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Abstract—Twitter account recommendations rely on a broad
spectrum of factors including language, which influences all
spheres of social life. Most notably, virtually every action of
informal human communication online is almost exclusively
actualized by language. As it largely remains the main stage
upon which such communicative acts unfold freely, language is
subject to a myriad of minor changes eventually accumulating
to discernible patterns indicating lexical, syntactic, or semantic
changes giving rise to dialects. Since often they are readable
by speakers of the original language, it is statutory to ask
whether recommendations can be made based across dialects
and, if so, whether it can be deployed on a scalable back end
infrastructure. Two use cases using Faiss for storage and Go
as the implementation language yield encouraging results.

Index Terms—multilingual social networks, linguistic diffusion,
cross cultural language change, personalization, recommenda-
tion, social data mining, Go, vector databases, Faiss, Twitter

1. Introduction

Twitter recommendation is fundamental across a series
of functions such as content personalization, digital cultural
awareness, and digital campgains. In light of this, effective
recommendations rely on a broad spectrum of attributes pri-
marily pertaining to the use of language in tweets. Language
is diachronically the fundamental property of human com-
munication and by definition a complex social phenomenon.
As the actualization of communication undergoes an ever-
growing alteration by external factors such as the emergence
of new digitized communication channels such as social
media, language remains necessary yet fragile in that it is
in constant flux through numerous pressures and constraints
in usage. The ongoing rise of digital services and platforms
of communication such as Twitter not only allows for new
areas of expression to emerge along with pathways of new
linguistic behaviors and new forms; emoticons, abbrevia-
tions, phonetic spellings, and other neologisms, but it rather
imposes these alterations to happen on a cross lingual basis
as social media is becoming increasingly multilingual.

In fact research indicates that multiple languages are
used throughout Twitter for social interaction across cultures

[1]. In particular the majority of tweets account for English
[2] [3], while the rest account mostly for Portuguese [4],
Spanish [5], Japanese [6], and Indonesian [7]. Consequently,
for acts on languages on a cross-lingual and cross-cultural
basis in online social networks using interdisciplinary, inno-
vative qualitative and quantitative approaches can shed light
in the multidimensionality of the event of language diffusion
during a period of rapid contact-induced linguistic change.

Table 1. NOTATION SYNOPSIS.

Symbol Meaning First in
△
= Definition or equality by definition Eq. (1)
{s1, . . . , sn} Set with elements s1, . . . , sn Eq. (1)
|·| Set cardinality functional Eq. (5)
τ (·, ·) Tanimoto set similarity coefficient Eq. (5)
ν (·, ·) Tversky set similarity index Eq. (6)
S1 \ S2 Asymmetric set difference Eq. (6)
prob {Ω} Probability of event Ω occurring Eq. (8)
κ2(·; f) Condition number of function f(·) Eq. (12)
∥·∥2 Euclidean vector norm Eq. (15)

The primary research objective of this conference paper
is a probabilistic graphical model for creating personalized
Twitter account recommendations based on a combination
of attributes of various types including linguistic, affective,
and geospatial ones. Especially important are the dialects
of the languages an account is using since in many cases
the dialects can be understood by speakers of the original
language. Account and language similarity was determined
by a large number of attributes as appropriate pertaining
to Twitter including linguistic, syntactic, functional, and
affective ones. As a concrete case two groups of languages
were used, namely British and American English as well
as Spanish, Portuguese, and Brazilian Portuguese. As a
secondary objective, it is described in detail how this model
was implemented in Go using Faiss for embeddings storage.

The remainder of this conference paper is structured as
follows. In section 2 the recent scientific literature regarding
social network analysis (SNA), graph mining, and vector
databases is briefly overviewed. In section 3 the proposed
graphical model is explained. The dataset collected and the
results obtained are described in section 4. Future research
directions are given in 5. Acronyms are explained the first
time they are encountered in text. In function and functional
definitions parameters come after the formal arguments sep-
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arated by a semicolon from the latter. Small boldface letters
denote vectors and small ordinary one scalars. The terms
feature and attribute are used interchangeably. Finally, table
1 summarizes the notation of this work.

2. Related work

SNA has evolved over time to a broad field which
includes problems such as influence mining [8] and higher
order dynamics [9] and interacts with fields like long supply
chains [10], linguistics [11] [12], and even biology [13].
Twitter remains a popular microblogging platform even after
part of its community moved to Bluesky1 2 or Threads3 4

with conversations about topics ranging from urban flood
management [14] to migration [15] can be found there. Fake
news can be discovered with an array of algorithmic tools
examined in [16]. Moreover, cross-attention based trans-
formers have been employed as classifiers for identifying
offensive tweets [17]. Estimating the sentiment of a tweet
using natural language processing (NLP) models is explored
in [18]. Recommendation of cultural content can be done
as in [19]. The connection between large language models
(LLMs) and social networks is explored in [20]. Applica-
tions include exploring how Twitter sentiment influences
the value of cryptocurrencies [21]. Finally identity bias in
generative language models are explored in [22].

Graph mining is one of the algorithmic mainstays of
SNA as well as a major research field on its own right [23]
[24]. Current research directions include among others graph
neural networks (GNNs) [25], graph convolutional networks
(GCNs) [26], and graph kernels [27]. Other areas include
resilience metrics [28], community discovery structure [29]
[30], and approximating directed graphs with undirected
ones [31]. Applications include mining for threat on the
Web scale [32], multispectral and hyperspectral images [33],
brain networks [34], and Industry 4.0 process graphs [35].

The Go language5 has been developed by Google in
order to write systems code [36] with an emphasis on
concurrent programming [37]. Since then it has been ex-
tended for Web development [38] and code vulnerability
analysis [39] among others. Vector databases [40] such as
Pinecone have already found many applications including
storing human personality embeddings generated from the
Myers-Brigs taxonomy indicator (MBTI) [41].

1. https://www.techradar.com/computing/social-media/bluesky-is-the-
new-home-for-millions-of-disillusioned-twitter-users-heres-how-to-make-
the-switch

2. https://www.popsci.com/diy/how-to-leave-twitter-for-bluesky/
3. https://tbdconference.medium.com/how-to-move-your-following-

from-x-to-threads-or-anywhere-50622ceadaa1
4. https://www.colorado.edu/today/2023/07/10/threads-surging-mass-

migration-twitter-likely-remain-uphill-battle
5. https://go.dev

3. Methodlogy

3.1. Model overview

Communication is intrinsically bounded to language and
thus the phenomenon of communication is a fundamentally a
social phenomenon as well. For a new linguistic form such
as a dialect to succeed, at least two things must happen:
First, users must come into contact with the new form;
second, they must decide to adopt it. The first condition
implies that language change is related to the structure of
social networks. But while modeling of the social factors
of linguistic variation and change in terms of networks are
being explored, questions like what changes are observed
between the dialects of a spoken language in the context
of social networks have not yet been fully addressed. The
proposed model has been developed in order to account
exactly for that using Twitter as an explanatory framework.

The following factors were taken into consideration
in the proposed recommendation methodology. The for-
mer works in the same way as in most recommendation
methodologies, whereas the latter reinforces or weakens
account connections based on language similarity. This takes
into considerations different language dialects, which may
have geographical or even generational causes. Regarding
the latter, as language evolves over time each successive
generational cohort tends to have its own preferred spelling
and syntax as well as its own preferred words.

• The similarity between accounts.
• The similarity between languages.

Regarding implementation the language of choice was
Go, a lightweight language designed for systems and Web
back end programming. As such, it has numerous APIs
for databases including Faiss, a popular vector database.
Although Go is an unconventional choice for this task,
it has adequate functionality. Moreover, should the need
arise if the existing implementation scales up, Python can
be supplement more specialized data mining operations. In
order to perform recommendation across language dialects,
two language groups were considered based on their over-
all Twitter popularity as evaluated by their estimated total
number of tweets, namely American and British English as
well as Spanish, Portuguese, and Brazilian Portuguese. Said
recommendation was evaluated using the actual tweet follow
relationships as the ground truth.

3.2. Account and language similarity

Initially let U be the set of accounts under consideration.
Since each such account may well tweet in more than one
language, let Lu be the language set of an account u.

Lu
△
= {lu,1, . . . , lu,n} (1)

In this case the set of languages under consideration L
is given as the union of every La shown in equation (1).

L =
⋃
u∈U

Lu (2)



The attributes collected from the dataset for the two
language groups under consideration as well as their types
are given in table 2. Said attributes cover a broad spectrum of
written communication and pertain both to the language as
well as to Twitter itself. Although the latter is not part of any
language, it is the medium through which communication
takes place and as such it shapes the message to an extent.

Table 2. ATTRIBUTES FOR ACCOUNT SIMILARITY.

Attribute Type
Average number of words per tweet Syntactic
Maximum number of words per tweet Syntactic
Minimum number of words per tweet Syntactic
Average number of words per sentence Syntactic
Average number of punctuation marks per tweet Syntactic
Average number of exclamation marks per tweet Syntactic
Zipf exponent of word length distribution Syntactic
Zipf exponent of word frequency distribution Syntactic
Average percentage of words in all capitals Spelling
Average percentage of words in the same alphabet Spelling
Average percentage of emotionally charged words Affective
Percentage of positive charged tweets Affective
Percentage of negative charged tweets Affective
Percentage of affectively neutral tweets Affective
Percentage of tweets in the dataset Functional
Average number of hashtags Functional
Zipf exponent of hashtag length distribution Functional
Number of trending hashtags Functional
Percentage of tweets between midnight and noon Functional

These attributes have been collected and computed for
each account and constitute a mix of specific and general
features. Every attribute has been normalized to a maximum
value of one such that all features would be in the same
range. The similarty score between every account pair is
computed as the Euclidean distance in equation (3). Therein
n is the total number of features. This normalization keeps
metric distance hn between zero and one.

hn(ui,uj)
△
=

1√
n
∥ui − uj∥2 (3)

The Gaussian kernel of equation (4) gives sharper
bounds because of its decay rate. The variance σ2

0 has been
selected such that the numerator takes values between zero
and four. The latter has been selected as it is very close to
zero and it is a typical threshold in the exponential decay.

he

(
ui,uj ;σ

2
0

) △
= e−h2

n(ui,uj)/σ
2
0 (4)

The attributes used to quantifty language similarity are
given in table 3. Notice that they can be also used to quantify
similarity between languages, but in this case lower scores
should be accounted for, especially between languages from
different language families and in particular between any
pair of proto-languages defining a family language. For
example, Russian has a high number of cases and a low
number of prepositions in contrast to German6. Additionally,
the sets of most frequent words for a given language can

6. The old Russian word for Germans nemec means "mute" stemming
from the fact that Germans did not speak Russian. This signifies the social
role of language.

be extended beyond those available in the dataset either on
a larger Twitter dataset or across different social media.
However, in the latter case care should be taken in order
to account for the purpose of the social media under con-
sideration as for instance LinkedIn in intended exclusively
for public professional communication and as such the
vocabulary is accordingly tailored and standardized. Another
point which should be highlighted is that pronounciation is
one of the determining factor between a language and its
dialects. For instance the preposition "auf" is pronounced
as /au. f/ in German but as /u. f/ in Swiss German.

Table 3. ATTRIBUTES FOR LANGUAGE SIMILARITY.

Attribute Type
Alphabet Spelling
Set of available phonemes Phonetic
Set of phoneme pronounciation Phonetic
Distinct orders for the same phonemes Phonetic
Set of cases Grammatic
Set of prepositions Grammatic
Set of numbers Grammatic
Set of definite articles Grammatic
Set of hundred most frequent words in dataset Social
Set of accounts using the given language in dataset Social
Set of countries where tweets in this language are used Geospatial

In order for a tangible similarity score between any two
accounts to be derived as in equation (4) each account has
been linked to a numerical vector with the features shown
in table 2. This is straightforward since tweets and account
activity in general can be reduced to a collection of scores.
On the other hand, a language being systemic and dynamic
is hard to be mapped to one. Therefore it is more flexible
to assign languages to a set of feature sets and rely on set
similarity metrics. Recall that for two not necessarily distinct
sets S1 and S2 the Tanimoto similarity coefficient as defined
in equation (5) is one way to measure their similarity.

τ (S1, S2)
△
=

|S1 ∩ S2|
|S1 ∪ S2|

=
|S1 ∩ S2|

|S1|+ |S2| − |S1 ∩ S2|
(5)

The right hand side of equation (5) follows directly
from Venn diagrams and it is frequently more efficient
computationally as the set intersection is computed only
once and when one of the sets is comparably smaller then
the other one it is efficient. On the contrary, set union is not
always efficient and depends on its arguments.

The Tanimoto similarity is symmetric with respect to is
arguments, namely there is no way to discern between a
template set and a variant thereof. In cases where this is
desired, the asymmetric Tversky index of equation (6) for a
reference or blueprint set S1 and a modification or derivative
set S2 can be used. Using a language as reference adds an
element of causality and allows setting a similarity chain
where a dialect has dialects of its own.

ν (S1, S2)
△
=

|S1 ∩ S2|
|S1 ∩ S2|+ w1|S1 \ S2|+ w2|S2 \ S1|

(6)

The positive factors w1 and w2 in the denominator of
equation (6) determine the relative penalties of the elements



not present in S1 and S2 respectively. There is no general
rules for setting their values, but as a rule the conditions of
equation (7) often yield acceptable results and they are used
here. The interpretation of these rules is that w1 is β0 times
more important that w2 in a constrained setting.

w1 + w2 = 1

w1 = β0w2

⇒


w1 =

β0

1 + β0

w2 =
1

1 + β0

(7)

Given the above description connections between ac-
count pairs and language pairs as well as between ac-
counts and languages can be defined and the appropriate
connections under this model be computed. The above
can be represented as a weighted graph with two kinds
of vertices, namely languages and accounts as shown in
figure 1. Therein neither the edge weights nor most of the
connections between accounts are shown to avoid cluttering.
The edges between accounts are bidirectional as the way ac-
count similarity is computed focuses primarily on linguistic
features and precludes preferences like following influential
accounts, which however can be an attribute in a suitable
extension of the proposed model. The edges between ac-
counts and languages indicate language preferences, in this
case that u1 tweets equally in l1 and l2. Finally, vertices
denoting dialects point to the vertex of the proto-language,
namely the language they are derived from. In the particular
case shown in the figure below l1 is a dialect of l2.

u1

u3

u2

u4

l1

l2

Figure 1. Conceptual representation of the proposed method.

Under the proposed model the probability pi,k of account
ui to tweet in language lk is the normalized frequency of
their tweets in that language as shown in equation (8).

pi,k
△
= prob {ui tweets in lk}

△
=
tweets from ui in lk

tweets from ui
(8)

The weight wi,j,k between accounts ui and uj with
respect to language lk are given by equation (4) and between

languages either by equation (5) or as in the case of our
experiments by the latter because of its sharper bounds.
The inclusion of language lk in this weight allows assessing
in a straightforward the similarity of these accounts over
different ones in case the of multilingual accounts.

The weight wk,r between languages lk and lr in the set L
of equation (1) are given either by the Tanimoto coefficient
of (5) or by the Tversky index of (6) depending on the
context. Specifically, if an account has a specific language
preference or if an account tweets only in a single language
ignoring its dialects, then (6) may be more appropriate.

Finally, the recommendation score si,j of account uj

for ui is given by equation (9). The highest the score uj

receives, then the most relevant their tweets are deemed to
be to those of ui and thus the higher they are in the account
recommendation list presented to ui.

si,j
△
=

∑
lk∈Lui

pi,k
∑

lr∈Luj

pj,r
1 + η0

1

wi,j,r
+

η0
wk,r

(9)

Certain remarks about si,j are in order. First, this score
is pairwise and depends only on the profiles of the accounts
directly involved without taking into consideration any com-
munities they may belong to. Second, from a numerical
perspective si,j keeps computations in a well defined scale
as it ranges over weighted sums whose positive weights
sum up to one. Moreover, the harmonic mean in the second
sum not only is quite resistant to zero or near zero values
of wi,j,r or wk,r compared to the other two Pythagorean
means, namely the arithmetic and the geometric mean, but
also tends to be closer to the true mean compared to the
other two means as it is much less prone to outliers. Third,
the tunable parameter η0 offers flexibility as it can favor
either account or language similarity. In our experiments the
former took a higher relative weight, being more dynamic.

3.3. Linguistic attributes

The Zipf exponent for the word length distribution ζk for
a given language is defined the exponent γ0 of the power law
of equation (10). The Zipf exponent is intrinsically related
to the principle of least action regarding human activity
and motivation. In general, power laws tend to appear in
human activity such as the distribution of road lengths in
transportation networks and the distribution of number of
sea connections between ports. On the contrary, machine-
generated activity is frequently described by exponential
laws because of feedback or transient phenomena.

ζk
△
= α0k

−γ0 (10)

Each natural language has its own Zipf exponent with
minor variations accounting for local dialects. Typically
such computations rely on some preprocessing phase such
as using the Porter stemmer, but also exponents based on the
original words have been reported. The actual computation
can take place in a number of ways, linearization as shown
in equation (11) being the most straightforward of them.

ln ζk = −γ0 ln k + lnα0 (11)



Despite the easy form of equation (11) which leads to
linear least squares (LS) fitting with a linear system with rich
structure and high interpretability, the numerical properties
of the logarithm may lead to instability for small values of
the argument k. One way to evaluate the numerical difficulty
of evaluating a function taking and returning a single value
is the condition number of equation (12). Observe that by
definition the condition number need not be the same every-
where. Said difficulty is not in the sense of computational
complexity, but instead it can be attributed to phenomena
like floating point precision, catastrophic cancellation, and
the implementation of floating point operations [42] [43].

κ2(x; f)
△
=

∣∣∣∣x f ′(x)

f(x)

∣∣∣∣ (12)

Applying the above definition to the natural logarithm
function results in the condition number of equation (13).
From it it follows that when x is close to one, then numerical
instability may be an issue. Still, for larger values of x, as
is the case here, computations become more reliable.

κ2(x; lnx)
△
=

∣∣∣∣∣∣∣
x
1

x
lnx

∣∣∣∣∣∣∣ =

∣∣∣∣ 1

lnx

∣∣∣∣ (13)

It should be noted here that power laws have close con-
nections to fractals. Generalizations of equation (10) include
the multifractal distribution of equation (14) where multiple
exponents are allowed. In this case the number of exponents
n plays an important role in the distribution besides the
actual numbers of the exponents γi themselves. The positive
scaling factors αi indicate the relative contribution of each
component to the total distribution and sum up to one.

ζk
△
=

n∑
i=1

αik
−γi ,

n∑
i=1

αi = 1, αi > 0 (14)

As a general side note, power laws are also present in
information retrieval (IR) in precision-recall diagrams, the
distribution of the number of documents in a collection, as
well as in the word distribution length inside documents. The
latter is important in creating efficient graph embeddings of
documents. In turn, this can lead to efficient algorithmic ap-
proximation and implementation of cosine similarity queries
in vector databases such as Pinecone7 and Faiss8.

3.4. Affective attributes

Emotions are not only a major motivation of human
action, but in the context of this work are also indicative
of the overall Twitter public sentiment. The latter does
not consist of a single affective polarity, but rather instead
of the emotional distribution over a given time frame of
reference along with major events which may potentially
drive changes in it. Affective analysis is done by established

7. https://pinecone.io
8. https://faiss.ai

models like Plutchik’s wheel [44] and the universal emotion
theory by Ekman [45]. The primary emotions according to
the former model are given in table 4.

Table 4. PRIMARY EMOTIONS IN PLUTCHIK’S WHEEL.

Emotion Sign
Neutral Neutral (not counted)
Surprise Positive or negative depending on the context
Anticipation Positive or negative depending on the context
Anger Negative
Fear Negative
Disgust Negative
Sadness Negative
Happiness Positive
Trust Positive

The affective sign of the tweets of an account not only
can reveal important information about how they perceive
and react to events, but it also may be an indication of
the generational cohort this account belongs to. A concrete
example was the tragedy of Germanwings flight 95259 in
2015. Analysis of the Twitter sentiment in the wake of the
incident indicted a differentiation in the reaction in terms of
affective state and in the expression thereof [46] [47]. This
can be used in the general direction of discerning genera-
tional causes in the uses of subdialects and the adaptation
of a language to the needs of a specific cohort.

3.5. Geolocation attributes

Location plays an important role in SNA as it readily
provides a clustering of accounts and tweets on multiple
geographic levels such as continent, country, region, and
even in some cases township in large urban metroplexes with
their own domain names. Tweets collected via the Twitter
API have been geo-tagged with the geographical “box” of
origin with the extents circumscribing the borders of the
regions under consideration, ensuring thereofre that only
tweets originating from them were included in the dataset.
The latitude and longitude coordinates of each tweet was
checked with the coordinates of the national and regional
borders as encoded by GIS files publicly available through
the Global Administrative Areas database (GADM)10.

4. Results

4.1. Dataset

The dataset has been created by obtaining tweets from
the Twitter API and dowloading them in JSON11 files for
further processing, namely primarily the extrtaction of the
vectors to be stored in a Faiss installation. At the time of
obtaining the dataset (May 2020) the Twitter API was free12

9. https://en.wikipedia.org/wiki/Germanwings_Flight_9525
10. https://gadm.org
11. https://json.org
12. https://medium.com/newtargetinc/twitter-api-is-no-longer-free-now-

what-2a57e157696f



and only the generation of the OAuth tokens was required.
A summary of the dataset is given in table 5. Additionally,
the values of the parameters β0 and η0 of equations (6) and
(9) were 2/3 and 1/3 respectively.

Table 5. DATASET SYNOPSIS.

Property Value
Number of British English tweets 6618
Number of American English tweets 6116
Number of Spanish tweets 1132
Number of Portuguese tweets 894
Number of Brazilian Portuguese tweets 1094
Average number of followers 719.6667
Average followers to followees ratio 37.25

As stated earlier Go is a high level language designed
purposefully with a simple syntax aiming mainly at high
performance as well as high maintainability even in exten-
sive codebases spanning numerous projects. It is compiled
and statically typed with inherent support for concurrency,
especially on current multicore hardware, networking, and
garbage collection. Although not the go to language (pun
intended) for data science, its library has more than suffi-
cient functionality for the purposes of this work and, more
importantly, it can interface seamlessly with Faiss.

Faiss belongs to the emerging family of vector dabases
where the geometry between embeddings representing doc-
uments and queries on them plays an important role. In
particular the similarity between a query q and a document
s is determined by the cosine similarity metric shown in
equation (15). Therein ϑ is the angle between these two
vectors. In fact, it is possible to compute the angle of a
query to an entire document space efficiently provided that
a basis has been computed, especially as Faiss can derive a
result for dense spaces. Faiss has been used in this work to
store both the numerical vectors resulting for each account
as well as the profile set for each language and its dialects.

qT s

∥q∥2 ∥s∥2
= cosϑ(q, s) (15)

Through the Go API for Faiss used13 bindings for the Faiss
library were obtained. Having built and installed the Faiss
C API which was a prerequisite the dynamic library lib-
faiss_c.so was created and used to utilize said libray. Other
packages considered14 15 offer comparable functionality.

4.2. Recommendation evaluation

In this subsection the proposed recommendation system
is assessed. As ground truth the The following two language
groups have been considered. In each such group the proto-
language, namely the basis from which the others derived,
is mentioned first.

• G1: British English and American English.

13. github.com/DataIntelligenceCrew/go-faiss package
14. github.com/DataIntelligenceCrew/go-faiss
15. github.com/blevesearch/go-faiss

• G2: Spanish, Portuguese, and Brazilian Portuguese.

The ground truth for this dataset is the set of actual follow
relationships. The accuracy, precision, recall, and F1 scores
of the two groups are shown in table 6.

Table 6. EVALUATION METRICS.

Group Accuracy Precision Recall F1
G1 0.8725 0.8544 0.8746 0.8644
G2 0.8945 0.8717 0.8933 0.8824

Another question is what is the effect of adopting cross
dialect recommendations. To this end only accounts tweeting
in the same language of the account getting the recommen-
dations are considered. Although this is a limiting case for
the proposed model, it nevertheless remains a valid one.
Similarly to the previous case, the results are in table 7.

Table 7. EVALUATION METRICS IGNORING DIALECTS.

Group Accuracy Precision Recall F1
G1 0.7945 0.7634 0.8011 0.7817
G2 0.8216 0.8133 0.8545 0.8333

From the tables above the following can be said. First,
the proposed recommendation system achieves a consider-
able performance in all metrics considered. Also, when di-
alects are ignored, then recommendation quality is degraded,
indicating their importance especially for the second group.

5. Conclusions and future work

This conference paper focuses on a probabilistic graph
model for recommending accounts in social media based on
account and language similarity based on a large number
of attributes including linguistic, affective, and geospatial
ones. An account is given recommendations based on the
languages they use as well as in dialects thereof which is
the novelty of this conference paper. The premise is that
such recommendations can potentially be useful as dialects
in many cases can be read by speakers of the original
language. As a concrete case study two language groups,
namely American and British English as well as Spanish,
Portuguese, and Brazilian Portuguese, were examined on
Twitter. These languages have been selected because of their
high populariy on Twitter based on the total number of
tweets. The ground truth was considered the set of actual
follow relationships already existing on Twitter.

This work can be extended in a number of ways. Re-
garding the computational part, bigger datasets and more
language groups can be used. Moreover, the proposed rec-
ommendation scheme can be extended to a framework with
more similarity metrics between accounts and languages
which can furthermore be aggregated to improve recom-
mendations. Moreover, the proposed model can be extended
to yield cross-language recommendations between language
families. For instance, English has some similarity to Span-
ish, mainly through French. Such linguistic dependencies
can be captured by the proposed model.



Regarding the algorithmic part, the rise of social media
has led to the increase of linguistic diversity in all levels
from spelling, grammar, and semantics across the lexicon.
Language change results primarily from the differential
propagation of linguistic variants and determining the factors
shaping constitute a primary research objective. Factors
which may provide explanation are the following:

• Twitter connections: Ties between accounts may
facilitate or inhibit linguistic change contributing re-
spectively to cohesion and uniformity. These factors
may well coexist giving to each language its own
speed. Thus languages may be clustered according
to their social media variation rate.

• Diffusion model: In contested change the diffusion
spread depends on both the adamancy of those resist-
ing it as well as the countervailing influence of those
in favor. Thus the probability of adopting change
is inversely proportional to the neighborhood size.
Conversely, in uncontested models contagion spread
is proportional to the number of connections.

• Language resistance: Some natural languages may
be more resistant to change than others. Since online
language contact and other social factors redounds
in the speed of variation more types of change
occurring more frequently in languages that are more
affected by contact may be seen.

The ever broadening empirical investigation of language
change as a social phenomenon allows sociolinguistics and
other fields to establish more robust typologies of change
and its diffusion. A final question would be whether the
kind of change is uniform across languages and cultures and
across time. The nature of the occurrence of the language
change and its diversification not only on individual level
but rather in the community seem to be starting points.
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