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Abstract—As 5G networks evolve to support the dynamic needs
of smart cities, intelligent control mechanisms at the edge are
essential for ensuring adaptive connectivity and efficient resource
utilization. This survey explores the intersection of artificial in-
telligence (AI)-driven adaptive beamforming and load balancing
within edge-enabled 5G architectures with direct relevance to
smart municipal infrastructures. It systematically examines the
algorithmic models, input—-output representations, and learning
paradigms employed for these two critical functions, which
are decoupled from deployment specifics. This study further
analyzes how such AI modules are integrated into standardized
architectures and how they map onto the control and data
planes of modern radio access network (RAN) systems. Real-
world applications and system-level deployments are reviewed to
highlight the practical viability of these approaches in urban
settings. Finally, it discusses emerging trends and outlines a
forward-looking path toward scalable, Al-native infrastructure
for smart municipalities.

Index Terms—5G Networks, Beamforming, L.oad Balancing,
Smart Cities, Edge Al

I. INTRODUCTION

The proliferation of smart municipal infrastructure has
introduced stringent demands for urban connectivity, edge
responsiveness, and service adaptivity. Modern cities increas-
ingly rely on dense 5G deployments to sustain heterogeneous,
latency-sensitive, and bandwidth-intensive applications, from
autonomous transport systems to environmental monitoring
and real-time public safety services. In this context, adaptive
radio access and edge coordination have emerged as key
enablers of scalable connectivity in smart municipalities [1]].

As 5G networks evolve into disaggregated, software-
defined, and Al-enhanced architectures, the role of intelligent
control mechanisms becomes pivotal. Particularly at the edge,
where computational and radio resources are both constrained
and dynamic, the ability to steer transmission and balance
the load in real time is essential for sustaining the quality of
service. Beamforming [2]] and load balancing, two traditionally
static or rule-based functions, must be reimagined as learning-
driven, context-aware processes tailored to the spatiotemporal
demands of urban environments [3]].

A. Motivation and Contribution

This survey addresses the growing need for learning-enabled
control in edge-native 5G systems, with particular emphasis
on functions that are critical to smart city performance. By
focusing on adaptive beamforming and load balancing, we
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explored how Al can drive these mechanisms in dynamic and
resource-constrained environments. Our perspective bridges
algorithmic methods with their placement and operation within
real-world edge architectures, aiming to make Al integration
practical and system-aware.

We present a structured taxonomy of Al models relevant
to beamforming and load balancing, spanning supervised,
unsupervised, and reinforcement learning (RL) approaches.
Additionally, we detail how these models interface with stan-
dardized architectural frameworks, such as multi-access edge
computing (MEC) and open RAN (O-RAN), and clarify their
roles in the control planes and data planes. Finally, we examine
practical system flows and integration pathways that support
the realization of these Al-enabled functions in the context of
smart municipal deployments.

B. Methodology

This survey adopts a structured and reproducible method-
ology to identify and analyze recent literature at the inter-
section of Al, beamforming, load balancing, and 5G edge
architectures. Relevant peer-reviewed studies published since
2020 were retrieved from major scientific databases and digital
libraries, including IEEE Xplore, ScienceDirect, SpringerLink,
ACM Digital Library, and Google Scholar. The inclusion
focused on Al-based control in 5G systems for smart cities,
particularly involving beam management, user association,
and edge-native optimization. Studies limited to physical-layer
design or lacking architectural relevance were also excluded.
After deduplication and screening, 48 publications were se-
lected for full-text analysis. The survey process consisted of
three main steps. Initial retrieval was performed using targeted
queries such as ”Al for beamforming,” ”load balancing in
5G,” “edge intelligence,” ”smart municipalities,” and “smart
city networks.” Relevant studies were reviewed to extract
information on AI models, learning objectives, and system
integration aspects. Finally, the selected literature was compar-
atively analyzed with respect to the architectural scope, control
strategies, and applicability to smart municipal systems.

The remainder of this paper is organized as follows: Sec-
tion [II| presents the fundamental concepts of beamforming,
load balancing, and edge computing in the 5G architecture.
Section analyzes Al-driven methods for adaptive beam-
forming and load balancing at the network edge. Section
describes the architectural integration of Al modules into 5G
edge systems. Section [V|highlights the real-world applications



and use cases of smart municipal systems. Section [V]| situates
our work within the existing survey literature, discusses its
broader implications, and outlines future research directions.
Section concludes the paper.

II. FUNDAMENTAL CONCEPTS IN BEAMFORMING, LOAD
BALANCING, AND EDGE ARCHITECTURE

Adaptive control in 5G builds on the core principles of
beamforming, load balancing, and edge computing. This sec-
tion outlines these foundations, with an emphasis on dense
municipal deployments, in which latency, coordination, and
connectivity are crucial.

A. Beamforming in 5G Architectures

Beamforming steers the transmission energy by adjusting
the phase and amplitude of the antenna elements. Architectures
are categorized as analog (single radio frequency (RF) chain
with phase shifters), digital (per-element RF chains with
full flexibility), or hybrid (reduced RF chains with analog
precoding), balancing the complexity, cost, and performance
in massive multiple-input-multiple-output (MIMO) setups [4]]
(3]

To enable spatial multiplexing, beamforming relies on
predefined beam codebooks that are optimized for angu-
lar coverage and user separation. These may be discrete
Fourier transform (DFT)-based, hierarchical, or adaptive to
propagation conditions. Effective beamforming requires accu-
rate channel state information (CSI). In time-division duplex
(TDD) systems, reciprocity permits the reuse of uplink CSIL.
In frequency-division duplex (FDD) systems, the downlink
CSI must be estimated and fed back, which increases the
overhead. Estimation methods include pilot-based approaches,
compressive sensing, and quantized feedback using codebooks
(6]

The algorithm design depends on realistic antenna system
and channel models. The arrays can be a uniform linear array
(ULA), uniform planar array (UPA), or more complex (7] with
varying beam widths and angular resolutions. Channel model-
ing standardized by ETSI, grounded in the 3GPP TR 38.901
framework [8]], and supported by tools such as NYUSIM and
QuaDRiGa, offers a detailed representation of wireless propa-
gation from sub-6GHz to mmWave bands. By capturing path
loss, fading, angular spread, and blockage across representative
deployment scenarios (e.g., Urban Macro/Micro), these models
enable the rigorous evaluation of physical-layer and Al-driven
strategies tailored to smart municipality applications in 5G and
future 6G systems [9].

B. Load Balancing in Mobile Networks

Load balancing redistributes traffic and user associations
across cells to optimize resource utilization and service quality.
The core indicators include resource usage, buffer occupancy,
and scheduling backlog. The association decisions consider
the load, signal quality, and handover constraints. A common
mechanism is cell range expansion, which biases small cells
to offload the macrocells. Strategies may be network-centric

(centralized) or user equipment (UE)-centric (local and rule-
based) [[10] [I11]].

Optimization techniques range from convex formulations
(e.g., utility maximization) to heuristics (greedy, rule-based)
and combinatorial methods for discrete, constraint-aware as-
signment problems. In 5G systems with edge capabilities, load
balancing extends to computing and data storage. MEC-aware
models jointly assess RAN and edge server loads to coordinate
radio-compute assignments via cross-domain signaling and a
shared state [[12].

C. Edge Computing in 5G Systems

Edge computing places the computation near the RAN to
support low-latency services. Disaggregated RAN includes ra-
dio units (RU), distributed units (DU), and central units (CU),
which separate the analog, baseband, and protocol layers.
This split, per 3GPP and O-RAN, enables flexible function
placement based on latency needs in real-time municipal
services [13].

The MEC defines a framework for edge-hosted applica-
tions with application programming interfaces (APIs) that
expose the network context (e.g., load and location). A typical
MEC stack includes virtualization, orchestration, and service
registries that are co-located with the DU. Latency arises
from processing, fronthaul, and scheduling issues. The models
distinguish between uplink/downlink paths and queuing ef-
fects. Data locality, processing at the source versus elsewhere,
directly impacts the end-to-end delay and backhaul load [|14]]
[15]].

Coordination between the RAN and compute layers in-
volves control loops and joint scheduling. Interfaces such as
F1 (CU-DU) and orchestration systems (e.g., ETSI MEC,
open network automation platform) enable dynamic resource
allocation based on radio states and traffic forecasts [16]]. A
summary of the concepts is provided in Table [I] which offers
a comparative overview of their structure, classification, and
operational roles.

ITII. AI FOR ADAPTIVE BEAMFORMING AND LOAD
BALANCING AT THE EDGE

Al is key to managing radio and computing resources
in edge-enabled 5G networks, particularly in dynamic and
service-rich municipal settings. This section reviews the learn-
ing paradigms for adaptive beamforming and load balancing,
including the inputs, output, and evaluation metrics.

A. Al for Adaptive Beamforming

Al-driven beamforming aims to infer optimal transmission
parameters based on observed radio channel conditions. These
approaches are broadly categorized as supervised, reinforce-
ment, and unsupervised learning [[17].

In supervised learning, models are trained to map channel
features to beamforming actions using labeled data. Typical
tasks include beam index prediction, beam direction classifi-
cation, and precoder regression. Convolutional neural networks
(CNNs), recurrent networks, and transformer architectures



TABLE I
KEY CONSTRUCTS IN BEAMFORMING, LOAD BALANCING, AND EDGE COMPUTING IN 5G NETWORKS.

Concept Key Elements Categories

Operational Role

Beamforming Antenna arrays, signal phase/amplitude

control, CSI

Analog / Digital / Hybrid

Beam steering, spatial multiplexing, interference control

CSI Acquisition Pilot signals, feedback schemes TDD/FDD,

codebook-based

compressive sensing, Beam selection, link adaptation

Beam Codebooks Predefined beam sets, angular design

DFT, hierarchical, data-driven

Efficient beam search, quantization

Load Balancing Cell load metrics, user association rules

Network-centric / UE-centric

Traffic redistribution, congestion mitigation

Optimization Methods Resource allocation logic

Convex, heuristic, combinatorial

User-cell mapping, load fairness

MEC-Aware Balancing Joint radio-compute status

Single / dual-tier coordination

Offloading, edge-aware user assignment

Edge Architecture RU/DU/CU split, MEC stack

3GPP, O-RAN-based

Distributed processing, compute orchestration

Latency Factors Fronthaul, scheduling, compute delays

Uplink/downlink split, queueing models

End-to-end delay, service-level agreement compliance

have been employed to process spatial channel representations
such as CSI matrices and channel power maps [18]].

RL methods frame beam adaptation as a sequential decision-
making process in which an agent selects beam actions based
on environmental feedback. Model-free algorithms, such as
the deep deterministic policy gradient (DDPG) and proximal
policy optimization (PPO), are used to optimize beam tra-
jectories with respect to link quality and spectral efficiency.
RL is particularly suited to environments with dynamic user
movement and partial observability [[19].

Unsupervised techniques have been applied for beam clus-
tering, codebook compression, and feature extraction. Methods
such as k-means, autoencoders, and manifold learning identify
low-dimensional structures in the CSI data to support fast
beam selection or reduce feedback overhead [20].

The input features typically include raw or preprocessed
CSI vectors, spatial parameters such as the angle of arrival
(AoA) or angle of departure (AoD), and the full spatial
channel matrix. The output targets may be discrete beam
indices, continuous precoding vectors, or codebook selection
masks, depending on the system constraints and learning
objectives. The model performance was assessed in terms of
the convergence rate, inference latency, computational com-
plexity, and generalization across channel conditions, antenna
configurations, and user mobility patterns [21] [22].

B. Al for Load Balancing at the Edge

Al-based load balancing addresses the dynamic assignment
of users to network and computing resources under time-
varying traffic and topology conditions. Machine learning
(ML) models are used for user association by mapping indi-
vidual or group-level features to the serving node assignments.
Graph neural networks (GNNs) are effective in capturing
spatial dependencies and network topology, thereby enabling
relational reasoning across cells and user distributions [23]].

RL techniques, including Q-learning and actor-critic vari-
ants, have been employed for traffic steering, edge offloading,
and resource allocation. Agents learn the association or mi-
gration policies that adapt to load gradients and interference
patterns. The RL framework supports both discrete action
spaces (e.g., cell selection) and continuous decision-making
(e.g., bandwidth allocation) [24].

Multi-agent RL (MARL) addresses the coordination among
distributed agents representing access points and edge nodes.

Policies are optimized either independently or jointly using
centralized training paradigms [25]. Traffic forecasting was
incorporated as an auxiliary learning task to inform proac-
tive load balancing. Time-series models and temporal GNNs
predict short-term demand evolution, improving congestion
anticipation and enabling preemptive resource reallocation.
Learning methods are evaluated based on scalability, stability
under dynamic conditions, convergence behavior, and ability
to maintain balanced load distributions under heterogeneous
demand profiles [26]]. Table [[I| summarizes the main learning
paradigms applied to adaptive beamforming and load balanc-
ing, along with their corresponding input representations and
model outputs. The taxonomy distinguishes between super-
vised, reinforcement, and unsupervised approaches, highlight-
ing their relevance to decision-making tasks in dynamic 5G
environments.

IV. INTEGRATION ARCHITECTURES

Deploying Al for beamforming and load balancing in 5G re-
quires clear architectural support across the radio and compute
layers. In edge-native smart cities, accurate module placement,
interfaces, and data flow are critical. This section describes the
functional split, integration layers, and learning pipelines that
enable responsive Al control.

A. Functional Decomposition

Architecturally, 5G networks separate the control and data
planes. The control plane governs signaling, policy enforce-
ment, and orchestration, whereas the data plane handles user
traffic forwarding and physical-layer execution. This sepa-
ration allows the deployment of AI controllers as logically
distinct components within the network hierarchy [27].

The placement of Al control modules may follow central-
ized, edge-native, or hybrid schemes. In the centralized case,
model inference and policy decisions are executed in the cloud
or core domains with global network visibility. Edge-native
placement brings decision logic closer to the data source,
enabling a lower-latency reaction. Hybrid schemes combine
cloud-scale learning with local execution by partitioning model
responsibilities across network tiers [28].

B. Standardized Architectures

The O-RAN architecture provides a modular framework
for integrating Al functionality into 5G RANs through well-
defined interfaces. Central to this architecture is the near-



TABLE II
AT LEARNING PARADIGMS FOR BEAMFORMING AND LOAD BALANCING IN 5G NETWORKS.

Task Learning Paradigms

Input Features Model Outputs

Adaptive Beamforming Supervised (e.g., CNN, transformer); RL (e.g., DDPG,

PPO); Unsupervised (e.g., clustering, autoencoders)

CSI matrices, spatial channel maps,
Ao0A/AoD statistics

Beam indices, precoders, codebook en-
tries, latent beam clusters

Load Balancing Supervised (e.g., GNN); RL (Q-learning, actor-critic);

MARL; Auxiliary forecasting models

Cell load, user location, traffic state, topol-
ogy graphs, temporal demand traces

Association policies, offloading actions,
coordination strategies, load predictions

real-time RAN intelligent controller (near-RT RIC), which
hosts xApps and modular applications responsible for local
inference and control within strict latency budgets. The non-
real-time RIC, which is located at higher layers, supports
offline training, analytics, and policy optimization [29].
MEC integration enables the co-location of computing re-
sources with baseband units for latency-sensitive execution.
MEC nodes expose the radio context to applications through
service APIs and act as hosts for deploying inference run-
times that interact with RAN components [30]]. Softwarized
RAN paradigms, such as software-defined RAN (SD-RAN)
and network function virtualization (NFV), further decouple
hardware from logic, allowing programmable control loops
to embed AI modules using virtualized network functions
(VNF). These frameworks enable orchestration platforms to
dynamically allocate resources, load models, and coordinate
inference workflows across distributed infrastructures [31]].

C. Data Flow and Training Pipelines

The integration of AI functionality requires the definition
of data pipelines that connect measurement sources, infer-
ence models, and actuation points. Typical flow sequences
consist of raw radio features (e.g., CSI), buffer states, and
scheduling metrics collected at the RU or DU, preprocessed,
and forwarded to model execution engines. The output actions
are then applied via configuration interfaces to beamformers,
schedulers, or user association controllers [32].

Training workflows can operate in online or offline modes.
In the online mode, inference models are updated in situ with
streaming data under resource and latency constraints. Offline
training pipelines collect data over time, process them in
centralized environments, and deploy updated model instances
to network edge nodes using orchestration agents [33].

The interface specifications govern the communication be-
tween the model modules and network functions. These in-
clude standardized APIs (e.g., O-RAN, Al (policy manage-
ment), and E2 (real-time control) interfaces), telemetry buses,
and feedback loops that enable closed-loop control. Proper
synchronization of data, models, and decision outputs is es-
sential for maintaining consistency across layers and ensuring
deterministic behavior under dynamic network conditions [34].
Table outlines the key architectural elements involved
in the AI integration workflows, including their functional
responsibilities and corresponding interfaces within the 5G
infrastructure.

V. APPLICATIONS AND USE CASES

In dense city zones, where angular dispersion and user
mobility are prominent owing to vehicular traffic and crowd

movement, edge-deployed beam selection models have been
shown to enhance link robustness and continuity. Smart
transportation corridors, surveillance grids, and responsive
infrastructures benefit from real-time CSI processing at DUs,
where inference engines select optimal beam indices based
on spatial radio signatures. Implementations using hierarchical
codebooks and AoA estimators were validated in OpenAir-
Interface and srsRAN environments, with near-RT xApps
deployed on RIC platforms. These configurations reduce the
beam-switching delay and improve resilience to blockage,
particularly in dynamic municipal deployments, such as public
squares and transit hubs [35].

In heterogeneous network topologies typical of urban en-
vironments, where macro base stations support wide-area
coverage while small cells serve hotspots (e.g., stations, mar-
kets, and municipal buildings), Al-driven user association dy-
namically redistributes the loads. Graph-based neural models
leverage live snapshots of the network topology and buffer
telemetry to optimize user-cell mappings. MARL methods
trained in 3GPP-compliant simulators, such as Simu5G or ns-3
mmwave, have demonstrated decentralized adaptation to traffic
shifts, enabling seamless mobility support and interference-
aware handover management. These approaches directly ad-
dress the fluctuating usage patterns of smart municipal ser-
vices, from emergency dispatch systems to event-driven public
connectivity [36] [37].

Advanced use cases in city-level deployments involve the
joint optimization of beamforming and task offloading across
the radio and edge compute layers. For instance, in real-
time analytics systems supporting urban surveillance or traffic
regulation, Al agents interface with both RAN controllers
and compute orchestrators to align the beam direction with
the MEC server assignment. Such joint decision frameworks
have been realized via ETSI MEC-compliant stacks over con-
tainerized platforms (e.g., Kubernetes with Akraino profiles).
Predictive policies account for compute saturation and bursty
traffic, maintaining throughput and latency targets under mixed
workload conditions that are common in smart city control
loops [38] [39].

Large-scale testbeds, such as POWDER-RENEW and COS-
MOS, have validated the feasibility of deploying such Al-
enabled mechanisms in settings simulating urban density and
live mobility. These platforms support programmable SD-
RANs and expose real-time APIs for model inference and
data feedback, closely reflecting the operational environments
of the smart municipalities. Metrics, including average link
rate, association persistence, and inference latency, have been
used for evaluation, although unified benchmarking across



TABLE III
ARCHITECTURAL LAYERS AND INTERFACES FOR Al INTEGRATION IN 5G SYSTEMS.

Layer / Module Role

Relevance to Al Integration

Control vs Data Plane

Logical separation of signaling and forwarding

Control plane hosts decision loops; data plane executes Al-configured actions

O-RAN RIC (Near/Non-RT)

Real-time control (xApps) and policy management

xApps run inference; A1/E2 interfaces manage training and orchestration

MEC / NFV Stack Edge compute and virtualization layer

Hosts model runtimes, allocates resources dynamically

Data Pipeline

Collection and preprocessing of network features

Supplies, CSI, traffic/load data to inference engines

Model Runtime / Server Model inference and lifecycle handling

Executes, updates, and coordinates Al modules at edge or core

Standard Interfaces Inter-component connectivity (Al, E2, F1)

Support telemetry, policy transfer, and closed-loop control

deployments remains an open issue. Public datasets, such as
DeepMIMO, NYU Wireless, and O-RAN logs, have served
as training and validation baselines for emulating city-scale
traffic and channel dynamics [40] [41].

VI. DISCUSSION AND FUTURE TRENDS

Recent surveys have examined the role of mobile networks
in smart cities, emphasizing architecture, sustainability, and
service integration. One such study outlines 5G/6G paradigms
but does not address beamforming or resource control mech-
anisms [42[, while another remains high-level and omits
Al-driven subsystem modeling [43]. In contrast, our survey
focuses on system-level interfaces and learning models for
adaptive beamforming and load balancing at the edge, offering
a more technical and deployment-oriented perspective.

Other reviews explore Beyond 5G slicing architectures [44]],
but concentrate on logical isolation rather than physical-layer
control. Work on Al-based handovers and load optimization
covers ML policies in dense deployments [45]], yet lacks an
architectural integration flow. Our contribution addresses this
gap by mapping Al modules onto standardized frameworks
(e.g., O-RAN and MEC) to enable coordinated radio-compute
resource management.

Beamforming-focused surveys present detailed learning tax-
onomies [46[, but typically abstract from deployment and
latency constraints. Similarly, RL-based reconfigurable intelli-
gent surface control offers algorithmic insights [47]], although
its practical relevance is limited. Our work remains grounded
in near-term deployable mechanisms within 5G edge systems.

In distributed ML for wireless, prior work emphasizes
federated inference and model placement [48[, but treats
beamforming and load balancing marginally. We position these
functions as central to the Al-edge co-design loop.

For practitioners, our system-level framing offers a clear
mapping between Al control logic and edge architectures,
thereby supporting scalable and adaptive operations across
urban networks. The survey highlights open problems in
decentralized control, generalization, and training under tight
latency constraints.

Looking ahead, future trends are expected to center around
federated RL for multi-cell coordination, the integration of se-
mantic communication layers for context-aware transmission,
and embedding Al functions within hardware-constrained plat-
forms. Moreover, as smart city environments become increas-
ingly data-intensive and multimodal, hybrid control policies
that combine symbolic reasoning with neural methods may
emerge as promising avenues. Finally, sustainability concerns

will drive the design of energy-efficient Al agents capable of
self-pruning, compression, and real-time edge retraining.

VII. CONCLUSIONS

This survey examines how Al-driven control functions,
specifically adaptive beamforming and load balancing, can be
systematically integrated into edge-native 5G infrastructures
that underpin smart municipal services. By disentangling al-
gorithmic mechanisms from deployment architectures, we pro-
vide a unified view of how learning-based models interact with
disaggregated RAN stacks, MEC platforms, and standardized
interfaces such as O-RAN.

Our contribution lies in bridging ML model taxonomies
with practical integration flows, offering a deployment-
oriented perspective that informs both system designers and
urban connectivity planners. This synthesis is particularly rele-
vant for smart municipalities seeking scalable, responsive, and
context-aware network controls. Future research is expected to
emphasize federated edge learning, real-time inference under
resource constraints, and co-optimization of radio and compute
functions as key enablers of resilient and adaptive 5G systems.
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