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Abstract-- In this paper we propose a design architecture for 
the graphics engine of a virtual reality system to be deployed 
over the web. The graphics engine is decomposed in high and 
low level components. The high level component manages the 
hierarchical organization of the virtual objects, while the low 
level component acts as the interface to the graphics hardware 
and is mainly responsible for operations, such as vertex 
transforms and polygon rasterization. Several meihods for 
geometry representation, compression and culling are 
compared and associated with different geometry types. The 
use of OpenGL as a general-purpose machine to implement 
mathematical operations is considered in the context of 
programmable shaders. Finally a prototype application for 
virtual worlds modeling is presented along with detailed 
discussion on technical and implementation issues. 

Index term-3D graphics, VRML, Java, modeling, multi-pass 
rendering, bezier patches, portals, shaders, tessellation, height 
fields. 

I. INTRODUCTION 

The Web has recently transformed from a static text-and- 
image medium to a broadcasting gateway with full 
multimedia capabilities. Increased network bandwidth and 
home computer hardware advancement have contributed to 
this tremendous progress; this change also means that web 
content needs constant upgrading, in order to keep up with 
the ever-growing demands and possibilities. 

The major evolution, with respect to the nature of the web- 
deployed content, is 3D virtual worlds rendering and 
navigation. Traditionally, creation and rendering of such 
content has required expensive workstations, running 
equally expensive software and exploiting dedicated exotic 
hardware [2]. Major developments in the semiconductor 
industry resulted in drastic reduction of hardware cost, 
while the advent of new rapid application development 
systems promise similar reductions of the cost associated 
with software development. As a result, standards such as 
VRML 1.0 and 2.0 [4] or Movingworlds emerged, which 
promised high quality user interaction in dynamic 
environments. However, these attempts failed to come up 
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with refresh rates and photorealistic techniques that are 
required to provide realism in demanding applications. 

Our application is a 3D viewing and authoring application 
implemented with Java. Some impressive features of the 
Java language are exploited, including rapid application 
development, binary portability to most platforms, object- 
oriented methodologies for the design and implementation 
of the software and robustness, as well as a dynamic object 
graph, similar to that of a VRML world or an MPEG-4 
BIFS file [16]. Various subsystems and commands are 
encapsulated in autonomous objects that can be extended or 
replaced at runtime by the end user. The main graphics 
engine utilizes OpenGL as a low level interface for 
geometry transformation and rasterization hardware. As a 
result, the application can be used in a variety of computer 
systems, ranging from entry-level home computers to 
multi-processor workstations. 

11. THE GRAPHICS ENGINE 

In most modem implementations the graphics engine is 
decomposed in high and low level components. The high 
level module is responsible for the hierarchical organization 
of the objects in the virtual world while the low level 
module handles the geometry transformation and rendering. 

A.  High level graphics module 

The high-level graphics module manages the geometry 
database that models the virtual world. This database, 
referred in the literature as a scene graph (see Figure l), is 
hierarchical in nature. The hierarchical organization, apart 
from being intuitive and flexible, augments the auxiliary 
data structures used to optimize the database traversal. 
Despite the tremendous advances in graphics hardware 
performance, specialized processing of different geometry 
types is required to achieve interactive frame rates. The 
graphics pipeline is thus split in alternate paths. 

Potential geometry types include architectural interiors, 
outdoor scenes, terrain, skinned creatures, organic objects 
and more. 

The engine is tailored towards indoor scenes. The 
portalkell paradigm is appropriate for such kind of 
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geometry. The scene is segmented in convex cells that 
enclose the empty space. Those cells are interweaved 
through portals, in effect windows to other cells. A BSP 
algorithm can “portalize” the virtual world and generate the 
cells. The inter-cell visibility is calculated during a 
preprocessing step and is used for aggressive first order 
culling; up to 90% of the scene graph can be pruned by this 
filter. The remaining cells are clipped against the viewing 
volume. The BSP hierarchical structure allows for efficient 
clipping of whole branches of cells if the parent node is 
found invisible. A pleasant attribute of the portalkell 
method is that is compatible with the altemate paths 
requirement as we can associate different rendering 
subsystems to the cells. Moreover we can associate 
transformation matrices to the portals, to allow for special 
effects like mirrors and space warps. 
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Figure 1: The Scene Graph describes the hierarchical 
nature of a virtual world. 

Height fields are the de-facto standard solution for terrain 
rendering. More specifically we use the Real-time 
Optimally Adapting Meshes algorithm, which is based on a 
Binary Triangle Tree structure. Here each patch is a simple 
isosceles right triangle. Splitting the triangle from its apex 
to the middle of its hypotenuse produces two new isosceles 
right triangles. The splitting is recursive and can be 
repeated on the children until the desired level of detail is 
reached. 

Figure 2: A teapot modeled using bezier patches shown 
with different subdivision steps 

Three are the candidates for high fidelity rendering of 
organic objects. The surface subdivision method [6],[7] 
extends standard polygonal modeling techniques by 
recursively subdividing an existing mesh to increase 
complexity and smooth hard edges. The applied operator 
alters the surface of the object while leaving the original 
vertices intact. Non-Uniform Rational B-Spline surfaces 
[9] are polygonal approximations of an objects volume as 
defined by a set of analytically generated curves. Control 
vertices lying on or around the curve define these curves. 
Finally Bezier patches [ 101 are editable surfaces defined by 
four control points and the edges or curves between them 
(see Figure 2). The latter method was used in the prototype, 
because it is intuitive to model with, offers adequate control 
over the surface and generates polygons in optimized 
formats like tri-strips. However surface subdivision is 
promising and will be investigated in the future. 

B. Low level graphics module 

The low level module is responsible for transforming raw 
vertex coordinate data and rasterizing the polygons 
generated by the high level tessellator. The low level 
module is implemented on top of the OpenGL subsystem. 
OpenGL [3] is a general language for describing 3D 
graphics. Another view of OpenGL is as a software 
interface to graphics hardware. 

Vertex transformation is relatively straightforward and is 
handled by OpenGL. Of interest is the skinning method for 
realistic animation of articulated objects. Traditional 
animation operates on objects, which consist of a 
hierarchical series of rigid bodies. This approach to 
animation produces artifacts, including interpenetration of 
object sections and gaps between object segments. Vertex 
blending enables “skinning” support that addresses these 
issues. Skinning is a technique that allows vertices to 
straddle more than one level of the object hierarchy. The 
triangles that include these shared vertices become 
stretched between hierarchy levels, thus eliminating gaps 
and hiding interpenetration. This allows artists a greater 
level of control over animation. In essence the vertex is 
transformed by the matrices of all “bones” that effect it ant 
he result is blended together. Modem graphics hardware 
accelerates this operation. 

Texture mapping techniques [ 151 along with simplified 
lighdmaterial interaction models like gouraud or phong 
shading are typically used to produce relatively realistic 
scenes. Better results can be achieved using advanced 
mapping methods like bump mapping that model small 
irregularities on the surface of the objects. 

Another use of texture mapping is to capture complex light 
interaction with the environment in the form of a lightmap. 
During a preprocessing step the light contribution on all 
surfaces is calculated using a radiosity solution [12]. This 
light map is sparsely sampled and compressed. Then the 
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light map is applied as a separate step, when rendering the 
environment. 

~~ 

Operator 

C. Programmable shading using modern Graphics 
Hardware 

Method of evaluation 

Programmable shader systems employ small programs to 
calculate the color for each pixel. Micro-programmable 
hardware is required to support a real-time programmable 
shader system. A better approach is to implement hardware 
programmability using the API, not by introducing a 
“backdoor” into programming the hardware directly, which 
is “limited at best, error prone at worst”. 

conditionals 
e.g. if(A op B) then 

set stencil 

The OpenGL state machine is essentially a general-purpose 
machine to implement mathematical operations. In this 
view, the graphics hardware is just a subsystem applying 
calculations to a data stream - buffers are used as memory, 
intemal paths become registers, logical and algebraic 
operations are implemented using alpha, stencil, and depth 
test, and texture and cube maps serve as lookup tables to 
look up values for scalar, 2D and 3D vectors (the latter 
even allowing for use of un-normalized vectors). 

alpha test and stencil test 

7--- 

Figure 3: Positioning of virtual objects in the scene 

Java was used as the implementation language for several 
reasons. The binary portability across various platforms 
may be attractive but the ability for rapid application 
development is certainly more important. Moreover, the 
object-oriented nature of java models successfully the 
hierarchical nature of the scene graph while allowing for 
code reuse thus minimizing the implementation effort. 

functionals 
e.g. y = f (x) 

color tables and texture maps 

an thmetic 
e.g. +, -, * frame buffer / texture blending 

Table 1: The use of OpenGL as general-purpose 
operator evaluator 

One use of this scheme is the orthogonal illumination 
mapping technique [8], a texture-based multi-pass 
rendering method for performing hardware accelerated 
lighting calculations per-pixel rather than per-vertex. This 
technique has a number of advantages: it is simple, 
geometry-independent, and fast on today’s commodity 
graphics cards. 

The Java2 platform comes complete with Swing, a full- 
featured user interface API that was used to build the GUI 
of the application. Swing provides a rich set of lightweight 
and extendable components like dialogs, frames, tree 
controls, splitter bars, tables and more. We used those 
components to construct an impressive yet user-friendly 
interface the user can easily extend and customize. The 
extension mechanism is based on the Command pattem [ 11. 
Every command or tool of the interface is an autonomous 
object that gets dynamically loaded by the java runtime. 
Advanced users can code their own tool-objects and place 
the binary classes in a special plug-in directory. The 
Application parses the directory at startup and seamlessly 
integrates all extensions to the toolset. 

111. IMPLEMENTATION 

To demonstrate the applicability of the design and ensure 
the satisfaction of pragmatic constrains that restrict the 
current generation of hardware, a number of prototypes will 
be implemented. An early version of the Virtual 
Environment modeling tool was build to instigate the 
experimentation with the various concepts (see Figure 3). 

Figure 4: Modification of light parameters 
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The requirement for interactive frames and the general 
trend in the industry mandated the support of graphics 
acceleration hardware. The obvious choice was to use 
Java3D. This high level API is a collaboration effort 
between leading vendors that represents the cutting edge in 
graphics technology and also integrates other components 
of virtual reality like audio and stereoscopy. 

However, we decided to implement the high level 
component of the engine ourselves in pure java. This white- 
box approach allows for greater possibilities of 
experimentation with various techniques and tuning of the 
pipeline according to the content. The low level component 
was implemented on top of OpenGL. In order to access the 
native GL subsystem the Java Native Interface was 
employed. More specifically the freely available Magician 
OpenGL library [SI was used. 

The editor allows the user to create simple or complex 
objects manually using the built-in tools, or automatically 
using scripts. Loaders for commonly used formats 
including .plg .ax,  .dxf and .3ds are provided for importing 
geometry from professional applications like 3D Studio 
MAX. Applying textures and changing material parameters 
like ambient, diffuse and specular components can modify 
the appearance of the objects (see Figure 5). The user can 
create virtual lights and position them to the scene. By 
altering parameters realistic light types of the physical 
world can be simulated. The user can also set atmospheric 
parameters like fog and mist. Simple animation functions 
can be applied to the objects. The final scene can be 
exported in VRML format [4], the de-facto standard for 3D 
graphics deployment in the Web. Common VRML 
browsers can be used to view the resulting .wrl file.. 

I 
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Figure 5: Different Materials applied to the same object 

IV. CONCLUSIONS 

This paper presents our vision for real-time graphics 
modeling and deployment for the Web. As discussed in the 
previous sections, specialized altemative paths. in the 

graphics pipeline are required for efficient rendering of 
different types of scenery like terrain, indoor environments, 
live creatures etc. We also argued over the advantages of 
using OpenGL as a generalized signal-processing machine 
to support per pixel lighting and rendering of interesting 
shaders. Finally, a prototype modeling tool was presented 
and specific implementation details discussed. 

In future work we intend to investigate the applicability of 
altemative rendering technologies like image-based or light 
field rendering [13],[14] as a stand-alone solution or as a 
means of optimizing the pipeline. We also consider the 
problem of geometry culling to be of paramount importance 
in the new era of huge virtual works so we will devote a 
considerable amount of our efforts in this area. 
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