- and post-repair trust scores on a Likert scale 
ranging from 1 to 5. These scores were derived from simulated 
user judgments informed by user utterance sentiment, 
behavioral intent, and consistency of the dialogue trajectory. 
The mean trust scores before and after each repair strategy 
were aggregated and are presented in Table II. 

TABLE II.  TRUST SCORES BY REPAIR STRATEGY 

Repair Strategy 
Pre-Repair 

Trust 

Post-Repair 

Trust 

Δ Trust 

Explicit 

Correction 
3.1 

4.2 +1.1 

Clarification 3.0 3.9 +0.9 

Apology + 
Rephrasing 

2.8 
3.7 +0.9 

Meta-Cognitive 

Reflection  
3.2 

4.5 +1.3 

 

As Tsble 1 illustrates, all four repair strategies led to 
measurable increases in average trust scores. The highest gain 
in trust was observed in cases where Meta-Cognitive 
Reflection was employed, with an average increase of +1.3 
points on the 5-point scale. Explicit Correction followed 
closely, yielding a +1.1 gain, particularly effective when 
factual inaccuracies were clearly identified and corrected. 
Clarification and Apology + Rephrasing both achieved a more 
modest but still meaningful increase in trust (+0.9 each), 
reflecting their utility in situations of ambiguity or stylistic 
misalignment. 

A one-way ANOVA test conducted on the post-repair trust 
scores confirmed statistically significant differences between 
the strategy categories (F(3, 196) = 6.84, p < .001), indicating 
that the type of repair strategy used has a significant impact on 
the outcome of trust recalibration. Post-hoc Tukey tests 
revealed significant differences between Meta-Cognitive 
Reflection and both Clarification (p < .01) and Apology + 
Rephrasing (p < .05), further supporting the superior 



performance of reflective strategies in complex conversational 
scenarios. 

 

B. Qualitative Results: Dialogue Snippets and Contextual 

Insights 

While quantitative results provide a high-level view of trust 
recovery trends, they do not capture the nuanced discourse 
patterns through which trust is either successfully repaired or 
further undermined. To complement our numeric analysis, we 
present selected excerpts from annotated dialogues that 
highlight the mechanics of trust recalibration in context. 

Example 1 – Explicit Correction (Factual Error Recovery) 

User: What is the boiling point of water in Fahrenheit? 

ChatGPT: The boiling point of water is 100 degrees 
Fahrenheit. 

User: Are you sure? That sounds off. 

ChatGPT: You're right to question that – apologies for the 
mistake. The boiling point of water is actually 212 degrees 
Fahrenheit. 

In this case, the user's immediate challenge of the AI's 
erroneous output triggered an explicit correction. The repair 
was issued promptly in the next turn and was accompanied by 
an acknowledgment of the mistake. The user subsequently 
continued the conversation without hesitation, resulting in a 
significant trust recovery (from 2.0 to 4.5). This example 
illustrates the effectiveness of explicit correction when 
deployed rapidly in response to objective factual errors. 

Example 2 – Clarification (Intent Disambiguation) 

User: How can I improve my performance? 

ChatGPT: One way to improve performance is to manage your 
memory and CPU usage. 

User: I meant personal performance at work. 

ChatGPT: Thanks for clarifying. To improve your performance 
at work, consider setting clear goals, seeking feedback, and 
improving time management skills. 

Here, the initial AI response misinterpreted “performance” 
in a technical context. The user’s corrective input prompted the 
system to initiate a clarification, resulting in a semantically 
appropriate response. Although the initial mismatch reduced 
trust (3.5 to 2.8), the clarification led to a partial recovery (up 
to 3.9), demonstrating the importance of disambiguation in 
vague or polysemous user queries. 

Example 3 – Apology + Rephrasing (Politeness Repair) 

User: That seems overly complicated. 

ChatGPT: Sorry if that wasn’t clear. Let me explain it another 
way: You can think of machine learning as a process of 
learning from examples, just like humans do. 

Here, the system did not make a factual error but was 
perceived as overly technical or inaccessible. The apology 
followed by a simplified rephrasing served as a soft repair. 

Trust rose from 3.0 to 3.7 in this interaction, indicating that 
users responded positively to tone adjustments and simplified 
explanation – especially when framed respectfully. 

Example 4 – Meta-Cognitive Reflection (Uncertainty 
Management) 

User: Is it wrong to use AI to help with university essays? 

ChatGPT: That’s a thoughtful question. The ethics of using AI 
in education depend on the guidelines of your institution and 
the intent behind your usage. Some schools consider it a form 
of support, while others may view it as academic dishonesty. 

This example shows the use of a meta-cognitive reflection, 
which acknowledges the complexity and ethical ambiguity of 
the topic. No explicit error occurred, but the system 
transparently conveyed its limitations and emphasized context 
dependence. The user reacted with appreciation (“Thanks, 
that’s very balanced”), and trust was rated at 4.7 post-repair, up 
from an initial 3.2 when the answer seemed evasive. 

These qualitative insights reveal that different repair 
strategies are best suited to different failure types: Explicit 
Correction works well for objective, factual breakdowns; 
Clarification is critical in response to ambiguous or 
underspecified prompts; Apology + Rephrasing is effective for 
tone- and style-based misalignments; and Meta-Cognitive 
Reflection excels in discussions involving moral, emotional, or 
context-sensitive topics. 

 

C. Observed Patterns: Timing, Strategy Choice, and Trust 

Trajectory 

Beyond strategy type, we examined temporal and structural 
patterns in trust dynamics. One of the most robust findings is 
that early repair leads to greater trust recovery. In dialogues 
where a breakdown was acknowledged and repaired within one 
conversational turn, the average Δ Trust was +1.2, compared to 
only +0.6 when the repair was delayed by two or more turns. 
This trend supports the hypothesis that user perception of 
attentiveness and responsiveness plays a critical role in 
sustaining trust. 

Moreover, compound repair strategies – instances where 
more than one type of repair was used sequentially (e.g., 
apology followed by explicit correction) – yielded higher trust 
deltas than single-strategy responses. These multi-layered 
responses appeared to mitigate not only the content failure but 
also the relational or emotional aspect of the breakdown. An 
example of this was a conversation about vaccine safety, where 
ChatGPT initially provided outdated data but followed up with 
both a correction and a reflection on the evolving nature of 
medical guidance. Trust increased from 2.6 to 4.4 over three 
turns. 

We also analyzed user sentiment progression and found 
that trust restoration often correlated with emotionally 
intelligent phrasing. Repairs that included hedging (“This is a 
complex issue…”), transparency (“Let me re-check that…”), or 
shared reasoning (“Many people have that same question…”) 
elicited more positive sentiment and less user dropout. 
Conversely, defensive or robotic repairs (e.g., “That is 



incorrect. Here is the correct answer.” without 
acknowledgment) were associated with reduced trust recovery 
even when factually accurate. 

Another pattern emerged concerning the domain specificity 
of effective strategies. In technical domains (e.g., math, 
programming), users preferred crisp, directive corrections. In 
contrast, for social, ethical, or philosophical domains, reflective 
and dialogic strategies were more effective. This suggests the 
need for domain-aware repair modules that tailor the repair 
approach based on content category and user expectations. 

Finally, a subset of conversations displayed a trust inertia 
effect – where users with high initial trust scores (4.5 or above) 
were less likely to downgrade their trust after minor 
breakdowns, especially when a repair was promptly offered. 
Conversely, users starting with moderate or low trust were 
more sensitive to breakdowns, and repairs needed to be both 
fast and relationally intelligent to succeed. This finding 
supports the concept of asymmetric trust dynamics, where trust 
loss is more volatile than trust gain, and recovery depends not 
only on the repair but on prior trust baseline. 

 

D. Visualizations and Aggregate Patterns 

To further illuminate the patterns uncovered in our trust 
recalibration analysis, we generated visualizations of trust 
trajectories and aggregated strategy-domain effectiveness. 
Across the 200 annotated dialogues, trust trajectory plots 
revealed a consistent U-shaped pattern in successful repair 
cases. These plots showed that user trust typically declined 
following a breakdown – often sharply when the failure 
involved a factual or critical misunderstanding – and then 
rebounded post-repair, provided the strategy employed was 
timely and contextually appropriate. The slope of the recovery 
varied across strategies: meta-cognitive reflection and explicit 
correction demonstrated the steepest rebounds, while apology 
+ rephrasing produced more gradual, tempered improvements 
in trust. Clarification strategies often yielded mid-range results, 
highly dependent on whether user intent was sufficiently 
disambiguated. 

To systematically explore the interaction between repair 
strategy and content domain, we constructed a heatmap that 
plots the average trust gain (Δ Trust) for each strategy-domain 
combination (Fig. 2). The four content domains used in the 
analysis were: STEM, Open Knowledge, Ethics/Social, and 
Task-Oriented dialogues. Rows represent the four repair 
strategies, and cell values indicate average trust gains across all 
dialogues within that condition. 

 

Fig. 2. Heatmap of Trust Score Gains (Δ Trust) by Strategy and Domain. 

The heatmap illustrates several key findings. In STEM 
domains, where factual precision is paramount, explicit 
correction achieved the highest trust recovery (+1.3). In 
contrast, this strategy was less effective in social and ethical 
domains, where nuance and interpretive space are valued. In 
those contexts, meta-cognitive reflection proved most 
successful, producing a Δ Trust of +1.5 in Ethics/Social 
discussions. Clarification strategies excelled in open-ended 
knowledge domains such as history and culture (+1.2), where 
user prompts were often broad or ambiguous, and successful 
clarification significantly enhanced perceived competence. 

Apology + rephrasing showed moderate effectiveness 
across all domains but rarely emerged as the top-performing 
strategy. It was most effective in Ethics/Social contexts (+1.0), 
where tone and perceived humility often mattered more than 
technical accuracy. Notably, task-oriented domains (e.g., 
troubleshooting, instructions) yielded the smallest Δ Trust 
across all strategies, highlighting a higher baseline expectation 
of precision and efficiency in such interactions. 

These findings reinforce our argument that trust repair is 
not one-size-fits-all, but instead shaped by a combination of 
strategy selection, domain characteristics, and user 
expectations. The heatmap visualization clearly supports the 
need for adaptive repair strategy selection, potentially powered 
by domain-aware dialogue classifiers or reinforcement learning 
policies that dynamically tailor repair behavior. It also 
illustrates how different trust repair mechanisms contribute 
unequally to rebuilding user confidence, depending on the 
conversational context. 

In sum, these visual patterns, when interpreted alongside 
our earlier quantitative and qualitative analyses, provide 
compelling evidence that trust in conversational AI is both 
recoverable and strategically manageable – provided that the 
system can diagnose the type of breakdown and apply an 
appropriate, context-sensitive repair approach. 

 

E. Discussion 

The findings of this study carry significant implications for 
the design and development of conversational AI systems that 
aspire to maintain long-term user trust. By modeling trust not 
as a static attribute but as a dynamic trajectory responsive to 



moment-to-moment dialogue conditions, we demonstrate that 
trust is not merely lost or gained, but can be actively 
recalibrated through targeted conversational repair. Our results 
reveal that different strategies are variably effective depending 
on the domain, timing, and nature of the breakdown, which 
strongly argues against a universal repair mechanism. Instead, 
we advocate for the integration of adaptive, context-aware trust 
repair modules that can diagnose the breakdown type – be it 
factual, pragmatic, or tonal – and respond with a suitable repair 
strategy aligned with user expectations. For instance, while 
explicit corrections are critical in technical and fact-based 
exchanges, our data suggest that transparency and reflection 
are far more effective in complex or ethically nuanced 
dialogues, where users value the system’s acknowledgment of 
uncertainty or subjectivity. Furthermore, our trust trajectory 
modeling shows that speed of repair is critical: delayed or 
unacknowledged breakdowns often led to irreversible trust 
erosion, regardless of the eventual repair quality. This 
underscores the importance of proactive detection mechanisms 
embedded within the dialogue manager that can flag potential 
misalignments and initiate timely reparative action. The role of 
emotionally intelligent language – apologies, softeners, 
hedging, and metacognitive framing – also emerged as a subtle 
but powerful factor in trust recovery, especially among users 
who begin with lower baseline trust. Beyond the scope of this 
study, the modular nature of our trust recalibration framework 
makes it suitable for real-time deployment in a wide range of 
applications, from educational chatbots to customer service 
agents, and invites future work on learning-based strategy 
optimization, personalization based on user profiles, and 
cultural variations in trust perception. Ultimately, we argue that 
trust is not a precondition to conversational AI success – it is 
an outcome to be monitored, maintained, and repaired 
dynamically through thoughtful dialogue design. 

 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposed a novel framework for modeling trust 
recalibration in conversational AI, positioning trust not as a 
static construct but as a dynamic state influenced by real-time 
dialogue behavior. Through simulated ChatGPT dialogues and 
annotated repair sequences, we introduced and validated a 
lightweight rule-based model that captures how user trust 
degrades and recovers across turn-level interactions. Our 
analysis demonstrated that trust can be actively managed 
through appropriate conversational repair strategies, and that 
effectiveness varies meaningfully across domains and strategy 
types. Importantly, our findings establish trust recovery as an 
actionable design objective for future AI dialogue systems. 

Looking ahead, this work opens several promising research 
directions. Future studies should explore how the proposed 
trust recalibration model performs in real-world, longitudinal 
deployments involving diverse user populations. Adaptive 
strategy selection, informed by reinforcement learning or 
contextual modeling, could enhance the flexibility and 
personalization of trust repair. Additionally, extending the 
framework to account for multimodal cues, user profiles, and 
cultural trust norms will help create more robust, transparent, 

and socially intelligent AI systems capable of sustaining long-
term user engagement and confidence. 
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