Sensor-Driven Ensemble Learning for Crop
Recommendation and Disease Prediction in
Precision Agriculture

Gerasimos Vonitsanos*, Emmanouela-Electra Economopoulou*,Spyros Sioutas*, Andreas Kanavos' and Phivos Mylonas!

*Computer Engineering and Informatics Department
University of Patras, Patras, Greece
mvonitsanos, std1057466, sioutas@ceid.upatras.gr
TDepartment of Informatics
Ionian University, Corfu, Greece
akanavos @ionio.gr
IDepartment of Informatics and Computer Engineering
University of West Attica, Athens, Greece
mylonasf@uniwa.gr

Abstract—Agriculture plays a vital role in ensuring global
food security, yet it faces growing challenges from -climate
change, resource limitations, and increasing demand. This paper
presents an ensemble learning framework that leverages Internet
of Things (IoT) sensor data for crop recommendation and
plant disease prediction in precision agriculture. Environmental
parameters including temperature, humidity, rainfall, soil pH,
and nutrient levels are modeled using Random Forest, Neu-
ral Networks, and Logistic Regression classifiers. Experimental
evaluation on a publicly available dataset shows that Random
Forest achieves superior performance, reaching 89.20% accuracy
and the highest Fl-score, outperforming baseline models in
robustness and interpretability. The integration of Apache Spark
enables scalable and near real-time analysis, making the ap-
proach suitable for practical deployment. By combining ensemble
learning with sensor-driven environmental monitoring, the pro-
posed framework supports sustainable, interpretable, and data-
driven agricultural decision-making for farmers, researchers, and
policymakers.

Index Terms—Precision Agriculture, Internet of Things (IoT),
Ensemble Learning, Crop Recommendation, Plant Disease Pre-
diction, Random Forest, Machine Learning

I. INTRODUCTION

The integration of sensor technologies into agricultural
practices has transformed farming into a data-driven discipline,
enabling unprecedented insights into crop health and disease
management [12], [24]. Plant diseases remain a major threat
to global food security, causing significant yield losses and
affecting the livelihoods of millions of farmers. As the global
population grows, ensuring sustainable food production has
become an urgent priority. In this context, the convergence of
the Internet of Things (IoT) and machine learning (ML) offers
powerful opportunities to enhance crop yield prediction and
disease prevention. These technologies can optimize farming
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practices, support rural economies, and promote sustainability
by reducing chemical dependence while addressing climate-
related challenges such as irregular rainfall, rising tempera-
tures, and pest outbreaks.

Affordable IoT sensors, high-resolution satellite imagery,
and scalable computational frameworks now enable continu-
ous monitoring of soil moisture, temperature, humidity, and
solar radiation, generating real-time data at unprecedented
granularity [24]. When combined with ML algorithms, these
data streams can be transformed into actionable insights,
revealing hidden patterns and supporting precise, timely inter-
ventions. Such capabilities provide farmers and stakeholders
with context-aware decision support, extending beyond tradi-
tional observational methods and improving both efficiency
and sustainability in modern agriculture.

Nevertheless, the adoption of sensor-based disease predic-
tion systems still faces challenges. Data privacy, cybersecurity,
and ethical considerations are critical concerns in the design
of agricultural IoT networks. Addressing these issues requires
interdisciplinary collaboration among researchers, technolo-
gists, policymakers, and practitioners to ensure trustworthy,
equitable, and practical solutions.

This work makes four main contributions. First, we evaluate
the predictive performance of ensemble and baseline ML
models—Random Forest, Logistic Regression, and Neural
Networks—on a sensor-derived crop dataset. Second, we
examine the impact of environmental factors such as soil
nutrients, temperature, humidity, and rainfall on predictive
accuracy. Third, we demonstrate the scalability of the approach
through integration with big data frameworks such as Apache
Spark. Finally, we propose a semantic-aware and deployable
framework that unifies crop recommendation and disease risk
prediction, advancing the practical implementation of preci-
sion agriculture systems.



The remainder of this paper is organized as follows. Sec-
tion [II| reviews related work on IoT and ML in precision
agriculture. Section presents the ML models applied,
highlighting their mathematical foundations and suitability for
agricultural prediction tasks. Section details the experi-
mental evaluation, including dataset description, preprocessing
and setup, evaluation metrics, and hyperparameter tuning.
Section discusses the results supported by comparative
analysis. Finally, Section |VI| concludes the paper, highlighting
key findings, practical implications, and directions for future
research.

II. RELATED WORK

The selection of related literature was guided by four key
factors: (i) crop performance and yield prediction, (ii) the
use and integration of machine learning (ML) and Internet of
Things (IoT) technologies, (iii) evaluation metrics employed,
and (iv) the diversity of techniques and methodologies applied
across regions. The review was conducted in two stages. First,
abstracts, introductions, and conclusions of relevant papers
were screened to classify works by topic and relevance.
Second, shortlisted sources were examined in detail with
an emphasis on agriculture-specific applications that address
yield optimization and disease prediction. Databases such as
Elsevier, ScienceDirect, and MDPI were used as primary
sources.

The need to enhance plant health and productivity has long
attracted attention from both researchers and practitioners, par-
ticularly as globalization and population growth intensify pres-
sure on sustainable food supply [18]], [23]. Demand for higher
quality and productivity indicators has fostered widespread
adoption of agricultural management tools [18]. A broad
family of sensing and information technologies—including
satellite navigation, sensor networks, and ubiquitous comput-
ing—has been introduced to support data-driven monitoring
and decision-making in farming [20]. Empirical studies con-
firm that sensor deployment and networking positively influ-
ence crop monitoring and resource allocation [7], [16]. This
evolution has given rise to precision agriculture paradigms
such as Smart Farming, Variable Rate Technology, GPS-
guided cultivation, and site-specific crop management [9].

Recent advancements at the intersection of IoT and ML
further extend these capabilities. IoT-based systems enable
real-time monitoring of soil moisture, temperature, humidity,
and rainfall, while ML algorithms transform such data into
actionable predictions. Studies show that the integration of
IoT with ML improves farm-management accuracy, resource
optimization, and yield outcomes [3[], [14]. Beyond yield
prediction, artificial intelligence, sensing technologies, and
robotics are increasingly employed in plant phenotyping and
sustainable farming, offering more effective ways to manage
environmental impacts [22]. Remote sensing modalities, such
as UAVs and satellite imagery, have also been recognized
as critical for scalable monitoring and precision management
across diverse and complex environments [6]].

Despite these advances, several limitations remain. Many
works rely on small-scale or controlled datasets, constrain-
ing their applicability to real-world agricultural conditions.
Others focus exclusively on either yield prediction or dis-
ease detection, without integrating both into a unified pre-
dictive framework. Furthermore, computational efficiency and
scalability are often neglected, despite their importance for
deployment in resource-constrained settings. Few approaches
explicitly incorporate semantic or context-aware mechanisms
to enhance interpretability and adaptability of predictions—an
aspect particularly relevant to intelligent agricultural decision
support.

Addressing these gaps, this study evaluates ensemble and
baseline ML algorithms on sensor-derived agricultural data,
incorporates scalable processing through Apache Spark, and
advances a unified framework for both crop recommenda-
tion and disease prediction. By emphasizing semantic-aware,
context-driven insights, the proposed approach aims to deliver
practical, reliable, and adaptive solutions for farmers, re-
searchers, and policymakers seeking to strengthen agricultural
productivity and sustainability.

III. MACHINE LEARNING MODELS

This study employs three supervised learning algo-
rithms—Neural Networks, Random Forests, and Logistic Re-
gression—to predict crop suitability and plant disease oc-
currence from IoT sensor data. These models were selected
for their complementary strengths: Neural Networks capture
complex, non-linear relationships; Random Forests provide
robustness and feature interpretability; and Logistic Regression
offers simplicity and transparency.

A. Neural Networks

Artificial Neural Networks (ANNs) are inspired by the
structure of the human brain and consist of interconnected
nodes organized into input, hidden, and output layers. Each
neuron applies a weighted sum of its inputs followed by a
non-linear activation function, which enables the network to
model complex mappings [S], [13]. In agricultural contexts,
where environmental variables and sensor signals may interact
in highly complex ways, ANNs are particularly effective in
handling noisy, high-dimensional data from IoT monitoring
systems [12]. Their general operation can be expressed as:

O = f(W(l)h(lfl) + b(l)) (1)

where W ") and b are the parameters of layer [, A~ 1) is
the previous layer’s output, and f(-) is a non-linear activation.
In this study, ANNs are leveraged to detect subtle patterns in
temperature, humidity, and soil conditions that may indicate
early signs of plant stress. Their adaptability allows the same
architecture to be applied across different crop types and
environmental settings.



B. Random Forest

Random Forest is an ensemble algorithm that constructs
multiple decision trees using bootstrapped training samples
and random feature subsets [2]. For classification, the model
aggregates predictions by majority voting:

9 = mode{h(z), ha(x),..., hp(z)} 2)

where h(z) is the prediction of tree ¢ and T is the total
number of trees. RFs are robust to overfitting, require little
preprocessing, and are particularly valuable in identifying
influential environmental variables, thus supporting agronomic
decision-making [17]], [19]]. In this study, RFs are used to
highlight which environmental features—such as soil pH, rain-
fall, or nutrient levels—are most critical for predicting disease
onset. Their interpretability makes them suitable for providing
farmers with actionable insights into crop management.

C. Logistic Regression

Logistic Regression is a widely used classification algorithm
that models the probability of a binary outcome using the
logistic function [8]]. It provides interpretable coefficients that
quantify the influence of each variable on the outcome, making
it a transparent baseline model for agriculture [15]. The
probability of disease occurrence is estimated as:

1
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where w and b are the model parameters and x is the feature
vector. In this work, LR serves as a baseline for distinguishing
between healthy and diseased crops using sensor data. Its
computational efficiency makes it well-suited for resource-
constrained agricultural environments, such as small farms.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the ML
models applied to plant disease prediction and crop recom-
mendation using sensor-derived environmental data. By com-
paring three algorithms—Neural Networks, Random Forests,
and Logistic Regression—we assess their ability to classify
crop suitability under varying conditions such as temperature,
humidity, and soil nutrients. The evaluation aims to determine
which model provides the most accurate predictions, offering
insights into the effectiveness of data-driven approaches in
precision agriculture. Each model was assessed using standard
evaluation metrics, including Accuracy, Precision, Recall, F1-
Score, and the Concordance Index (C-Index).

A. Dataset

The experiments use the publicly available Crop Recom-
mendation Dataset from Kaggle [[11]], which contains 2,200
records covering a wide range of crops, including cereals,
pulses, fruits, and industrial crops (e.g., rice, maize, chick-
pea, kidneybeans, pigeonpeas, lentils, pomegranate, banana,
mango, grapes, watermelon, muskmelon, apple, orange, pa-
paya, coconut, cotton, jute, and coffee). Each record is anno-
tated with environmental and soil features:

o N: Nitrogen content in the soil

o P: Phosphorus content in the soil

« K: Potassium content in the soil

o temperature: Temperature in degrees Celsius
o humidity: Relative humidity in percentage

o ph: Soil pH value

« rainfall: Rainfall in millimeters

« label: Recommended crop type

The dataset is balanced across classes, making it well-
suited for testing classification models under realistic agri-
cultural conditions. Data preprocessing involved normalization
of environmental features to ensure consistent scaling. As no
missing values were present, imputation was not required.
Label encoding was applied to the categorical crop labels for
compatibility with supervised learning algorithms.

B. Experimental Setup and Preprocessing

All experiments were conducted using Python 3.9 with
Scikit-learn and TensorFlow libraries for model implementa-
tion. Apache Spark was employed for scalable data handling
and distributed training. Experiments were executed on a
workstation equipped with an Intel i7 processor, 32 GB RAM,
and NVIDIA GPU acceleration.

Preprocessing steps included feature normalization to ensure
consistent scaling of environmental variables, while categor-
ical crop labels were encoded numerically to support super-
vised learning. Since the dataset contained no missing values,
imputation was not required.

C. Evaluation Metrics

To evaluate model performance, the confusion matrix was
used as the basis for deriving key metrics. Accuracy measures
the overall proportion of correct predictions, while Precision
quantifies the share of true positives among predicted positives,
reducing the risk of misclassifying healthy crops as diseased.
Recall (sensitivity) reflects the proportion of actual positives
correctly identified, critical in scenarios where missing a
disease case could cause yield loss. The Fl-score, defined as
the harmonic mean of precision and recall, balances these two
aspects, particularly in imbalanced data [21]. In addition, the
Concordance Index (C-index) was used to measure discrim-
inative ability, indicating how well models rank predictions
across instance pairs [4].

D. Hyperparameter Tuning

Hyperparameters, unlike model parameters learned during
training, are set prior to the learning process and strongly
influence model generalization. Examples include the learning
rate in neural networks, the number of trees in Random
Forests, and the regularization strength in Logistic Regression.
In this study, hyperparameters were optimized using a grid
search strategy with cross-validation, following best practices
for balancing bias and variance [1], [10]. This approach
ensured that each model converged stably while minimizing
overfitting, thereby improving predictive reliability.



V. RESULTS AND DISCUSSION

This section presents the performance evaluation of the three
machine learning models—Random Forest, Neural Networks,
and Logistic Regression—applied to crop recommendation
and plant disease prediction. Models were assessed using
Accuracy, Precision, Recall, F1-Score, and the Concordance
Index (C-Index). The results are presented through figures
and tables, followed by detailed comparative analysis and
discussion.

Figure |I| presents the accuracy scores achieved by the three
models.
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Fig. 1. Accuracy Scores of Machine Learning Models

As shown in Figure |1} Random Forest achieved the highest
accuracy (89.2%), followed by Neural Networks (85.0%) and
Logistic Regression (79.3%). The superior performance of
Random Forest highlights the strength of ensemble methods
in capturing complex environmental interactions. Neural Net-
works performed competitively but were more sensitive to
hyperparameter settings, while Logistic Regression underper-
formed due to its linear assumptions.

Figure E]illustrates the F1-scores of the three models, which
provide a balanced view of Precision and Recall.
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Fig. 2. F1-Score Comparison Across Models

Figure [2] shows that Random Forest achieved the highest
Fl-score (88.0%), followed by Neural Networks (85.0%)
and Logistic Regression (82.0%). These results indicate that
Random Forest not only improves overall accuracy but also
provides balanced predictions, minimizing both false positives
and false negatives. This robustness is particularly valuable
in agriculture, where both types of misclassification can have
economic consequences.

Figure 3| displays the confusion matrix of the Random Forest
model.

Fig. 3. Confusion Matrix of Random Forest Model

As illustrated in Figure [3] the Random Forest model shows
strong diagonal dominance, with most predictions aligning
with actual crop classes. Misclassifications were rare and
mostly occurred between crops with similar agronomic re-
quirements (e.g., rice and maize). This demonstrates the
model’s ability to generalize across diverse crop types while
also indicating areas where domain-specific knowledge or
hybrid approaches could further improve performance.

Table [Il summarizes the evaluation metrics across all three
models.

TABLE I
PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS

Metric Random Forest | Neural Network | Logistic Regression
Accuracy 89.20% 85.00% 79.32%
Precision 88.87% 84.10% 77.56%
Recall 84.02% 83.10% 79.43%
F1-Score 88.00% 85.00% 82.00%
C-Index 0.87 0.84 0.792

Table [I| confirms that Random Forest consistently outper-
formed the other models across all metrics. Neural Networks
achieved competitive but slightly lower results, while Logistic
Regression produced the weakest performance, though still of-
fering acceptable predictive capacity. Random Forest’s ability
to provide feature importance adds further value by identifying



the most influential variables—such as soil pH, nitrogen, and
rainfall—for agricultural decision-making.

Numerically, Random Forest achieved the highest Accu-
racy (89.20%), Precision (88.87%), Recall (84.02%), F1-Score
(88.00%), and C-Index (0.87). Neural Networks followed
with Accuracy of 85.00%, Precision of 84.10%, Recall of
83.10%, F1-Score of 85.00%, and C-Index of 0.84. Logistic
Regression lagged behind, reaching 79.32% Accuracy, 77.56%
Precision, 79.43% Recall, 82.00% F1-Score, and a C-Index of
0.792. These values clearly demonstrate the performance gap
between ensemble methods and simpler models, while also
confirming that even the baseline Logistic Regression provides
a reasonable starting point for interpretable crop prediction
tasks.

A. Discussion

The comparative evaluation reveals three main findings.
First, Random Forest is the most effective model, demon-
strating both strong predictive performance and robustness,
making it highly suitable for multi-class agricultural classifi-
cation tasks. Second, Neural Networks remain a powerful tool
for capturing non-linear dependencies, but their performance
depends heavily on careful tuning and sufficient training data.
Third, Logistic Regression, although less accurate, remains
relevant for resource-constrained contexts due to its simplicity
and interpretability.

From an agricultural perspective, these results emphasize
the importance of models that balance predictive power with
transparency and computational feasibility. Ensemble methods
such as Random Forest provide reliable predictions while also
delivering interpretable insights through feature importance.
This dual capability is particularly valuable for farmers and
policymakers, who require not only accurate recommendations
but also clear explanations of underlying factors.

Overall, these findings highlight the value of integrating
ensemble-based approaches within semantic-aware, context-
driven frameworks for precision agriculture. By combining
predictive robustness, interpretability, and scalability, such
approaches can support sustainable farming practices, improve
resource allocation, and guide data-driven policy decisions.

VI. CONCLUSIONS AND FUTURE WORK

This study has demonstrated the effectiveness of supervised
machine learning models in supporting agricultural decision-
making through the prediction of crop suitability and plant
disease risks. By leveraging structured environmental vari-
ables—such as temperature, rainfall, humidity, soil pH, and
nutrient concentrations—the proposed framework provides ac-
tionable insights that can guide sustainable crop management
and improve resilience to climate-driven challenges.

Among the evaluated models, Random Forest consistently
achieved the best performance, with an accuracy of 89.20%
and the highest Fl-score. Its robustness and interpretability
make it particularly suitable for real-world agricultural de-
ployment. These findings underscore the value of ensemble
learning methods for optimizing crop selection, fertilization

strategies, and disease prevention, thereby reducing uncer-
tainty and enhancing yield outcomes.

Future work will advance this framework in four directions.
First, enhanced hyperparameter optimization will be pursued
through automated methods such as Bayesian Optimization
and Genetic Algorithms. Second, additional machine learning
architectures—including Gradient Boosting Machines, Deep
Neural Networks, and Support Vector Machines—will be
evaluated across diverse crop categories. Third, heterogeneous
datasets from multiple geographic regions will be incorporated
to capture variability in soil profiles, climate zones, and farm-
ing practices. Finally, field-level validation in collaboration
with local farmers will assess the framework’s practicality un-
der real-world conditions, enabling iterative refinement based
on user feedback.

Looking forward, integrating this predictive framework
into mobile applications and intelligent decision support sys-
tems can provide real-time, personalized recommendations
for farmers. Such tools can also inform policymakers in
shaping sustainable food production strategies. Embedding
semantic- and context-aware mechanisms into these systems
will further improve interpretability and adaptability, ensuring
that predictive models not only achieve high accuracy but
also deliver trustworthy and actionable insights. Promoting
knowledge transfer through education and training initiatives
will be essential to maximize the societal impact of smart
farming technologies and strengthen resilience in agricultural
ecosystems.

Overall, this work contributes to the growing field of
precision agriculture by demonstrating how machine learning,
IoT, and scalable data-driven frameworks can be combined
to improve food security and sustainability. By bridging
methodological advances with real-world agricultural chal-
lenges, it paves the way toward intelligent, context-aware
farming systems that empower farmers, support policymakers,
and promote resilient agricultural practices worldwide.
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