
Virtual Worlds Modeling for Web
Deployment

George K. Moschovitis, Kostas Karpouzis and Stefanos Kollias

Abstract-- In this paper we propose a design architecture for
the graphics engine of a virtual reality system to be deployed
over the web. The graphics engine is decomposed in high and
low level components. The high level component manages the
hierarchical organization of the virtual objects, while the low
level component acts as the interface to the graphics hardware
and is mainly responsible for operations, such as vertex
transforms and polygon rasterization. Several meihods for
geometry representation, compression and culling are
compared and associated with different geometry types. The
use of OpenGL as a general-purpose machine to implement
mathematical operations is considered in the context of
programmable shaders. Finally a prototype application for
virtual worlds modeling is presented along with detailed
discussion on technical and implementation issues.

Index term-3D graphics, VRML, Java, modeling, multi-pass
rendering, bezier patches, portals, shaders, tessellation, height
fields.

I. INTRODUCTION

The Web has recently transformed from a static text-and-
image medium to a broadcasting gateway with full
multimedia capabilities. Increased network bandwidth and
home computer hardware advancement have contributed to
this tremendous progress; this change also means that web
content needs constant upgrading, in order to keep up with
the ever-growing demands and possibilities.

The major evolution, with respect to the nature of the web-
deployed content, is 3D virtual worlds rendering and
navigation. Traditionally, creation and rendering of such
content has required expensive workstations, running
equally expensive software and exploiting dedicated exotic
hardware [2]. Major developments in the semiconductor
industry resulted in drastic reduction of hardware cost,
while the advent of new rapid application development
systems promise similar reductions of the cost associated
with software development. As a result, standards such as
VRML 1.0 and 2.0 [4] or Movingworlds emerged, which
promised high quality user interaction in dynamic
environments. However, these attempts failed to come up

The authors are with the National Technical Univ. of Athens, Electrical
and Computer Engineering Dept., CS Division, 9 Heroon Polytechniou,
157 73 Athens, Greece
Corresponding author email : gmosx@sof?lab.ece.nta.gr

with refresh rates and photorealistic techniques that are
required to provide realism in demanding applications.

Our application is a 3D viewing and authoring application
implemented with Java. Some impressive features of the
Java language are exploited, including rapid application
development, binary portability to most platforms, object-
oriented methodologies for the design and implementation
of the software and robustness, as well as a dynamic object
graph, similar to that of a VRML world or an MPEG-4
BIFS file [16]. Various subsystems and commands are
encapsulated in autonomous objects that can be extended or
replaced at runtime by the end user. The main graphics
engine utilizes OpenGL as a low level interface for
geometry transformation and rasterization hardware. As a
result, the application can be used in a variety of computer
systems, ranging from entry-level home computers to
multi-processor workstations.

11. THE GRAPHICS ENGINE

In most modem implementations the graphics engine is
decomposed in high and low level components. The high
level module is responsible for the hierarchical organization
of the objects in the virtual world while the low level
module handles the geometry transformation and rendering.

A. High level graphics module

The high-level graphics module manages the geometry
database that models the virtual world. This database,
referred in the literature as a scene graph (see Figure l), is
hierarchical in nature. The hierarchical organization, apart
from being intuitive and flexible, augments the auxiliary
data structures used to optimize the database traversal.
Despite the tremendous advances in graphics hardware
performance, specialized processing of different geometry
types is required to achieve interactive frame rates. The
graphics pipeline is thus split in alternate paths.

Potential geometry types include architectural interiors,
outdoor scenes, terrain, skinned creatures, organic objects
and more.

The engine is tailored towards indoor scenes. The
portalkell paradigm is appropriate for such kind of

562 lom Mediterranean Electrotechnical Conference, MEleCon 2000. Vol. I1
0-7803-6290-x/00/$10.00 02000 IEEE

geometry. The scene is segmented in convex cells that
enclose the empty space. Those cells are interweaved
through portals, in effect windows to other cells. A BSP
algorithm can “portalize” the virtual world and generate the
cells. The inter-cell visibility is calculated during a
preprocessing step and is used for aggressive first order
culling; up to 90% of the scene graph can be pruned by this
filter. The remaining cells are clipped against the viewing
volume. The BSP hierarchical structure allows for efficient
clipping of whole branches of cells if the parent node is
found invisible. A pleasant attribute of the portalkell
method is that is compatible with the altemate paths
requirement as we can associate different rendering
subsystems to the cells. Moreover we can associate
transformation matrices to the portals, to allow for special
effects like mirrors and space warps.

1 Virtualuniverse

Locale

(/BG +‘% ’BG, BranchGroup

I , , Node

ShapegD
Node -;-

Figure 1: The Scene Graph describes the hierarchical
nature of a virtual world.

Height fields are the de-facto standard solution for terrain
rendering. More specifically we use the Real-time
Optimally Adapting Meshes algorithm, which is based on a
Binary Triangle Tree structure. Here each patch is a simple
isosceles right triangle. Splitting the triangle from its apex
to the middle of its hypotenuse produces two new isosceles
right triangles. The splitting is recursive and can be
repeated on the children until the desired level of detail is
reached.

Figure 2: A teapot modeled using bezier patches shown
with different subdivision steps

Three are the candidates for high fidelity rendering of
organic objects. The surface subdivision method [6],[7]
extends standard polygonal modeling techniques by
recursively subdividing an existing mesh to increase
complexity and smooth hard edges. The applied operator
alters the surface of the object while leaving the original
vertices intact. Non-Uniform Rational B-Spline surfaces
[9] are polygonal approximations of an objects volume as
defined by a set of analytically generated curves. Control
vertices lying on or around the curve define these curves.
Finally Bezier patches [101 are editable surfaces defined by
four control points and the edges or curves between them
(see Figure 2). The latter method was used in the prototype,
because it is intuitive to model with, offers adequate control
over the surface and generates polygons in optimized
formats like tri-strips. However surface subdivision is
promising and will be investigated in the future.

B. Low level graphics module

The low level module is responsible for transforming raw
vertex coordinate data and rasterizing the polygons
generated by the high level tessellator. The low level
module is implemented on top of the OpenGL subsystem.
OpenGL [3] is a general language for describing 3D
graphics. Another view of OpenGL is as a software
interface to graphics hardware.

Vertex transformation is relatively straightforward and is
handled by OpenGL. Of interest is the skinning method for
realistic animation of articulated objects. Traditional
animation operates on objects, which consist of a
hierarchical series of rigid bodies. This approach to
animation produces artifacts, including interpenetration of
object sections and gaps between object segments. Vertex
blending enables “skinning” support that addresses these
issues. Skinning is a technique that allows vertices to
straddle more than one level of the object hierarchy. The
triangles that include these shared vertices become
stretched between hierarchy levels, thus eliminating gaps
and hiding interpenetration. This allows artists a greater
level of control over animation. In essence the vertex is
transformed by the matrices of all “bones” that effect it ant
he result is blended together. Modem graphics hardware
accelerates this operation.

Texture mapping techniques [151 along with simplified
lighdmaterial interaction models like gouraud or phong
shading are typically used to produce relatively realistic
scenes. Better results can be achieved using advanced
mapping methods like bump mapping that model small
irregularities on the surface of the objects.

Another use of texture mapping is to capture complex light
interaction with the environment in the form of a lightmap.
During a preprocessing step the light contribution on all
surfaces is calculated using a radiosity solution [12]. This
light map is sparsely sampled and compressed. Then the

~ ~~

10” Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. I1 563

light map is applied as a separate step, when rendering the
environment.

~~

Operator

C. Programmable shading using modern Graphics
Hardware

Method of evaluation

Programmable shader systems employ small programs to
calculate the color for each pixel. Micro-programmable
hardware is required to support a real-time programmable
shader system. A better approach is to implement hardware
programmability using the API, not by introducing a
“backdoor” into programming the hardware directly, which
is “limited at best, error prone at worst”.

conditionals
e.g. if(A op B) then

set stencil

The OpenGL state machine is essentially a general-purpose
machine to implement mathematical operations. In this
view, the graphics hardware is just a subsystem applying
calculations to a data stream - buffers are used as memory,
intemal paths become registers, logical and algebraic
operations are implemented using alpha, stencil, and depth
test, and texture and cube maps serve as lookup tables to
look up values for scalar, 2D and 3D vectors (the latter
even allowing for use of un-normalized vectors).

alpha test and stencil test

7---

Figure 3: Positioning of virtual objects in the scene

Java was used as the implementation language for several
reasons. The binary portability across various platforms
may be attractive but the ability for rapid application
development is certainly more important. Moreover, the
object-oriented nature of java models successfully the
hierarchical nature of the scene graph while allowing for
code reuse thus minimizing the implementation effort.

functionals
e.g. y = f (x)

color tables and texture maps

an thmetic
e.g. +, -, * frame buffer / texture blending

Table 1: The use of OpenGL as general-purpose
operator evaluator

One use of this scheme is the orthogonal illumination
mapping technique [8], a texture-based multi-pass
rendering method for performing hardware accelerated
lighting calculations per-pixel rather than per-vertex. This
technique has a number of advantages: it is simple,
geometry-independent, and fast on today’s commodity
graphics cards.

The Java2 platform comes complete with Swing, a full-
featured user interface API that was used to build the GUI
of the application. Swing provides a rich set of lightweight
and extendable components like dialogs, frames, tree
controls, splitter bars, tables and more. We used those
components to construct an impressive yet user-friendly
interface the user can easily extend and customize. The
extension mechanism is based on the Command pattem [11.
Every command or tool of the interface is an autonomous
object that gets dynamically loaded by the java runtime.
Advanced users can code their own tool-objects and place
the binary classes in a special plug-in directory. The
Application parses the directory at startup and seamlessly
integrates all extensions to the toolset.

111. IMPLEMENTATION

To demonstrate the applicability of the design and ensure
the satisfaction of pragmatic constrains that restrict the
current generation of hardware, a number of prototypes will
be implemented. An early version of the Virtual
Environment modeling tool was build to instigate the
experimentation with the various concepts (see Figure 3).

Figure 4: Modification of light parameters

564 10” Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. I1

The requirement for interactive frames and the general
trend in the industry mandated the support of graphics
acceleration hardware. The obvious choice was to use
Java3D. This high level API is a collaboration effort
between leading vendors that represents the cutting edge in
graphics technology and also integrates other components
of virtual reality like audio and stereoscopy.

However, we decided to implement the high level
component of the engine ourselves in pure java. This white-
box approach allows for greater possibilities of
experimentation with various techniques and tuning of the
pipeline according to the content. The low level component
was implemented on top of OpenGL. In order to access the
native GL subsystem the Java Native Interface was
employed. More specifically the freely available Magician
OpenGL library [SI was used.

The editor allows the user to create simple or complex
objects manually using the built-in tools, or automatically
using scripts. Loaders for commonly used formats
including .plg .ax, .dxf and .3ds are provided for importing
geometry from professional applications like 3D Studio
MAX. Applying textures and changing material parameters
like ambient, diffuse and specular components can modify
the appearance of the objects (see Figure 5). The user can
create virtual lights and position them to the scene. By
altering parameters realistic light types of the physical
world can be simulated. The user can also set atmospheric
parameters like fog and mist. Simple animation functions
can be applied to the objects. The final scene can be
exported in VRML format [4], the de-facto standard for 3D
graphics deployment in the Web. Common VRML
browsers can be used to view the resulting .wrl file..

I

I

I . d & d g Ilk _._- -_ __-
0

Figure 5: Different Materials applied to the same object

IV. CONCLUSIONS

This paper presents our vision for real-time graphics
modeling and deployment for the Web. As discussed in the
previous sections, specialized altemative paths. in the

graphics pipeline are required for efficient rendering of
different types of scenery like terrain, indoor environments,
live creatures etc. We also argued over the advantages of
using OpenGL as a generalized signal-processing machine
to support per pixel lighting and rendering of interesting
shaders. Finally, a prototype modeling tool was presented
and specific implementation details discussed.

In future work we intend to investigate the applicability of
altemative rendering technologies like image-based or light
field rendering [13],[14] as a stand-alone solution or as a
means of optimizing the pipeline. We also consider the
problem of geometry culling to be of paramount importance
in the new era of huge virtual works so we will devote a
considerable amount of our efforts in this area.

V. ACKNOWLEDGEMENT

This work is funded by the Greek Secretariat of Research
and Technology (Project PENED 99ED 478).

VI. REFERENCES

[11 E. Gamma, R. Helm, R Johnson and J. Vlissides, “Design
Pattems: Elements Of Reusable Object-Oriented Sofiware”,
Addison-Wesley, 1995.

A. Wan and M. Watt, “Advanced Animation And Rendering
Techniques: Theory And Practice”, Addison-Wesley, 1992.

M. Segal and K. Akeley, “The OpenGL Graphics System, A
Specification (Version I . 1)”, Silicon Graphics.

J. Hartman and J. Wemecke, “The VRML 2.0 Handbook”,
Addison-Wesley Developer Press, 1996

A. Descartes, “Magician Programmers’ Guide for Java Version
1 .O”, Arcane Technologies Ltd

T. DeRose, M.Kass and T. Truong, “Subdivision Surfaces in
Character Animation”, SIGGRAPH 98, Orlando USA.

D.N. Zorin, “Subdivision And Multiresolution Surface
Representation”, Phd Thesis, Caltech, Pasadena, Califomia 1997.

C. Everitt, “Orthogonal Illumination Maps”, Ph.D. Thesis,
http://www.opengl.org/News/Special/oim/Orth.html

D. Teaopoulos and H. Qin, “Dynamic NURBS With Geometric
Constraints For Interactive Sculpting,” ACM Transactions on
Graphics 13,2 (Apr. I994), pp. 103 - 136.

J. Bruijns, “Quadratic Bezier Triangles As Drawing Primitives”,
Proceedings of the 1998 EUROGRAPHICS/SIGGRAPH workshop
on Graphics hardware, 1998, p. 15.

H. Hoppe, “Progressive Meshes”, SIGGRAPH 96 Proceedings,

S . E. Chen, “Incremental Radiosity: An Extension Of

[2]

[3]

[4]

[5]

[6]

[7]

[SI

[9]

[I O]

[1 11

[121
1996. pp. 99-108.

Progressive Radiosity To An Interactive Image Synthesis System”,
Conference proceedings on Computer graphics, 1990, pp. 135 - 144

M. Levoy, P. Hanrahan, “Light Field Rendering”, Proc. of ACM

L. McMillan, G. Bishop, “Plenoptic Modeling : An Image-Based
Rendering System”, Proc. of ACM SIGGRAPH 95, pp.39 - 46, 1995

P.S. Heckbert, ‘‘Survey Of Texture Mapping”, IEEE CG&A,

ISO/IEC JTClISC29MrGIl N3205, “MPEG-4 Multi-Users

[131

[141

[15]

[161

SIGGRAPH 96, pp. 3 1 - 42, NY, USA, 1996

6(11):56 - 67, 1986

Technology (Requirements And Applications)”, December 1999,
Maui

10* Mediterranean Electrotechnical Conference, MEleCon 2000, Vol. I1 565

http://www.opengl.org/News/Special/oim/Orth.html

