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AbstractÐThe extraction of motion and shape information of three-dimensional

objects from their two-dimensional projections is a task that emerges in various

applications such as computer vision, biomedical engineering, and video coding

and mining especially after the recent guidelines of the Motion Pictures Expert

Group regarding MPEG-4 and MPEG-7 standards. Present work establishes a

novel approach for extracting the motion and shape parameters of a rigid three-

dimensional object on the basis of its orthographic projections and the associated

motion field. Experimental results have been included to verify the theoretical

analysis.

Index TermsÐ3D motion, 3D structure, structure from motion, orthography.

æ

1 INTRODUCTION

MUCH work has been done recently for determining three-
dimensional motion and structure of moving rigid objects viewed
at different time points and/or by multiple cameras [8], [17]. In
particular, the extraction of motion and shape parameters of a
moving rigid 3D object from a 2D image sequence (often named as
the Structure From Motion problem) has received considerable
attention lately in relation to the new object-based coding
standards MPEG-4 and MPEG-7. Various approaches have been
proposed to this problem, which differ in the projection model
assumed, the feature correspondences and the input measure-
ments employed, and the adopted data-processing technique [16].
As far as the 2D features are concerned, line, curve, and point
correspondences have been utilized [6], with the latter being the
most popular. Two well-known projection models mainly con-
sidered in the literature are the perspective and orthographic, with
the latter assumed when the object is far away from the camera [8],
[17]. Exact and approximate mathematical solutions have been
reported for both cases, including for example, [10], [19], [21], [13]
for the perspective and [7], [1], [18] for the orthographic case. A
few deviations based on approximations of these models, such as:
the weak perspective/paraperspective and orthoperspective pro-
jections have also been treated (see, e.g., [5] and references therein).

Regarding the case of orthographic projections, Ullman, in his

classical work [20], proved that four point correspondences over

three frames are sufficient to yield a unique solution to motion and

structure up to a reflection. Huang and Lee in [7], proposed a

linear algorithm to obtain the 3D motion and structure parameters.

Aizawa et al. in [1], use small Eulerean angles and a two-step

iteration for 3D motion and depth estimation, where they assume

initial depth estimates based on an a priori known 3D model. In

[2], Bozdagi et al. define an error criterion and propose a gradient

search add-on. Later approaches on the Structure From Motion

problem under orthography include: the factorization method of

Tomasi and Kanade [18] and its derivatives [14], [11], as well as the

epipolar methods of Shapiro et al. [15], Ostuni and Dunn [12], and

Xu and Sugimoto [23]. The epipolar methods generally refer to

weak perspective images, however, it can be seen that this model

differs from the orthographic one, only in the sense that it permits

a scale change between different views. Tomasi and Kanade's

solution in [18] is based on a camera-centered problem representa-

tion, which may incorporate an arbitrary number of point

correspondences and frame transitions to achieve robustness in

the presence of noise. Shapiro et al. rely on the affine epipolar line

properties and solve the affine epipolar line equation. The next

step determines all unknown camera motion parameters (see [15]

and references therein). In the same manner, Xu and Sugimoto [23]

solve the epipolar equation and determine the three rotation angles

in a second step. Ostuni and Dunn [12] utilize the epipolar

equation as well along with a different parametrization for the

rotation matrix.

In this work, we follow the orthographic projections approach.

First, we prove that the elements of the rotation matrix can be

computed via the eigenvalues and eigenvectors of appropriately

defined 2� 2 matrices; the latter are simple expressions of four

motion vectors in two successive transitions. Some of the key-

points of the analysis were first introduced in [4]. In the sequel, we

point out that the derived expressions can be used for unbiased,

least squares estimation of the involved rotation matrices in the

case that more than four motion vectors per transition are

available. Finally, appropriate simulation results have been

included to both verify the theoretical propositions and test the

algorithm's performance against popular algorithms for the

estimation of 3D motion and structure under orthography [18],

[23], [15].

2 PRELIMINARY DEFINITIONS

Any movement of a rigid object in the 3D space is a superposition

of a 3D rotation and a 3D translation. Consequently, when a point

p � �x; y; z�T on the object moves to p0 � �x0; y0; z0�T , it holds:

p0 � Rp�T; �1�
where R;T are the rotation and translation matrices, respectively.

In the sequel, whenever we refer to their elements, we assume that

R � �rmn� and T � �t1t2t3�T . Rotation matrix elements rmn obey to

orthogonality equations imposed by the fact that R is unitary.
We define matrices ~K, K as,

�r0 � K �r; �v � ~K �r; �2�
where

�r � r3 ÿ r1 r2 ÿ r1� �; �r0 � r03 ÿ r01 r02 ÿ r01
� �

;

and

�v � v3 ÿ v1 v2 ÿ v1� �;
vectors vi, ri being the motion and reference vectors, respectively,

for three points on the first frame and vectors r0i being the reference

vectors of the corresponding points on the subsequent frame. It can

be seen that matrices K, ~K are the same for any three points on the

same planar 3D surface (face). Moreover, it can be verified that
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K � R2�3

1 0
0 1
p q

24 35; �3�

where, for � � ��x �y �z�T representing the unit vector perpendicular

to the face, the scalars p � ÿ�x=�z, q � ÿ�y=�z contain the orientation

information of the face, and R2�3 contains the first two rows of the

3� 3 rotation matrix (see also [4]). In the sequel, adjoint matrix

L � adj�K� � adj�~K� I� will be used to obtain simpler equations.

3 COMPUTATION OF ROTATION AND SHAPE

PARAMETERS

Four L-matrices contain sufficient information in order to

determine the motion and structure parameters of a rigid object.

In particular, if Laj, a � R; S, j � 1; 2 are available (indices R, S

denoting the rotation matrices corresponding to movement from

frame 1 to 2 and 1 to 3, respectively and j � 1; 2 denoting two

faces) exact recovery of R � �rmn� and S � �smn� is possible. In

addition, relative 3D coordinates of the projected points of the

rigid object can be computed. In this section, we establish a set of

propositions that allow for the estimation of rotation matrices R

and S w.r.t. the four aforementioned matrices Laj.

Based on (3), Propositions 1, 2, and 3 allow the computation of

rotation matrices R, S on the basis of LRj and LSj of the faces j � 1; 2.

As a first step, Proposition 1 allows for the computation of vectors

r1 �4 �r13 r23�T and r2 �4 �r31 r32�T within a scalar ambiguity factor �,

based on information contained solely in the motion vectors

(equivalently matrices LRj) corresponding to the rotation R (two

frames). Similarly, vectors s1 �4 �s13 s23�T and s2 �4 �s31 s32�T are

separately computed within a common scalar ambiguity factor �

based on the rotation S. As a second step, Proposition 2 provides a

simple expression of the ratiow � �
� of the unknown factors � and �.

This is a necessary, intermediate result. The ratio w is used next in

Proposition 3 in order to compute r33 and s33 by solving a 2� 2

system of linear equations. Then, �2 � 1ÿ �r33�2 and �2 � 1ÿ �s33�2
and all rotation elements are computed.

Proposition 1. Let r1 �4 �r13 r23�T , r2 �4 �r31 r32�T ,

s1 �4 �s13 s23�T ; s2 �4 �s31 s32�T ;
and

� LR �4 LR1 ÿ LR2; � LS �4 LS1 ÿ LS2:

Then,

1. It holds, kr1k2
2 � kr2k2

2 � �2 � 1ÿ �r33�2 and

ks1k2
2 � ks2k2

2 � �2 � 1ÿ �s33�2;
and also

LRjr1 � ÿr2; LSjs1 � ÿs2; j � 1; 2:

2. If c1, d1 are the unit-norm eigenvectors of the rank-1 positive

semidefinite matrices ��LR�T ��LR�, ��LS�T ��LS�, re-

spectively, that correspond to their zero eigenvalues, then r1,

s1 can be computed within a scalar ambiguity from r1 � �c1,

s1 � �d1.

3. Also r2, s2 can be computed within the same scalar factors as
r2 � �c2, s2 � �d2, where c2 �4 ÿLRjc1, d2 �4 ÿLSjd1 for
both j � 1; 2.

Let J � 0 ÿ1
1 0

� �
:After some manipulations, using the rotation

matrix properties and the definitions of Proposition 1, Propositions

2 and 3 can be obtained.

Proposition 2. The ratiow2 � ����2 equals �S�R , where�R,�S are the nonzero

eigenvalues of matrices ��LR�T ��LR�, ��LS�T ��LS�, respectively.

Thus, w � �=� can be determined within a sign ambiguity. It can be

shown that one of the solutions is rejected.

Proposition 3. The unknown elements r33, s33 of the rotation matrices

can be uniquely determined by:

wJc2 ÿJd2� � r33

s33

� �
� LSj LRj� � Jd1

ÿwJc1

� �
: �4�

At this point, rotation matrices R, S are computed. It can be

pointed out here that r1, r2 accept two real valued solutions

corresponding to reflection of the rigid object w.r.t. the image plane.

Once R, S have been computed, the estimation of the translation

vectors and the structure parameters is straightforward. In order to

suppress the projection model's ambiguities in absolute point depth

(z-coordinate) and in translation along the z-axis, the object

geometric center is assumed to coincide with the world origin

�0; 0; 0� without loss of generality. Then, translation T is computed

for each scene and relative depth information for all available points

is given from (1).

The proposed solution to the SFM problem under orthography,

as introduced by Propositions 1, 2, and 3 verifies the assertion of [7]

that four accurate point correspondences over three frames are

sufficient for the computation of R and S. In practice, motion vector

estimation techniques may introduce errors in matrices LRj, LSj.

These errors are either due to limitations of the estimation procedure

or due to the resolution of the image plane grid. For this purpose, it is

essential that more than four point correspondences per transition

are utilized for the estimation of 3D motion parameters. In this

sense, more than two L-matrices and one �L-matrix should be

employed. In the following, index j � 1 � � �N will refer to L-

matrices, whereas index k � 1 � � �M will refer to �L-matrices.

Scalars M , N will represent the number of �Lk and Lj matrices

involved in the computations, while P will denote the number of

points (and associated motion vectors) used. The relation between

M and N varies along with the formation strategy of �Lk from Lj

matrices, while the the relation between N and P depends on the

formation strategy of Lj matrices from the available points. In

general, M �M�N� � N=2 and N � N�P � � P=3, since we choose

that

A1. Each Lj is expressed on distinct reference points and motion vectors,

A2. Each �Lk is expressed on the basis of distinct matrices Lj (see

also [22]).

Under the Assumptions A1 and A2 in the formulation of Lj,

�Lk matrices, it can be shown that additive error terms in matrices

�LT
k �Lk are in the form of �2

k I, where

�2
k �4 �2

j � �2
i ; �5�
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�2
j �4 �2

e

krj3 ÿ rj1k2 � krj2 ÿ rj1k2 � krj3 ÿ rj2k2

jdet�rj3 ÿ rj1 rj2 ÿ rj1�j2
; �6�

and r1
j; r2

j; r3
j is a collection of reference point triplets

(j � 1 � � �N). Scalar �2
e denotes the error variance on each motion

vector component, assuming that the error variance is identical to

both directions.

As it can be seen, the power of error terms �2
k, �

2
j is greatly

affected by the strategy adopted in the formulation of Lj and �Lk

matrices. Moreover, as it will be shown in the sequel, such terms

are conveniently encapsulated into distinguishable quantities in

the proposed method.

In fact, Propositions 1, 2, and 3 can be slightly modified to

include more than four point correspondences per transition. To

this end, we define the following 2� 2 matrices,

Z�N� �4 1

N

XN
j�1

Lj; �7�

Y�M� �4 1

M

XM
k�1

�Lk
T�Lk: �8�

Matrices Y�M�, Z�N� are defined for each transition; indices R,S in

the rotation matrices will be ommited for simplicity when possible.

Based on these definitions, the following Propositions 4, 5, and 6

establish a procedure that allows for the computation of rotation

matrices R and S on the basis of finitely many motion vector

estimates. In this sense, Propositions 4, 5, and 6 extend (in fact,

replace) Propositions 1, 2, and 3.

Proposition 4. Let �Rk, �Sk be the maximum eigenvalues of

��LRk�T ��LRk�, ��LSk�T ��LSk� for k � 1 . . .M. Let also �2
Rk,

�2
Sk be defined as in (5). Then,

1. TheeigenvaluesofY
�M�
R are�Rmax � �R � �2

R and�Rmin � �2
R

corresponding to the unit-norm eigenvectors Jc1 and c1,

respectively, where

�R � 1

M

XM
k�1

�Rk and �
2
R �

PM
k�1 �

2
Rk

M
:

2. c2 � ÿZ
�N�
R c1 if we replace LRj by Z

�N�
R .

3. Similar relations hold for matrix S with appropriately defined

Y
�M�
S , Z

�N�
S .

It must be pointed out here that the estimation of c1 along the lines

of the above method is the least-squares solution of the over-

determined system,

��LT
R1�LR1�T � � � ��LT

RM�LRM�T
� �T

c1 � 0;

subject to the constraint kc1k2 � cT1 c1 � 1.

Proposition 5. If �Rmax ��Smax� and �Rmin ��Smin� are defined as in

Proposition 4, scalar w is now given by

w2 � �Smax ÿ �Smin
�Rmax ÿ �Rmin : �9�

It can be seen that w obeys (9) in the error-free case as well,

where �Rmin � �Smin � 0.

The following Proposition 6 substitutes Proposition 3 for the

estimation of the unknown elements r33, s33 of the rotation

matrices. Beforehand, some definitions are needed. Equation (4)

can be rewritten in the form:

ÿ wJLRjc1 ÿJLSjd1� � r33

s33

� �
� LSj LRj� � Jd1

ÿwJc1

� �
:

If � � �r33 s33�T is the vector containing the unknowns, then, we
can rewrite the previous equation as Aj� � bj. Utilizing N triplets
of points,

A� � b �10�
which is to be solved in the least-squares sense.

Proposition 6. The least-squares solution of (10) can be asymptotically
approximated by the estimator

�
�N�
LS �

1

N
� 1
N

ATAÿ w2�2
R 0

0 �2
S

� �
�ÿ1ATb; �10�

where

�2
R �

PN
j�1 �

2
Rj

N
; �2

S �
PN

j�1 �
2
Sj

N
;

are correction factors which account for the presence of error in the

estimates. Under the assumption that �Lk-matrices are computed on

distinct L-matrices,

�2
R �

M

N
�2
R �

M

N
�Rmin

and

�2
S �

M

N
�2
S �

M

N
�Smin:

Table 1 summarizes the steps of the algorithm.

4 SIMULATIONS

The experimental results presented in this section exhibit the

ability of the proposed approach to recover rotation and shape

information even on the basis of noisy motion vector fields.

In Fig. 1a, a computer generated object consisting of two polygons

is depicted. Considering that the object's reference position is that of

Fig. 1a, the object was rotated by �R � 4o and �S � 7o w.r.t. axes

uR � � :9129 :3651 :1826 �T and uS � � :6172 :7715 :1543 �T . The

projected motion fields were next fed to the algorithm. Fig. 1b

depicts an indicative portion of the motion field corresponding to

movement from frame one to two. In accordance to the theoretic

results of Section 3, in this experiment the algorithm yields exact

estimates. The motion parameters are estimated to be identical to the

ones used to produce the three scenes and the reconstructed object is

identical to that depicted in Fig. 1a.

In the sequel, the motion fields were artificially disturbed

by 10db uniformly distributed random noise. The SNR level is

in our setup defined as SNRv � 10log10��
2
v

�2
e
�, where �2

v �4
1
P

PP
i�1 vTi vi and �2

e �4 EfeTi eig, ei being the error term added

to vi. In fact, the performance of the proposed algorithm is

influenced directly from the SNR level at the differential

motion field rather than the original motion field itself. This

indicates that SNRdv � 10log10��
2
dv

�2
de

�,where

�2
dv �4

1

P

X
i 6�j
�vi ÿ vj�T �vi ÿ vj�

and

�2
de �4 Ef�ei ÿ ej�T �ei ÿ ej�g � 2�2

e;
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corresponding to a reference differential motion field obtained for

step size x � 1 (for example, �v�n;m� � v�n;m� ÿ v�n� 1;m�). In
fact, as it will be pointed out in the sequel, improved SNR is

attained for the same motion field estimates by increasing step size

x. In Fig. 1c, the noise-contaminated counterpart of Fig. 1b is
depicted.

Following the methodology of Section 3, relatively accurate

estimates of the rotation matrices are obtained, even in the
presence of noise. In particular, in this experiment, the

estimated rotation parameters were �R � 4:2o, �S � 7:4o w.r.t.

and uR � � :9157 :3645 :1691 �T , uS � � :6162 :7765 :1319 �T . The
reconstructed object in the first scene is depicted in Fig. 1d.

Although the estimated surface is of almost correct orientation,

it suffers from significant irregularity in comparison to the

original one (Fig. 1a) due to the noise involved in motion

estimates that affects the solution of (1) w.r.t. the depth.

Various techniques can be considered for smoothing the

reconstructed surface. Constraints and/or a prior knowledge

regarding the local variation of the 3D surface may be useful

to this direction.

In the same context, the reconstructed object for the 3D smooth

surface of Fig. 1e is given in Fig. 1f, where again the true motion

fields were distrurbed by 10db i.i.d. noise. The true motion

parameters were identical to the one utilized for the object

consisting of two planar surfaces, while the estimated ones were

�R � 3:7o, �S � 6:96o w.r . t . and uR � � :9179 :3351 :2125 �T ,

uS � � :6382 :7557 :1471 �T .

The aforementioned results were obtained after appropriate

choice of point triplets, Lj and �Lk matrices. As proposed in

Section 3, it is essential that Lj matrices are formed on the basis of

distinct triplets of points. In addition, it can be seen that point

triplets must be chosen so that the respective �2
j parameter is

minimized. Minimization of �2
j (and, of �2

k, consequently) for a

given �2
e is achieved by maximizing the differential reference

vectors and, thus, increasing the area of the triangles defined by

the point triplets employed. Supposing that point triplets are

chosen on orthogonal triangles and that all differential reference

vectors are equal to a step x. Fig. 2 confirms the effectiveness of this

assertion. In Fig. 2a and Fig. 2b, the mean (solid line) and standard

deviation (dash-dotted line) estimates of the rotation angles �R, �S

for 50 Monte Carlo runs are depicted w.r.t. increasing differential

reference vectors. In this experiment, the object consisting of two

planar surfaces was rotated by angles �R � 20o, �S � 40o.

At the same time, as it is intuitively expected, improved

estimates of the rotation parameters are obtained for increasing

number of points P (equiv. Ljs). In Fig. 2c and Fig. 2d, the mean

(solid line) and standard deviation (dash-dotted line) estimates of

the rotation angles �R, �S for 50 Monte Carlo runs are depicted

w.r.t. increasing number of employed matrices. For this experi-

ment, point triplets were chosen on orthogonal triangles and

differential reference vectors were set equal to step x � 30.

The proposed algorithm was tested against existing approaches

for the estimation of 3D motion and structure under orthography.

For this purpose, a factorization method [18] and a method

utilizing the epipolar constraint [23], [15] were implemented. The

proposed approach seemed to be superior in nearly all simulated

experiments held. In Fig. 3, estimates of the rotation angles �R, �S

for varying SNR level are depicted for the smooth surface. The

latter was rotated to produce two sets of motion fields, which were

in turn, artificially contaminated with i.i.d. noise. In Figs. 3a-f, the

mean (solid line) and standard deviation (dash-dotted line)

estimates using the factorization, the epipolar, and the proposed

method, respectively, are depicted. The true rotation angles for
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Fig. 2. Motion parameters estimation for object consisting of two planar surfaces for variant step and number of samples, (a) and (b) estimates of rotation angles �R, �S

w.r.t. step size x, (c) and (d) estimates of rotation angles �R, �S w.r.t.number of samples (Lj matrices).

Fig. 1. Reconstruction in the presence of noise: (a) object consisting of two planar surfaces, (b) true motion field, (c) 10db perturbated motion field, (d) reconstructed

scene, (e) smooth 3D surface, and (f) reconstructed scene.



Figs. 3a, c, and e and Figs. 3b, d, and f were �R � 17o and �S � 9o,

respectively.

As it can be seen, the proposed approach was superior to the

both the factorization and the epipolar method. In particular, the

other approaches failed for very low SNR levels in all experiments

carried out; especially for the object consisting of planar surfaces.

Although it can be pointed out that both the factorization and the

epipolar method illustrated smaller standard deviation estimates,

compared to the proposed method for higher SNR levels (more

than 5dB in the case of the smooth surface).

5 CONCLUSIONS AND FURTHER RESEARCH

We presented a novel method for computing the rotation

matrices that characterize the motion of a 3D rigid object on

the basis of its orthographic 2D projections. The obtained

expressions are very simple to compute via eigenvalue decom-

position of symmetric 2� 2 matrices that involve the correspond-

ing motion vectors. When the available motion vectors are noise-

free, computations yield the exact values of the rotation and 3D

shape of the object, even when only four motion vectors per

transition are available. A slight modification of the expressions

of the aforementioned propositions may allow for the inclusion of

an arbitrarily large number of motion vectors in the computa-

tions. On top of that, both the theoretic analysis and the

simulations indicate that the quality of the estimates can be

improved if a certain strategy is being followed in the selection of

the motion vectors that are used in the involved matrices.
The results presented in this work provide the groundwork for

further improvements in the following manner:
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Fig. 3. Estimates of rotation angles for varying SNR level in differential motion fields, for smooth surface: (a), (c), and (e) �R using the factorization, the epipolar and the

proposed method, respectively, (b), (d), and (f) �S using the factorization, the epipolar and the proposed method, respectively.



1. Improvement in the estimates of R and S by using

appropriate weighting of the involved least-squares

schemes. Preliminary results on this subject can be found

in [22].
2. Improvement in the reconstructed 3D shape (wireframe)

which tends to be rather messy when the disturbing noise

is of low SNR. A post-smoothing procedure, possibly

based on partial a priori knowledge of the object, may be

useful in this direction.
3. Reestimation of the motion vectors by using the algorithm

presented in this paper as a constraint imposed by the rigid

nature of the considered 3D object.
4. Improvement in the shape (depth) estimates can also be

achieved by means of time (i.e., frame)Ðrecursions, as it

has been reported in [9], [3].
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