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Abstract—Artificial intelligence has transformed educational 

technology, with conversational agents becoming increasingly 

prominent in supporting student learning. While these chatbots 

offer accessibility and scalability, many still lack the capacity to 

personalize interactions based on the learner’s evolving cognitive 

and emotional state. Current systems often rely on static profiles 

or shallow adaptation mechanisms that fail to account for real-

time fluctuations in confidence, engagement, and comprehension. 

This paper presents PersonaGPT, a novel personalization engine 

for educational chatbots that constructs and continuously 

updates dynamic learner personas using behavioral signals, 

linguistic cues, and meta-dialogue patterns. The system 

integrates these personas into a reflexive dialogue engine, 

enabling the chatbot to adapt its tone, explanation depth, and 

instructional strategy in real time. PersonaGPT was implemented 

as a modular, web-based tutoring system using GPT-4, a Flask 

backend, and React.js interface, designed to teach SQL 

programming. In a controlled experiment with 81 university 

students, PersonaGPT significantly outperformed static and non-

personalized chatbots in task completion, knowledge retention, 

and learner engagement. The study demonstrates that real-time 

persona modeling and reflexive dialogue enhance both the 

effectiveness and user experience of AI-powered education. 

Keywords—Adaptive Educational Chatbots; Learner Modeling; 

Personalized Learning Systems; Reflexive Dialogue in AI; Human-

Centered Artificial Intelligence 

I. INTRODUCTION 

Over the past decade, artificial intelligence (AI) has begun 
to significantly influence the landscape of educational 
technology, transforming the way in which learners can gain 
access to information, receive feedback, and interact with 
educational materials [1, 2]. Perhaps the most notable 
phenomenon has been the use of AI-based conversational 
agents (also referred to as educational chatbots) that provide 
students with the capability for natural language conversation 
while doing academic work [3,4]. These systems are 
particularly attractive because they may be accessed, scaled, 
and replicated at low cost to simulate personalized tutoring. 
They have the potential to be applied in numerous contexts, 
including elementary school through university, and across 
mathematics, language teaching, and computer science; AI 

chatbots have been discovered to be able to offer step-by-step 
guidance, immediate corrective feedback, and sustain learner 
interest in self-paced environments [5]. Their creation has also 
been accelerated by the advancement of large language models 
(LLMs), which now enable chatbots to handle open-ended 
questions, understand subtle student statements and even 
generate context-dependent learning feedback [6]. This 
innovation is a significant advancement in human-computer 
interaction within learning settings, particularly with the rising 
need for flexible, remote, and asynchronous learning support. 

Despite the functional and technological promise of these 
systems, their pedagogical effectiveness is not solely 
determined by their ability to answer questions or deliver 
instructional content [7]. Rather, the quality of learner 
experience – especially in terms of engagement, trust, and 
sustained interaction – hinges on the chatbot’s capacity to 
personalize its responses to the individual learner’s needs and 
state. Personalization in educational contexts encompasses a 
range of adaptive behaviors, including the ability to adjust 
content difficulty, modify the mode of explanation, adapt the 
pacing of instruction, and shift the communicative tone in 
response to learners’ affective and cognitive cues [8, 9]. 
However, many existing chatbots rely on surface-level 
personalization strategies, such as allowing users to select their 
preferred learning style or adapting based on a fixed pre-
session profile [10-12]. These approaches often assume that 
learners are static entities whose preferences or knowledge 
states remain constant across time. Yet educational research 
has shown that learners’ cognitive load, motivation, and 
confidence can fluctuate significantly within a single learning 
session, influenced by success or failure on a task, emotional 
response to feedback, or evolving interest in the content [13, 
14]. As such, personalization that does not take into account 
these real-time dynamics risks being ineffective or, worse, 
counterproductive – misaligning the support provided with the 
learner’s actual state and thereby reducing learning efficacy. 

What is currently missing from most educational chatbot 
architectures is a mechanism for continuously sensing and 
adapting to the learner’s evolving behavioral and emotional 
context [15-17]. While some systems incorporate basic 
analytics or surface-level interaction tracking, few are capable 



of constructing a nuanced, dynamic model of the learner that 
integrates both performance data and linguistic indicators of 
affect or engagement [18]. Moreover, even fewer systems are 
capable of using such a model to modulate their dialogue 
behavior in ways that are pedagogically responsive and 
emotionally intelligent [19]. This gap is critical because learner 
trust, willingness to persist through difficulty, and satisfaction 
with the learning experience are deeply influenced by the 
perceived responsiveness of the instructional agent. When 
learners encounter static or generic responses that fail to reflect 
their current struggle or progress, the educational experience 
can feel impersonal and detached – more like interacting with a 
FAQ database than engaging with a tutor. Furthermore, 
learners’ trust in AI systems is known to be fragile and context-
dependent; when a chatbot fails to acknowledge confusion or 
misinterprets a learner’s intent, the resulting breakdown in 
interaction can lead to disengagement or even rejection of the 
system [20]. There is thus a pressing need for AI systems in 
education to become more reflexive – able not just to respond 
but to self-adjust, rephrase, and offer alternatives based on the 
learner’s trajectory of understanding and affect. This need 
points to a broader research gap in the field of AI in education: 
the lack of scalable systems that integrate real-time learner 
modeling with adaptive dialogue grounded in both pedagogy 
and human-centered communication principles. 

The literature on adaptive learning systems has explored 
various strategies to address personalization, ranging from 
rule-based engines to probabilistic modeling frameworks [21-
30]. For example, Bayesian Knowledge Tracing (BKT) and its 
successors have been widely used to model learner knowledge 
states across time, estimating the probability that a learner has 
mastered a particular concept based on task performance. 
While effective for knowledge tracking, BKT does not account 
for emotional state, engagement, or metacognitive reflection. 
More recent approaches, such as Deep Knowledge Tracing 
(DKT), leverage recurrent neural networks to track student 
learning trajectories, offering more predictive power but at the 
cost of reduced interpretability [31]. Works on Fuzzy 
Cognitive Maps (FCMs) [32] and Human Plausible Reasoning 
(HPR) [23] has sought to model learner reasoning processes 
and behavior patterns in a more symbolic and interpretable 
manner, enabling explicit representation of misconceptions and 
learning pathways. These systems provide a rich foundation for 
personalization but often lack integration with conversational 
interaction or are too rigid to adapt to the fluidity of natural 
dialogue. In the domain of educational chatbots, most 
implementations still rely on scripted dialogues, keyword 
matching, or limited dialogue state management. Even those 
systems that leverage LLMs such as GPT-3 or GPT-4 often do 
so in a stateless or context-light fashion, limiting the system’s 
ability to “remember” the learner’s prior difficulties, preferred 
communication style, or evolving affective state [3, 5]. 
Moreover, very few systems employ reflexive dialogue 
strategies – utterances where the system acknowledges 
miscommunication, adjusts its tone, or offers alternative forms 
of explanation to rebuild trust and enhance rapport [33-35]. 
The absence of such reflexivity represents a major gap in 
current conversational AI designs for education, especially 
given growing awareness of the importance of socio-emotional 
dimensions in learning. 

In response to this critical need, this paper presents 
PersonaGPT, a novel personalization engine for educational 
chatbots that integrates real-time learner persona modeling 
with reflexive dialogue capabilities. At the core of PersonaGPT 
is a dynamic learner modeling pipeline that constructs a 
continuously evolving persona based on multiple input 
streams: behavioral indicators such as task completion success 
and error patterns; linguistic signals such as expressions of 
uncertainty, confusion, or confidence; and meta-dialogue 
behaviors such as requests for re-explanation or clarification. 
This persona is not a static profile but a moment-to-moment 
representation of the learner’s cognitive, affective, and 
engagement state. It is used to guide response generation 
through prompt conditioning, enabling the chatbot to adjust not 
only the content and complexity of its explanations but also its 
communicative tone, offering empathy, encouragement, or 
challenge as appropriate. In addition, the system incorporates 
reflexive dialogue mechanisms designed to repair interaction 
breakdowns, acknowledge learner frustration, and offer 
metacognitive scaffolding. For example, if a learner repeatedly 
struggles with a concept, the chatbot might say: “Let’s look at 
this in a different way” or “No worries, many students find this 
tricky at first”. These interventions are informed by research on 
trust-building in AI and pedagogical best practices for fostering 
learner persistence. 

PersonaGPT is implemented as a lightweight, modular 
system capable of real-world deployment in educational 
settings. The architecture consists of a React.js frontend for 
chat interaction, a Flask-based backend for dialogue 
management, and integration with OpenAI’s GPT-4 API for 
response generation. A persona inference engine aggregates 
input signals into a vector representation of learner traits – such 
as cognitive load, engagement, and confidence – which is used 
to condition GPT-4 prompts in real time. The system supports 
both short-term personalization (during a session) and session-
based memory for extended learning. To evaluate its 
effectiveness, a two-week experimental study was conducted 
involving 81 undergraduate students learning SQL through 
chatbot-mediated interaction. Participants were randomly 
assigned to one of three conditions: PersonaGPT, a static-
profile chatbot, or a generic non-personalized chatbot. All 
participants completed the same SQL tasks, and their 
performance, engagement, and survey feedback were analyzed. 
The results showed that learners in the PersonaGPT condition 
had significantly higher task success rates, better retention of 
material, and more positive perceptions of adaptivity and 
engagement. Moreover, open-ended feedback suggested that 
learners felt “seen” by the chatbot and appreciated its ability to 
adjust explanations and tone dynamically. These findings 
contribute to the growing body of evidence that personalization 
in educational AI must go beyond content adaptation to include 
real-time, responsive dialogue strategies grounded in learner 
context. 

 

II. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

The architectural design of PersonaGPT embodies an 
integrated approach to adaptive AI tutoring, where real-time 
learner modeling, natural language interaction, and reflexive 



personalization converge into a scalable and deployable 
chatbot system. The novelty of the system lies in its ability to 
construct dynamic learner personas using observable signals, 
such as performance data, linguistic cues, and interaction 
behaviors, and to generate instructional dialogue that adapts 
not only pedagogically but also emotionally in response to 
these evolving personas. 

This section offers a detailed exposition of the system’s 
design principles, key components, adaptive mechanisms, and 
implementation technologies, concluding with its ethical 
safeguards and real-time personalization cycle. A visual 
representation of the system’s logical structure is provided in 
Figure 1. 

 

Fig. 1. Logical Architecture of the PersonaGPT system. 

 

From the outset, the development of PersonaGPT was 
governed by five core design principles. First, the system must 
furnish context-aware personalization not emanating from 
static learner profiles but from data continually updated to 
reflect fluctuating learner confidence, engagement, and 
cognitive load. Second, the architecture was to be modular and 
scalable so as to allow independently deployable components 
to be used by multiple concurrent users. Third, there was to be 
reflexivity in the conversations so that the system could say it 
is confused, rephrase instructions, or even attempt to build 
trust—something very much needed in human tutoring. Fourth, 
there was to be pedagogical alignment: the chatbot would adapt 
its mode of discourse and instructional strategies in response to 
the learner’s performance and task history. Fifth, an ethical and 
transparent system had to be put in place so that explainable 
personalization could be offered and data handling could be 
made GDPR compliant. 

PersonaGPT follows a layered and service-oriented 
architecture. At the user interface level, learners interact with a 
Frontend UI module. This interface allows learners to engage 
in natural conversation, pose questions, and solve tasks such as 
SQL challenges. It handles message exchange, streaming of 
responses, and also logs implicit behavioral signals (e.g., 
typing pauses, input length, and rephrasing frequency). 

The Dialogue Manager, implemented in Flask (Python), 
forms the operational core. It coordinates the interaction loop: 
managing dialogue states, interpreting intents, updating learner 
progress, and orchestrating requests to internal services. It also 
determines when to switch between instructional modes (e.g., 
problem-solving, explanation, clarification) and when to 
trigger personalization updates. This manager acts as the 
conductor of all data flow between system components. 

One of its key responsibilities is invoking the Persona 
Modeling Engine, which continuously updates a learner model 
– called the persona – based on multi-source input: 

• Task performance: error types (syntax vs. logic), 
number of retries, time-on-task, success rate. 

• Behavioral signals: help requests, long pauses, skipped 
tasks. 

• Linguistic analysis: expressions of confusion (“I don’t 
get it”), confidence (“That was easy”), or hesitation 
(“maybe…”), extracted using spaCy and VADER. 

• Interaction preferences: learner reactions to analogies, 
definitions, or examples are used to infer optimal 
explanation format. 

These signals form a real-time vector representation of the 
learner’s state. The four primary traits tracked are: 

• Cognitive Load (CL) – mental effort required, 

• Confidence (CONF) – emotional readiness and self-
efficacy, 

• Engagement (ENG) – level of interaction, 
participation, and enthusiasm, 

• Explanation Preference (XPREF) – inferred based on 
format responsiveness. 

Each trait is updated using a time-decay model: 

traitt = α · signalcurrent + (1 – α) · traitt-1 

 
with α typically set at 0.6, striking a balance between 

sensitivity and stability. The α value (0.6) was chosen based on 
empirical tuning to balance sensitivity to new input with 
memory of prior behavior. 

This persona vector is directly fed into the Reflexive 
Dialogue Generator, which uses a technique known as prompt 
conditioning – the process of embedding learner-specific traits 
into the input prompt of the language model  – to guide its 
responses. By conditioning the prompt with real-time updates 
on cognitive load, confidence, and engagement, the system 
ensures that generated replies are both pedagogically 
appropriate and emotionally attuned. Instead of fixed system 
prompts, GPT-4 receives personalized directives such as: 

“You are a friendly tutor. The learner is showing signs of 
low confidence and high cognitive load. Use supportive tone, 

simpler language, and step-by-step examples.” 

This process – called prompt conditioning – ensures that 
responses are not only content-appropriate but also emotionally 



adaptive. These prompt descriptors are constructed 
dynamically at each learner turn, based on the current state of 
the persona vector (e.g., confidence, cognitive load, 
explanation preference). They are embedded directly into the 
GPT-4 prompt sent via the OpenAI API to influence the style, 
depth, and tone of the response. The following example 
illustrates a typical prompt constructed by the system: 

• System prompt: 

“You are a supportive and adaptive SQL tutor. The learner 
currently shows low confidence, high cognitive load, and 
prefers analogical explanations. Use simple language, short 
sentences, and include analogies where appropriate.” 

• User input: 

“What’s the difference between INNER JOIN and LEFT 
JOIN?” 

In cases of misunderstanding, fatigue, or disengagement, 
PersonaGPT deploys reflexive dialogue strategies. These 
include metacognitive interventions such as: 

• “Let’s take another look – maybe in a different way.” 

• “No worries – this is a tricky topic for many learners.” 

• “Would you like an example, a hint, or a simpler 
explanation?” 

These reflexive utterances are generated when the Dialogue 
Manager detects risk indicators (e.g., repeated errors or 
affective signals) and seeks to rebuild trust and motivation. 

Once generated, responses are returned to the User 
Interface and simultaneously logged. Every interaction triggers 
updates not just in the persona but in session metadata. These 
updates are stored in the Database Layer, which uses 
PostgreSQL for persistent session storage and Redis for rapid 
access to persona vectors and task records. This storage layer 
also enables session resumption and longitudinal tracking 
across multiple learning events. 

Parallel to this, the system feeds data into the Analytics and 
Logging Module. This component records interaction histories, 
including timestamps, trait evolution, and dialogue outcomes. 
These logs are used for research analytics, debugging, future 
training sets, and instructor-facing dashboards in extended 
versions. Logs are anonymized and encrypted to preserve 
learner privacy and comply with institutional data handling 
policies. 

Working as an asynchronous layer between the system and 
GPT-4, the API layer for Natural Language ensures a 
modularity that separates LLM access: institutions may replace 
GPT-4 for other providers or custom private models in a future 
deployment. Error-checking, retry policies, and rate-limiting 
mechanisms are also in place within the API layer for system 
stability and scalability. 

Taken together, all these modules form a closed-loop 
adaptive learning cycle: 

1. The learner submits input via the UI. 

2. The Dialogue Manager interprets the query and calls 
for updates to the persona. 

3. The updated persona is used to condition GPT-4’s 
system prompt. 

4. The Reflexive Dialogue Generator creates the final 
output. 

5. The response is streamed back to the learner and 
logged. 

6. Analytics and storage systems capture new signals, 
restarting the loop. 

This cycle allows PersonaGPT to adapt at the granular level 
of each turn, rather than at the lesson or unit level, fostering a 
highly personalized dialogue experience. 

To ensure robustness and learner autonomy, PersonaGPT 
incorporates several fallback strategies. When learner intent is 
ambiguous, the bot asks clarifying questions. When model 
confidence is low (e.g., due to missing persona data or 
anomalous inputs), it defaults to safe explanations. And when 
learners explicitly ask for help, the system offers flexible 
options such as hints, scaffolds, or simplified analogies – 
depending on both context and persona state. 

From an engineering perspective, the architecture is 
designed for containerized deployment. All components (UI, 
API, dialogue manager, persona engine) are dockerized and 
deployable on platforms like Heroku or AWS. OAuth2 
authentication is used to enable LMS integration and user 
account control, and the system is prepared for institutional 
pilots at scale. 

Crucially, PersonaGPT is built with ethical AI design in 
mind. Users are informed about data logging. All session data 
is anonymized. Adaptive behaviors are sometimes explained 
with transparency utterances like: 

“I’m offering an example here because you seemed to prefer it 
in previous questions.” 

These design decisions are vital to building trust with 
learners and meeting the growing demand for AI accountability 
in education. 

In conclusion, the architecture of PersonaGPT is not merely 
a technical configuration – it is the material realization of a 
pedagogical philosophy: that personalization must be 
continuous, interpretable, and respectful. By integrating real-
time persona modeling, reflexive conversational strategies, and 
modular cloud-based components, the system presents a robust, 
scalable, and human-centered model for next-generation 
educational chatbots. 

 

III. EXPERIMENTAL DESIGN 

To rigorously evaluate the pedagogical effectiveness of 
PersonaGPT as a personalization engine for educational 
chatbots, we conducted a mixed-method experimental study 
embedded within a real-world university environment. The 
goal was to investigate how dynamically generated learner 



personas and reflexive dialogue strategies affect measurable 
learning outcomes, learner engagement, and the overall 
perception of personalization in AI-mediated tutoring systems. 
By combining quantitative and qualitative methods in a 
carefully structured design, this study provides a strong 
empirical foundation to assess the impact of adaptive 
conversational AI on learning performance in an authentic 
instructional context. 

The study was structured around three key research 
questions. First, we examined whether the use of PersonaGPT 
led to improvements in learners’ task performance when 
compared to alternative chatbot configurations – specifically 
those using static profiles or offering no personalization at all. 
Second, we explored whether the system enhanced learners’ 
retention of the material, measured through delayed post-task 
assessments. Third, we aimed to understand how learners 
perceived the chatbot’s adaptivity, trustworthiness, and overall 
usefulness in supporting their learning journey. From these 
questions, we derived three testable hypotheses: that learners 
supported by PersonaGPT would complete more learning tasks 
correctly, retain more of the material after a delay, and report 
greater satisfaction and perceived personalization than learners 
in the comparison conditions. 

Participants were drawn from an undergraduate population 
enrolled in introductory database courses at a public university. 
Recruitment was conducted through in-class announcements 
and follow-up emails. Eligibility was limited to students who 
had not previously taken advanced SQL coursework, ensuring 
that all participants had roughly equal levels of prior 
knowledge. Participation was voluntary, with a minor 
academic incentive – 2% bonus credit – offered for full 
completion of the study protocol. A total of 81 students 
participated, and they were randomly assigned into three equal-
sized groups of 27 using a simple Python-based random 
assignment script. This ensured group balance while 
minimizing selection bias and supporting internal validity for 
statistical comparison. 

Each group was exposed to a distinct version of the chatbot 
system. Group A interacted with PersonaGPT, which featured 
dynamic learner modeling and real-time reflexive dialogue 
strategies. Group B used a chatbot configured with a static 
profile: at the beginning of their session, participants selected 
their preferred explanation format (e.g., example-based, 
definition-based, visual/textual) and rated their confidence on a 
five-point scale. These initial selections guided the chatbot’s 
behavior throughout the session, but the system did not update 
or adapt its strategy in real time. Group C served as the control 
group, interacting with a generic chatbot that delivered 
consistent responses regardless of learner behavior, 
performance, or expressed preferences. This configuration 
allowed us to isolate the effects of real-time personalization 
and adaptivity from those of baseline interactivity or interface 
design. 

All groups interacted with the chatbot in the same interface 
environment. The frontend UI, developed in React.js, was 
identical across conditions to control for layout, usability, and 
aesthetic influence. The primary instructional task focused on a 
progression of five SQL programming problems, each 

increasing in difficulty and designed to assess the learner’s 
grasp of key relational database concepts. These tasks were 
crafted in collaboration with course instructors to ensure 
alignment with curricular objectives. The problems required 
learners to construct SQL queries involving INNER JOINs, 
LEFT JOINs with NULL filtering, GROUP BY clauses with 
aggregations, JOIN conditions with WHERE clauses, and 
nested SELECT queries. Participants completed the tasks 
independently in a supervised computer lab setting. They had 
up to 40 minutes to engage with the chatbot, complete the 
tasks, and provide feedback, though many completed the 
session earlier. 

The PersonaGPT condition featured the most sophisticated 
backend logic. The chatbot responses were conditioned on the 
learner’s evolving persona, which was updated in real time 
based on behavioral and linguistic input. The system 
continuously interpreted performance metrics – such as task 
accuracy, number of retries, and completion time – as well as 
linguistic indicators like expressions of confusion or 
confidence. These signals were synthesized into a dynamic 
learner profile that guided the depth of explanation, tone, and 
response presentation format of chatbot. Some reflexive dialog 
strategies were implemented as well: if signs of struggle or 
disengagement were detected, the system would intervene with 
empathetic utterances and rephrasings, as well as opportunities 
for metacognitive reflection. Whereas in the static-profile 
group, responses aligned with the learner's initial self-declared 
preferences but no further update to personalization was 
applied during the session. The control group was given fixed 
explanations regardless of context or learner input. 

To evaluate the effects of this prototype, we used a variety 
of data collection instruments. The first, which was 
automatically collected by the system, was a set of objective 
performance measures. These were: how many tasks the 
learner successfully completed, total duration (time spent on 
the task), the number of help requests made, and the number of 
attempts that were made with corrections before arriving at a 
valid solution. Each request was timestamped, and included in 
PostgreSQL, which also allowed for cross-temporal and 
behavioral analysis. Requesting help would consist of either 
measurable language (e.g., “I need help”, “I don't get this”) or 
requesting help via help request buttons embedded in the 
interface. Correction attempts were based on the number of 
distinct submissions that preceded the final correct answer. 
This would give us a clear understanding of the learner's trial 
and error activity, or confusion. 

To measure learning retention, participants completed a 
delayed post-test 24 hours after their chatbot interaction. This 
assessment was administered via the university’s learning 
management system and included five multiple-choice 
questions and three open-ended questions, covering the SQL 
topics encountered during the main task. Scores were 
normalized to a 10-point scale. This retention test allowed us to 
go beyond immediate task performance and evaluate whether 
the chatbot’s support strategies led to lasting learning gains. 

Participants also completed a post-session survey that 
captured their subjective experiences. The instrument included 
items grouped into three key subscales: perceived 



personalization, engagement, and trust/satisfaction. Statements 
such as “The chatbot adapted its explanations to my needs,” 
“The interaction kept me interested and involved,” and “I felt 
the chatbot understood my difficulties” were rated on a five-
point Likert scale ranging from strongly disagree to strongly 
agree. The survey was adapted from validated instruments in 
prior HCI and educational technology research. To ensure 
reliability, internal consistency was measured using 
Cronbach’s alpha, which returned a value of 0.86 – indicating 
strong cohesion among items. 

In addition to closed-ended items, the survey included 
open-ended prompts. Learners were asked what they liked 
most about the chatbot, whether anything frustrated them 
during the session, and how the chatbot could be improved. 
These qualitative responses were later subjected to thematic 
analysis using an inductive coding approach. Two independent 
researchers reviewed the responses, created initial codes, and 
refined these into themes through iterative comparison. 
Interrater reliability exceeded 85%, indicating a high level of 
agreement and thematic coherence. 

All participants followed the same sequence of steps during 
the session. After signing a consent form and completing a 
brief demographic questionnaire, learners engaged in a short 
practice round designed to familiarize them with the chatbot 
interface and the types of SQL questions they would encounter. 
This warm-up lasted about five minutes. They then entered the 
main session, which was limited to a maximum of 40 minutes. 
Upon completion, learners filled out the experience survey and 
submitted open-ended feedback. The delayed retention test was 
emailed to them the next day with a 24-hour completion 
window. 

To preserve the study’s internal validity, we implemented a 
single-blind protocol. Participants were unaware of the 
different versions of the chatbot and were not informed of the 
study’s hypotheses. This helped to control for expectancy 
effects and social desirability bias. The research team took 
steps to ensure that all learners received similar conditions in 
terms of lab setup, task instructions, and availability of 
technical support. All tasks and explanations were delivered in 
English, and no participant received personalized assistance 
from human facilitators during the task phase. 

Ensuring methodological robustness required attention to 
multiple forms of validity and reliability. Construct validity 
was supported by the triangulation of performance metrics, 
survey responses, and qualitative feedback. Internal validity 
was reinforced by random group assignment and by 
standardizing the interface and instructional materials across all 
conditions. Ecological validity was addressed through the use 
of real course content, authentic SQL tasks, and a deployment 
environment (i.e., a university computer lab) that mirrored the 
setting in which such a system might be deployed in practice. 
Reliability was tested both quantitatively (e.g., survey alpha 
scores) and qualitatively (e.g., interrater agreement in feedback 
coding). 

For the study, participants were informed of their rights, 
including the right to withdraw at any point without penalty. 
No personally identifying information was recorded; instead, 
each learner was assigned a random user ID. All chatbot logs 

and performance data were stored securely on encrypted 
servers and used only for research purposes. To prevent the 
risk of overreliance on AI, the chatbot was configured to 
encourage independent problem-solving. For example, when a 
learner asked for a direct answer, the chatbot might instead 
respond with, “Let’s think through this together. What do you 
think would happen if we tried this JOIN instead?” A full 
debriefing followed the study, where participants were 
informed of the different conditions and the study goals. 

IV. RESULTS AND ANALYSIS 

The findings of the experimental evaluation of PersonaGPT 
offer substantial empirical evidence to substantiate the 
effectiveness of adaptive learner personas and reflexive 
dialogue for improving learning in mediated chatbot 
environments. This section includes a discussion about the 
study's findings, including quantitative task performance, 
retention, engagement, perceived personalization, behavioral 
measures, and qualitative learner feedback. The data or 
evidenced important differences among the three experimental 
groups (PersonaGPT, Static Chatbot, and Control) and we offer 
a multi-dimensional view of the system's pedagogical impact. 

The first and primary learning metric evaluated was task 
completion rate, defined as the number correctly submitted 
SQL queries over the five tasks given to each participant. As 
shown in Table I, learners in the PersonaGPT condition 
achieved a mean task completion rate of 92.3%, which was 
significantly higher than the Static Chatbot condition (83.7%) 
and the Control condition (76.4%). Standard deviations were 
lowest in the PersonaGPT group, suggesting more consistent 
performance. A one-way ANOVA confirmed a statistically 
significant difference in means across groups (F(2,78) = 16.14, 
p < 0.001). Post hoc Tukey tests showed that the differences 
between PersonaGPT and each of the other two groups were 
significant at p < 0.01, while the Static vs. Control comparison 
yielded a smaller yet significant difference (p = 0.045). These 
findings provide strong support for H1 and reinforce the 
conclusion that real-time adaptation contributes to task success. 

TABLE I.  TASK COMPLETION RATES BY GROUP 

 Mean (%) Std. Dev. 

PersonaGPT 92.3 5.2 

Static Chatbot 83.7 7.9 

Control (No Personalization) 76.4 8.6 

To evaluate knowledge retention beyond immediate task 
performance, a follow-up assessment was administered 24 
hours after the main chatbot session. This retention test, scored 
out of 10 points, included both multiple-choice and open-ended 
questions covering the SQL concepts practiced in-session. As 
presented in Table II, the PersonaGPT group scored highest (M 
= 8.4), followed by the Static Chatbot group (M = 7.1) and the 
Control group (M = 6.3). Differences among the groups were 
significant (F(2,78) = 13.57, p < 0.001), with post hoc 
comparisons confirming that learners in the PersonaGPT 
condition retained significantly more knowledge (p < 0.01 vs. 
both groups). These results confirm H2 and demonstrate that 
the adaptive and reflective support provided by PersonaGPT 



was not only effective in-session but also contributed to longer-
term understanding of SQL concepts. 

TABLE II.  RETENTION TEST SCORES BY GROUP 

 
Mean Score (out of 

10) 

Std. Dev. 

PersonaGPT 8.4 1.1 

Static Chatbot 7.1 1.3 

Control  6.3 1.6 

Session duration was also analyzed to understand how long 
learners remained engaged with the chatbot. Although the 
session was capped at 40 minutes, participants could finish 
early. As shown in Table III, the average session time was 
highest for the PersonaGPT group (M = 21.5 minutes), 
followed by Static Chatbot (18.9) and Control (17.8). While 
longer duration alone may not be desirable, in this context it 
was associated with greater depth of interaction and aligned 
with higher task completion and retention. Informal 
observation suggested that PersonaGPT learners stayed 
engaged due to the system’s responsive explanations and 
adaptive pacing. 

TABLE III.  AVERAGE SESSION DURATION 

 Mean Time (min) Std. Dev. 

PersonaGPT 21.5 3.2 

Static Chatbot 18.9 2.7 

Control  17.8 2.9 

In terms of subjective experience, participants completed a 
post-task survey measuring perceived personalization and 
engagement using a 5-point Likert scale. As shown in Table 
IV, the PersonaGPT group reported significantly higher levels 
of personalization (M = 4.6) and engagement (M = 4.5) than 
either comparison group. Kruskal-Wallis tests indicated 
significant differences (p < 0.001), and Mann-Whitney U tests 
confirmed that all pairwise comparisons involving PersonaGPT 
were significant at p < 0.01. These results provide strong 
support for H3 and confirm that learners not only performed 
better but also felt more supported and involved. 

TABLE IV.  LEARNER EXPERIENCE RATINGS 

 PersonaGPT Static Chatbot Control 

Perceived 

Personalization 
4.6 

3.7 2.9 

Engagement 4.5 3.6 3.1 

 

Behavioral indicators further corroborated these findings. 
One of the clearest signals was the number of explicit help 
requests submitted during the session. These requests were 
either typed manually (e.g., “Can I get a hint?”) or initiated 
through the help button. As seen in Table V, learners using 
PersonaGPT requested help less frequently (M = 2.1) than 
those using the Static Chatbot (M = 3.8) or the Control chatbot 
(M = 4.2). This suggests that adaptive scaffolding and reflexive 
clarification may have preemptively addressed learner 

confusion, thereby increasing confidence and reducing 
dependency. 

TABLE V.  HELP REQUESTS DURING SESSION 

 Mean Requests Std. Dev. 

PersonaGPT 2.1 1.4 

Static Chatbot 3.8 2.0 

Control  4.2 2.3 

A second behavioral indicator was the number of correction 
attempts per task, defined as the number of incorrect 
submissions prior to a correct solution. Table VI reveals that 
PersonaGPT users averaged only 1.7 correction attempts, 
versus 2.5 in the Static Chatbot group and 2.9 in the Control 
group. This suggests that PersonaGPT learners benefited from 
clearer guidance and better internalized task expectations, 
leading to fewer errors and more efficient learning. 

TABLE VI.  ERROR CORRECTION ATTEMPTS 

 Mean Attempts Std. Dev. 

PersonaGPT 1.7 1.1 

Static Chatbot 2.5 1.4 

Control  2.9 1.6 

Learners in the Control and Static groups often submitted 
queries with incorrect JOIN conditions or failed to handle 
NULLs properly. In contrast, PersonaGPT users made fewer 
conceptual errors, likely due to timely clarification and targeted 
examples. 

These quantitative patterns – derived from task 
performance, retention scores, session duration, learner 
experience ratings, and behavioral indicators – are visually 
summarized in Figure 2. The radar plot presents a normalized 
comparison across all major metrics and illustrates the 
multidimensional effectiveness of PersonaGPT. Compared to 
the Static Chatbot and Control groups, PersonaGPT 
consistently achieves higher values across performance and 
engagement dimensions, and lower values on inverse metrics 
such as help requests and error correction attempts (reflected as 
higher normalized scores).  



 

Fig. 2. Comparative Performance and Experience Metrics 

The visual representation reinforces the conclusion that 
PersonaGPT’s adaptive and reflexive dialogue mechanisms not 
only enhanced cognitive outcomes but also promoted a more 
engaging and efficient learning experience. 

Quantitative results were complemented by qualitative 
thematic analysis of learners’ open-ended feedback. Several 
recurring themes emerged across conditions. In the 
PersonaGPT group, many learners described the system as 
“understanding,” “encouraging,” and “like a real tutor.” 
Representative comments included: “It felt like the bot knew 
when I was confused – it rephrased without me even asking,” 
and “It encouraged me when I got stuck, like a personal 
coach.” These responses confirm that learners not only noticed 
the system’s adaptivity but appreciated its relational qualities. 

By contrast, feedback from Static Chatbot users was more 
ambivalent. While some learners appreciated the initial 
customization (“I liked choosing my preferences”), others 
noted the system’s rigidity (“It didn’t change much even after I 
made mistakes”). This suggests that static profiling is 
perceived as less responsive and may result in plateaued 
engagement. Control group learners were most likely to 
express frustration or boredom, with comments such as “It was 
too repetitive,” or “It didn’t really respond to me.” These 
reflections underscore the importance of real-time adaptation in 
maintaining learner motivation. 

Interestingly, a few participants in the PersonaGPT group 
mentioned instances of overpersonalization, such as “It 
sometimes overexplained things I already knew.” This 
highlights the challenge of striking the right balance in 
adaptive support – ensuring responsiveness without 
redundancy. Nevertheless, such cases were rare and did not 
diminish the overall positive perception of the system. 

When we examine the results holistically, several important 
patterns emerge. First, all three hypotheses (H1–H3) are 
supported by statistically significant and triangulated evidence: 
PersonaGPT improved task performance, retention, and learner 
experience. Second, the system’s gains were consistent across 
cognitive, behavioral, and affective dimensions. This suggests 
that personalization in PersonaGPT was not superficial but 

rather deeply embedded in its interaction design and 
instructional strategy. 

The study also yields valuable insights into the nature of 
personalization. It is not simply a matter of selecting the right 
explanation format or controlling pacing. What matters most is 
the system’s ability to recognize changes in learner state and 
respond with emotionally appropriate, pedagogically effective 
interventions. Reflexive dialogue – such as offering 
encouragement, rephrasing confusing concepts, and inviting 
clarification – proved critical in maintaining trust and 
engagement. The data further suggest that adaptive dialogue 
can be just as important as adaptive content in achieving 
learning outcomes. 

Nevertheless, it is important to acknowledge several 
limitations. While the sample size was sufficient for medium-
effect statistical power, replication in larger and more diverse 
populations would help verify generalizability. The study was 
also restricted to one domain – SQL programming. It remains 
to be seen how the same personalization mechanisms would 
perform in other subjects, such as writing or calculus. 
Additionally, the system’s reliance on the GPT-4 API 
introduces dependencies that may pose barriers for cost-
sensitive institutions. Future work should explore fine-tuned 
models that offer similar capabilities with fewer constraints. 

Another potential limitation concerns behavioral bias. It is 
possible that learners behave differently when interacting with 
an AI tutor than they would with a human instructor. Some 
students may feel more comfortable taking risks; others may 
struggle to interpret cues from a non-human agent. Although 
the positive results in this study suggest that PersonaGPT 
overcame such issues, it would be valuable to compare AI-
human hybrid models in future research. 

Despite these limitations, the robustness of the findings 
points to a clear conclusion: PersonaGPT provides an effective, 
engaging, and scalable solution for AI-driven personalization 
in education. Its hybrid approach – combining behavioral 
modeling, language analysis, and adaptive generation – offers a 
promising blueprint for future systems that aim to replicate the 
nuance of human tutoring in a digital form. 

V. DISCUSSION AND CONCLUSIONS 

This study marks a meaningful shift in how we design and 
think about conversational agents in education. While adaptive 
learning systems and intelligent tutors have come a long way, 
the combination of real-time learner modeling with responsive, 
reflexive dialogue – seen in PersonaGPT – opens new doors. 
What sets PersonaGPT apart isn’t just the accuracy of its 
responses, but the way it actively listens and adjusts to the 
learner’s state, much like a skilled human tutor. This kind of 
personalization, based on behavioral and emotional cues, 
represents a more relational and reflective approach to AI in 
education. 

One of the clearest findings is how much tone, wording, 
and pacing matter. Learners did not just receive correct 
answers – they felt understood. Unlike older systems that 
personalized only through content filtering or level adjustment, 
PersonaGPT shows that the way a system communicates can 



deeply affect engagement and learning outcomes. Its ability to 
detect confusion or hesitation without being directly asked 
adds a layer of authenticity and care often missing in digital 
tools. 

The implications go beyond technical subjects like SQL. If 
AI systems can adapt not just what they teach but how they 
teach—and do so transparently – they become more than 
instructional tools. They become collaborators in learning, 
capable of motivating students, encouraging persistence, and 
offering support when human teachers can’t. This is especially 
important in large or asynchronous learning environments 
where students often feel alone. 

Technically, PersonaGPT demonstrates that hybrid systems 
combining rule-based logic with large language models can 
remain both adaptive and interpretable. Its use of open 
behavioral cues, rather than intrusive data, keeps it explainable 
and privacy-conscious. Its modular design also makes it 
scalable and institution-friendly, ready for integration into a 
variety of educational settings. 

More broadly, the study invites us to rethink what we want 
from AI in education. Instead of focusing solely on efficiency 
or performance metrics, we should aim to nurture confident, 
independent learners. PersonaGPT shows that learners 
appreciate systems that respond to them genuinely and 
attentively. This brings empathy to the forefront—raising 
important questions about how future AI might balance 
emotional intelligence with academic rigor. 

Of course, these advances also raise concerns. While 
learners benefited from PersonaGPT’s guidance, we must 
examine the long-term impact of relying on AI for emotional 
and cognitive support. There’s a risk of fostering dependence 
or reducing self-regulation. Future research should explore 
how to maintain a healthy balance, monitor changes in system 
behavior over time, and ensure that personalization continues 
to serve educational goals in an ethical and transparent way. 

In conclusion, PersonaGPT represents a promising 
evolution in the design of AI-driven educational systems. It 
offers a working example of how learner modeling, 
conversational adaptivity, and affective sensitivity can be 
woven into a cohesive, responsive, and pedagogically 
meaningful interaction paradigm. By moving beyond static 
profiling and embracing dialogue as a dynamic, context-aware 
process, the system provides not only measurable 
improvements in learning but also a more humane and 
personalized experience of AI-mediated instruction. The 
findings of this study reinforce the potential of AI not simply to 
deliver content, but to participate in the learning process as an 
adaptive partner – attuned to the learner’s needs, responsive in 
its feedback, and supportive of deeper engagement with the 
material. As the field moves forward, systems like PersonaGPT 
can serve as both a technical model and a conceptual 
inspiration for the future of human-centered educational 
technology. 
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