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Abstract—The increasing heterogeneity, volume, and velocity of
modern data have exposed fundamental limitations in traditional
relational database management systems (RDBMS), fueling the
widespread adoption of Not Only Structured Query Language
(NoSQL) databases. This survey provides a comprehensive exam-
ination of NoSQL systems, offering a structured analysis of their
design motivations, classification schemes, architectural models,
and performance characteristics. We explore how different stor-
age engines, consistency models, and replication strategies shape
system behavior under diverse workloads. A comparative study
of benchmark results across representative NoSQL platforms is
presented, complemented by a domain-driven mapping of use
cases to database categories, which bridges architectural insight
with deployment-centric perspectives. Additionally, we highlight
ongoing research challenges related to interoperability, security,
and intelligent query processing. This study aims to serve as
both a reference and a decision-support tool for researchers and
practitioners navigating the evolving NoSQL landscape.

Index Terms—NoSQL databases, distributed data systems,
storage engines, consistency models

I. INTRODUCTION

The last two decades have witnessed a radical shift in data
characteristics, with applications increasingly generating high-
volume, high-velocity, and heterogeneous datasets. Traditional
RDBMS, grounded in normalized schemas and strong con-
sistency guarantees, were not designed to accommodate such
scale and variability. Their limitations in horizontal scalability,
schema flexibility, and eventual consistency tolerance have
become evident in modern distributed environments [1].

In response, NoSQL databases have emerged as a di-
verse class of systems that abandon one-size-fits-all relational
models in favor of specialized architectures optimized for
distributed data management. These systems vary significantly
in terms of data models, storage engines, replication strategies,
and consistency semantics, resulting in a fragmented landscape
that challenges selection, evaluation, and deployment. A struc-
tured investigation into their design and operational behavior
is necessary to support informed decisions in both research
and practice [2].

A. Motivation

Modern applications increasingly operate in distributed,
high-throughput environments that demand scalability, fault
tolerance, and schema flexibility. While traditional RDBMS ar-
chitectures offer maturity and strong transactional guarantees,
their reliance on fixed schemas, monolithic deployments, and

strict consistency models limits their adaptability to dynamic
workloads such as cloud-native services, Internet of Things
(IoT) streams, and real-time analytics.

NoSQL databases emerged to address these limitations by
embracing distribution, relaxed consistency, and diverse data
models. Yet, the proliferation of NoSQL systems with distinct
architectures and trade-offs has introduced complexity in eval-
uating their suitability. A unified, comparative perspective is
essential to align architectural design with performance ex-
pectations and application needs, particularly as organizations
seek tailored solutions for evolving data infrastructures.

B. Methodology

The study adopts a structured and reproducible approach
to identify, select, and analyze recent literature on NoSQL
database systems. Relevant works were retrieved from major
scientific databases including IEEE Xplore, ACM Digital
Library, SpringerLink, Elsevier ScienceDirect, and Google
Scholar. The selection focused on peer-reviewed journals,
conference proceedings, and survey articles published from
2020 onward, emphasizing architectural models, storage mech-
anisms, performance benchmarking, and application domains.
Studies that merely introduced isolated prototypes, lacked ar-
chitectural depth, or focused exclusively on relational systems
were excluded. After eliminating duplicates and applying rel-
evance filtering at the abstract level, a total of 45 publications
were retained.

The review process was structured into three stages. In
the first stage, keyword-based queries were used to capture
literature involving terms such as “NoSQL databases,” “data
consistency,” “distributed storage,” and “scalable database sys-
tems.” In the second stage, selected studies were manually
examined to extract metadata related to system architecture,
storage engines, consistency models, and performance metrics.
In the third stage, the findings were synthesized into a unified
taxonomy that supports comparative evaluation across system
design, operational trade-offs, and domain-level applicability.
This method ensures a comprehensive and balanced under-
standing of the NoSQL ecosystem and its evolving role in
distributed data management.

C. Contribution

This survey offers a focused and structured analysis of
NoSQL database systems by integrating architectural insights,
performance evaluations, and domain-specific applications. It979-8-3315-0448-9/24/31.00 ©2024 IEEE



introduces a classification grounded in core design features,
contrasts storage engine implementations and consistency
trade-offs, and examines how different systems behave under
benchmarking conditions. The study further maps NoSQL
categories to real-world domains, clarifying practical deploy-
ment patterns. In contrast to existing surveys, which often
emphasize either theoretical models or isolated performance
metrics, this work connects internal system architecture with
operational behavior across diverse contexts. Finally, it identi-
fies open challenges and outlines future research directions in
consistency management, query optimization, and secure data
distribution.

The rest of the paper is organized as follows: Section II
outlines NoSQL fundamentals and classification. Section III
covers architectural models and design choices. Section IV
reviews benchmarking methods and compares system per-
formance. Section V maps NoSQL categories to real-world
applications. Section VI discusses related surveys, challenges,
and research directions. Section VII concludes the survey.

II. BACKGROUND AND CLASSIFICATION OF NOSQL
SYSTEMS

The term “NoSQL” refers to a broad class of non-relational
data systems developed to address scalability and flexibility
limitations of traditional relational databases. Understanding
their architectural and performance traits requires examining
their historical background, common design principles, and
core classification categories.

A. From Relational Limits to New Demands
The rise of NoSQL databases stems from the limitations

of traditional RDBMS in handling modern, data-intensive ap-
plications. Rooted in fixed schemas and SQL-based querying,
classical RDBMS are reliable for transactional and structured
workloads but struggle with the scale, heterogeneity, and
unstructured nature of data from web platforms, IoT, and real-
time analytics [3].

Their rigidity in schema evolution and dependence on ver-
tical scaling hinder performance in distributed environments
where horizontal scalability and availability are essential.
Furthermore, JOIN complexity and atomicity, consistency,
isolation, and durability (ACID) guarantees introduce latency
overhead in high-throughput applications. These constraints
led developers to seek alternatives that relax consistency for
scalability, aligning with eventual consistency in large-scale
systems [4].

This shift drove the adoption of NoSQL databases, designed
for schema flexibility, distributed scalability, and efficient
handling of semi-structured and unstructured data. As cloud
and big data infrastructures matured, NoSQL systems reshaped
data management strategies across sectors [5].

B. Common Characteristics of NoSQL Databases
Despite their heterogeneity, NoSQL systems share

core characteristics that differentiate them from relational
databases. Their schema-flexible design enables storage
of heterogeneous records and supports dynamic evolution

without costly migrations, an asset for applications with fluid
or partially defined data formats [6].

NoSQL architectures prioritize horizontal scalability by
distributing data across clusters through mechanisms such as
sharding and replication, thereby achieving elasticity and fault
tolerance. Instead of enforcing strict transactional guarantees,
they adopt the available, soft state, eventually consistent
(BASE) model over the traditional ACID approach. This
design choice aligns with the consistency, availability, and
partition tolerance (CAP) theorem, favoring availability and
partition tolerance, particularly in workloads, such as personal-
ization or session management, where immediate consistency
is not critical [7].

NoSQL systems expose lightweight, model-aligned query
interfaces that enhance speed and scalability, though they trade
off the expressiveness and generality of traditional SQL [8].

C. Core Categories of NoSQL Systems
NoSQL databases are categorized by their underlying data

models, each optimized for specific application semantics
and access patterns. The four primary types are key-value
stores, document databases, column-family stores, and graph
databases [9].

Key-value stores (e.g., Redis, DynamoDB) pair unique keys
with opaque values for ultra-fast access, ideal for caching
and session storage, though they lack structure and secondary
indexing. Document databases (e.g., MongoDB, Couchbase)
store nested JavaScript object notation (JSON) and binary
JSON (BSON) documents with field-level indexing and flexi-
ble queries, making them suitable for content management and
dynamic application programming interfaces (APIs). Column-
family stores (e.g., Cassandra, HBase) use sparse tables with
tunable consistency and partitioning, optimized for high-
throughput writes and time-series data. Graph databases (e.g.,
Neo4j, Neptune) model data as nodes and edges, enabling effi-
cient relationship queries for applications like social networks
and fraud detection [10].

Table I contrasts the four main NoSQL database categories
by examining their data models, structural flexibility, query
support, indexing features, and consistency models. This com-
parative view clarifies systems’ architectural and operational
differences, providing a foundation for the following architec-
tural analysis.

III. ARCHITECTURAL MODELS AND DESIGN CHOICES

NoSQL architectures are designed for scalable, distributed,
and flexible data management, diverging from the rigidity of
traditional relational systems. This section outlines key compo-
nents and architectural trade-offs that impact their scalability,
performance, and consistency.

A. Consistency Models
A central design challenge in NoSQL systems is the trade-

off among consistency, availability, and partition tolerance, as
articulated by the CAP theorem. In distributed environments,
it is impossible to guarantee all three simultaneously under
network partitioning. Consequently, many NoSQL systems



TABLE I
COMPARISON OF CORE NOSQL CATEGORIES.

Category Data Model Structure Flexibil-
ity

Query Capabilities Indexing Support Consistency Model Representative
Systems

Key-Value Store Key → Opaque
value (e.g., binary,
JSON)

Rigid at value level Exact match by key None (application-
level only)

Tunable / Eventual Redis, DynamoDB

Document Store Key → Document
(e.g., JSON/BSON)

High (semi-
structured)

Field-based filtering,
aggregation

Yes (field-level) Tunable / Eventual or
Strong

MongoDB, Couch-
base

Column-Family
Store

Row key → Column
families

Sparse and variable
per row

Range queries, limited
joins

Yes (column or row-
level)

Tunable / Quorum-
based

Cassandra, HBase

Graph Database Nodes and edges
with properties

Flexible per
node/edge

Graph traversal (e.g.,
path, subgraph)

Yes (property-based) ACID (single-node) /
Eventual (distributed)

Neo4j, Amazon
Neptune

prioritize availability and partition tolerance, adopting weaker
consistency models [11].

This trade-off is often embodied in the BASE approach,
which contrasts with the strict ACID guarantees of relational
systems. BASE allows continued operation during partial
failures, with eventual replica convergence. Consistency mod-
els vary across NoSQL platforms. MongoDB and Cassandra
support tunable consistency, enabling developers to balance
read/write trade-offs according to workload demands [12].

B. Storage Engine Design: LSM-Trees vs. B-Trees

NoSQL systems vary in their choice of storage engines,
directly impacting write amplification, read latency, and com-
paction behavior. Two dominant structures are Log-Structured
Merge Trees (LSM-trees) and B-trees. LSM-trees, used in
Cassandra and LevelDB, prioritize write throughput by buffer-
ing in-memory writes and flushing sorted batches to disk,
minimizing random Input/Output. Though efficient for writes,
they incur read amplification, often offset via Bloom filters
and tiered caches [13].

B-Trees, prevalent in systems like Couchbase and traditional
RDBMS, support in-place updates and fast lookups with
low read amplification. However, they suffer from page-level
locking and fragmented disk writes under write-intensive or
concurrent loads. Their choice reflects a trade-off: LSM-trees
suit write-heavy scenarios, while B-Trees favor read-intensive
applications [14].

C. Data Distribution and Replication Strategies

Horizontal scalability in NoSQL systems is achieved
through partitioning and replication to ensure balanced load
and fault tolerance. Sharding distributes data across nodes
using key ranges or consistent hashing, the latter employed
in DynamoDB and Riak, allows minimal reshuffling during
scaling events [15].

Replication strategies differ: synchronous replication en-
sures strong consistency but increases latency and reduces
availability under failure; asynchronous replication favors
availability and speed, with weaker consistency. Quorum-
based replication, as in Cassandra, allows adjustable consis-
tency levels by requiring a configurable number of replicas to
confirm operations, enabling fine-grained trade-offs between
consistency and performance [16].

D. Partitioning and Consistency Techniques
Effective partitioning is essential for maintaining system

responsiveness and avoiding hotspots in distributed NoSQL
deployments. Partitioning schemes typically fall into two
categories: range-based and hash-based. Range partitioning
enables ordered scans and range queries but risks uneven
data distribution under skewed keys. Hash partitioning, while
mitigating skew, complicates query execution involving key
ranges or joins [17].

Consistency management across partitions introduces addi-
tional challenges. Systems must reconcile conflicting updates,
often using strategies like last-write-wins (LWW), vector
clocks, or custom conflict resolution logic. Conflict resolution
mechanisms are embedded at the application or middleware
layer in multi-master setups. The architectural decision around
these techniques fundamentally shapes the balance between
performance, correctness, and developer complexity [18].

E. Query Processing and Indexing Mechanisms
In contrast to relational systems that offer declarative SQL

and cost-based optimizers, NoSQL databases provide stream-
lined, model-specific query interfaces. Query capabilities vary
widely, reflecting indexing, consistency, and join support trade-
offs. Key-value stores enable only primary key access, while
document and column-family databases allow filtering, range
queries, and aggregations. Secondary indexes, when present,
may be global or per-shard, balancing lookup efficiency with
update cost. Graph databases offer powerful traversal queries
but face challenges in distributed execution due to inter-node
dependencies [19].

Most NoSQL systems avoid join operations, favoring de-
normalized schemas for performance and scalability. While
this enhances lookup speed and simplifies partitioning, it
pushes join logic to the application layer. Some platforms
have reintroduced limited join or multi-document transaction
support, though typically at the expense of scalability [20].

Table II summarizes core architectural choices across
NoSQL categories, including storage, replication, partitioning,
indexing, and query support. These design dimensions shape
system scalability, latency, and complexity under real-world
workloads.

IV. BENCHMARKING AND PERFORMANCE

Benchmarking NoSQL systems demands flexible frame-
works that account for architectural heterogeneity. Unlike



TABLE II
ARCHITECTURAL DESIGN CHARACTERISTICS OF NOSQL CATEGORIES.

Category Storage Engine Replication Partitioning Indexing Query Support
Key-Value
Store

LSM-tree or in-memory Asynchronous: quorum-based Consistent hashing None or minimal Key lookups only

Document
Store

B-Tree or LSM hybrid Configurable: synchronous or
asynchronous

Hash or range-based Optional field-level Filtering, aggregation,
limited joins

Column-
Family Store

LSM-tree Quorum-based Hash partitioning Row and column indexes
(optional)

Range queries, batched
scans

Graph
Database

Custom or memory-mapped Master-slave / eventual Manual or semantic
sharding

Node and edge property
indexes

Pattern matching, graph
traversal

relational databases, which benefit from standardized bench-
marks like the Transaction Processing Performance Council
Benchmark C (TPC-C), NoSQL workloads differ in data
models, indexing strategies, and consistency semantics. The
Yahoo! Cloud Serving Benchmark (YCSB) is the most widely
adopted, offering tunable read/write ratios and request distri-
butions to evaluate throughput, latency, and scalability. Real-
world traces from domains such as telemetry and graph
traversal complement synthetic benchmarks by capturing
production-like behaviors [21], [22].

Performance characteristics vary across categories. Key-
value stores like Redis achieve sub-millisecond latency via
in-memory execution but lack expressive queries. Document
stores such as MongoDB offer a balance of flexibility and
performance, though deep nesting can introduce processing
overhead. Column-family systems like Cassandra deliver high
write throughput through log-structured storage and tunable
consistency, typically outperforming HBase in ingestion-heavy
workloads. Graph databases such as Neo4j excel in deep
traversals, as measured by the Linked Data Benchmark Coun-
cil Social Network Benchmark (LDBC SNB), but face chal-
lenges in distributed query execution [23], [24].

Scalability studies show that systems using consistent hash-
ing and asynchronous replication, e.g., Cassandra and Dy-
namoDB, scale linearly when partitioning and compaction
are optimized. In contrast, master-slave architectures often
incur coordination overhead. Consistent choices also shape
performance: stronger guarantees increase latency and reduce
throughput, while eventual consistency improves responsive-
ness but risks anomalies. Recent benchmarks increasingly
include operational metrics and cost-awareness to reflect the
demands of cloud-native, elastic environments [25], [26].

Table III outlines key performance traits of representative
NoSQL systems, reflecting differences in latency, throughput,
and scalability due to architectural and consistency choices.
These disparities underscore the need for workload-aware
tuning and complicate standardized benchmarking.

V. APPLICATION DOMAINS AND USE CASES

The widespread adoption of NoSQL databases stems from
their ability to support high-throughput workloads, hetero-
geneous data, and horizontally scalable architectures. Each
category aligns with specific operational needs across diverse
application domains [27].

Key-value stores like Redis and DynamoDB in web-scale
services serve as low-latency caching layers and session back-
ends, enabling real-time personalization and ephemeral state

TABLE III
PERFORMANCE OF REPRESENTATIVE NOSQL SYSTEMS.

System Read
Latency

Write
Throughput

Scalability Consistency Im-
pact

Redis Very low
(< 1 ms)

High
(bounded
by available
memory)

High
(limited
by RAM
capacity)

Minimal;
lacks strong
consistency

MongoDB Moderate
(1–10 ms)

Moderate to
high

Moderate
(enabled
by
sharding)

Tunable; strong
consistency
increases latency

Cassandra Moderate to
high

Very high
(LSM-based)

Excellent
(linear
scalability)

Tunable; quorum
configuration af-
fects throughput

HBase Moderate to
high

High
(optimized
for batch
writes)

High
(integrated
with
HDFS)

Strong; coordina-
tion overhead in-
creases latency

Neo4j Low (graph
traversals)

Low to mod-
erate

Limited
(optimal
as single-
node)

Strong
(local ACID
compliance);
weaker
consistency
in clustered mode

management in platforms like Amazon and Shopify. Document
stores like MongoDB and Couchbase are used in content
management, product catalogs, and mobile backends, offering
schema flexibility for semi-structured JSON data and native
support for distributed synchronization [28], [29].

Column-family systems, notably Apache Cassandra, are fa-
vored in telemetry, finance, and IoT infrastructures due to their
write-optimized architecture and tunable consistency. They
handle high-ingestion, append-only workloads and support
geographically distributed deployments for real-time analytics
[30].

Graph databases like Neo4j and Amazon Neptune power
relationship-centric applications such as social networks, fraud
detection, and knowledge graphs, offering expressive traversal
queries essential for modeling complex interactions. In health-
care and genomics, hybrid NoSQL deployments combine
document and graph models to manage clinical data and
biological networks, supporting machine learning (ML) tasks
like risk scoring and treatment recommendation [31], [32].

Cloud-native environments have further accelerated NoSQL
adoption. Managed services like Firebase, DynamoDB, and
Azure Cosmos DB enable elastic, globally distributed de-
ployments with cost-efficient scaling. These capabilities make
NoSQL systems integral to Software as a Service (SaaS)
platforms and agile development [33].

The diversity and flexibility of NoSQL systems collectively
allow them to meet application-specific requirements in ways
traditional RDBMS cannot, particularly where decentraliza-



TABLE IV
APPLICATION DOMAINS AND USE CASES ACROSS NOSQL CATEGORIES.

Domain NoSQL Category Representative Use Case
Web-scale services Key-Value Store Session management,

caching, real-time
recommendation

E-Commerce;
Content Management
System

Document Store Schema-flexible product cat-
alogs, Content management
system backends, API pay-
load storage

IoT;Telemetry Column-Family Store High-ingestion time-
series logging, telemetry
aggregation

Social Networks Graph Database Social graph traversal, influ-
ence modeling

Cybersecurity;Fraud Graph Database Relationship-based anomaly
detection, access pattern
analysis

Mobile Applications Document Store Offline synchronization,
schema-less mobile storage

Financial Systems Column-Family Store Append-heavy transaction
pipelines, write-optimized
storage

Healthcare;Genomics Document + Graph
Hybrid

Semi-structured medical
records, gene-drug graphs

Cloud-native
platforms

Multi-model (cloud-
managed)

Multi-tenant SaaS, globally
distributed microservices

tion, scalability, and schema agility are paramount [34].
Table IV summarizes how NoSQL database categories align

with key application domains, highlighting typical deploy-
ments and use cases that leverage each model’s strengths.

VI. DISCUSSION AND FUTURE TRENDS

Recent survey studies have extensively mapped the land-
scape of NoSQL systems, offering various perspectives on
performance, security, data modeling, and domain-specific
adaptation. The work [35] provides a comprehensive tax-
onomy of privacy risks in distributed NoSQL architectures,
underscoring the absence of unified access control models.
Also, [36] focuses on structural and transactional contrasts be-
tween SQL, NewSQL, and NoSQL systems, clarifying where
NoSQL databases diverge from traditional ACID paradigms.
[37] conducts a comparative study of MySQL and MongoDB,
revealing that document stores offer flexibility and often under-
perform under transactional workloads. [38] assesses NoSQL
scalability in cloud environments, documenting variability in
latency and throughput across providers. On the application
frontier, [39] highlights the relevance of NoSQL for geospatial
information processing, noting graph and document models
as key enablers. Similarly, [40] emphasizes NoSQL adoption
in Industry 4.0, where hybrid data sources demand schema-
agnostic storage. Finally, the survey [41] stresses that NoSQL
systems must still evolve to match the analytical depth and
maturity of RDBMSs, especially for mission-critical analytics.

Although existing surveys provide valuable insights into
specific NoSQL aspects, they are often fragmented, isolating
performance, architecture, or applications. Instead, this paper
offers an integrated survey linking architectural principles
(e.g., CAP trade-offs, storage and replication models) with
empirical performance trends and deployment contexts. It
provides a coherent view of consistency, scalability, and work-
load suitability by aligning design decisions with real-world
constraints.

For practitioners, the comparative analysis of storage en-
gines, query semantics, and replication strategies offers prac-
tical guidance under performance and consistency trade-offs.
When scaling telemetry pipelines or multi-tenant SaaS, un-
derstanding LSM-tree behavior or CAP implications is es-
sential. Theoretically, current security models lack formal,
consistency-preserving access control. At the same time, the
absence of benchmarks and cross-model queries highlights
research gaps in meta-query translation across document,
columnar, and graph systems [42], [43].

As data systems grow more complex, NoSQL research
must move beyond optimization to address interoperability,
introspection, and formal guarantees. Multi-model systems
aim to integrate document, graph, and key-value seman-
tics, yet face challenges in unified querying, indexing, and
schema evolution. Future work should develop abstraction
layers for accurate cross-model translation and adaptive cloud-
native deployment. Promising directions include ML-based
indexing, predictive caching, and explainable operations to
support trustworthy artificial intelligence pipelines. Revisiting
CAP/BASE under modern infrastructure may lead to hybrid
models, while privacy-preserving mechanisms (e.g., differen-
tial privacy, secure computation) will be key to compliant,
cross-organizational data sharing [44], [45].

VII. CONCLUSION

This survey presented a structured overview of NoSQL
database systems, highlighting their evolution beyond tradi-
tional relational models and their alignment with the needs of
modern data-intensive applications. Through a layered anal-
ysis of architectural models, storage mechanisms, replication
strategies, and consistency trade-offs, we clarified how core
design choices impact scalability, availability, and perfor-
mance. Our classification of NoSQL systems and synthesis
of benchmarking results offers a practical foundation for
system selection across diverse application domains. Unlike
prior surveys, which focus narrowly on theoretical aspects
or performance metrics, this study bridges architectural un-
derstanding with real-world implications. Practitioners can
benefit from the comparative insights into storage and query
models, while researchers may find guidance in the open issues
mapped across system categories. As data systems continue to
evolve under the pressures of cloud elasticity, heterogeneous
workloads, and trust-aware computation, we believe this work
can serve as both a reference point and a springboard for
further innovation.
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