
X-Database. A middleware for collaborative video annotation, storage
and retrieval1

Iraklis Varlamis, Michalis Vazirgiannis Panagiotis Poulos
Giorgos Akrivas, Spiros Ioannou

Dept of Informatics,
Athens University of Economics &

Business,
Patision 76, 10434,
Athens, HELLAS

{varlamis,mvazirg}@aueb.gr

Dept of Electrical and Computer Engineering
National Technical University of Athens

9, Iroon Polytechniou Str., 157 73,
Athens, HELLAS

ppoulos@otenet.gr
{gakrivas, sivann}@ image.ece.ntua.gr

Submitted for the Research Track

Abstract

Organising audiovisual content is a hard task
for companies that own huge amounts of video
information, such as television stations,
studios, advertisement companies etc. The
retrieval and re-use of useful information
become unfeasible when the size of video
information increases on a daily basis. The
Panorama platform has been developed to
cover such needs for manipulating video
information, by attaching meta-information for
both audio and visual content of video sources.
This paper presents this meta-information
model and the database interface developed in
terms of the Panorama platform. The model
works as keystone in the creation of the
database and the database interface
implements a mechanism for converting XML
documents to relational data.

Keywords: Metadata, XML, Relational
Databases, Video annotation

1. Introduction

Digitisation, annotation, meta-information
attachment and organisation of video sources
is a tedious process that requires time but
offers many gains to companies that handle
video content important: a) less storage space
is required, b) longer endurance of digitised
media is achieved, c) search is faster and more
accurate when the media information is in
digital format, d) parts of digitised programs
can be easily retrieved and reused in other
programs. Video meta-information such as
information concerning the contributors, the
technical specifications, the existing copies of
a program and their maintenance state, the
concept and content of an audiovisual

program, is equally important to the digitised
audiovisual program.

In order to cover this need for information
recording and storage, a composite system is
required that will control both the digitisation
of audiovisual information, the extraction of
content features and the recording of additional
information, as well as the information
retrieval and re-synthesis tasks. In the effort to
support these requirements the Panorama
platform is developed, to allow the video
source owner to digitise existing programs to
apply additional syntactic and semantic
information and store it in a database, and to
allow the end-user to search this information.

The video digitisation and annotation is a
highly distributed process that requires
information exchange among annotators and
users. As a consequence, the information
transferred among the platform users must
follow a common information model, which in
this case is expressed in XML-Schema. This
information model follows the MPEG-7
definition for video metadata and is described
in [1]. Furthermore all the audiovisual
information transferred among the users,
annotators and administrators is stored in a
relational database management system in
order to be available to other applications that
do not use XML.

In this paper focus is given on the database
part of Panorama. A short description of the
whole system architecture is performed and a
more detailed analysis of the database
component follows.

Apart from the general requirements, a set of
specific requirements concerning the database
system has been addressed.



− Information retrieval must be available for
distant users

− The system must be available to users
running different operating systems.

− Different user groups must have different
levels of access to the database (Multilevel
security)

− The database system must be able to
handle audiovisual information

These specific requirements were taken under
consideration during the selection of the
database management system as well as during
the design of the database component of the
whole system.

In the following sections the platform
architecture is discussed, the different modules
are presented and the information model and
the data transferred among the modules are
explained (section 2). In Section 3 a detailed
description of the module that serves as a
database interface, namely the X-Database
module, is performed. Certain issues that were
considered during the database design are
illustrated in the second part of this section.
Section 4 presents related work from the area
of video indexing and retrieval systems and
attempts a comparison with commercial
DBMSs in the way they handle XML. In
section 5, some experimental results are
presented and the final conclusions are drawn
in section 6.

2. The platform architecture

2.1. Database

As mentioned in the introduction, the main
objective was the design of a framework for
extracting, describing, storing and querying
video information that will be available both to
remote (web) and local users. To accomplish
this, the Oracle 8i database management
system is used that supports multimedia data
and handles efficiently the huge amount of
data created by video decomposition and
description process. Oracle Call Interface is
used to communicate with the database, but an
effort was made to create a database
independent model, which will work with any
underlying database management system using
standard SQL commands.

2.2. Web & Local Interface

For enabling both remote and local users to
access the information, two applications have
been created: a web based application that uses
ASP technology to create a user interface for
querying and presenting the database contents

and a local application developed in C++ that
allows the media administrator to organize
media and video content information into the
database. Additionally, an application is
developed to allow video annotators to work
separately and save their work into files that
are forwarded to the media administrator.

The database is accessed by the first two
applications (web users and administrators),
while the third application (annotators)
produces data to be stored in the database but
has no direct access to it. The web application
performs onlyselectstatements to the database
while the media administrator’s application
can performinsert, update, delete, selectand
in special casescreate statements to the
database. In addition to this, web application
users need to have different access levels to the
information stored in the database therefore
several types of connection privileges are
created.

2.3. Database Interface

According to the system requirements all the
three applications should be independent of the
underlying database system. In order to satisfy
this design requirement one more application
is built acting as an interface to the relational
database management system. The application
is implemented as a COM object developed in
C++ that can be accessed both by web based
and local applications.
A novelty for the system is that the
information transferred among the applications
follows a common model, an XML-Schema
[2], which defines the structure of the
information.

2.4. XML

The implemented data model is based in the
directives of MPEG-7 [3] format for video
metadata. The work of Jain and Hampapur [4]
is also proved very useful in the development
of the model. The emerging XML-Schema
notation is used to express this model.

The use of XML induces many advantages to
the system:
− It offers a common way of representing

information transferred among
applications

− Information produced by annotators can
be saved in XML files, which can be
reviewed and corrected at any time before
being sent to the media administrator. The
content of an XML document can be
easily read or modified using a simple



text-editor and validated using the XML-
Schema. Thus, the media administrator
can easily review the information
produced.

− The XML documents transferred through
the system can be saved as files and
presented to users, as informative
documents concerning the videos.

− The analysis of the physical model of
information can easily produce the XML-
Schema. The XML language - which is
object oriented - becomes a standard, and
as a result object oriented analysis tools
will soon provide the ability to export the
model of information in an XML-Schema
file. This XML-Schema can be used as
input to our system.

Extending the capabilities of XML and XML-
Schema, our framework maps the produced
XML-Schema to a relational database schema
and automatically creates the database. Several
issues on mapping object-oriented information
to a relational schema have been faced and
solved during the development of the database
interface. Problems and solutions considering
the database architecture will be discussed in
detail in the following.

Taking this one step further, the same database
interface can be used in future applications.
Once the information model is described in an
object-oriented notation, it can be mapped into
an XML-Schema and consequently into a
database schema.

2.5. The information flow

The general architecture of Panorama is
presented in fig.1. The flow of information
among the various system components is
described in the following.

Fig1 (Short description of the system)

1) The administrator of the Video-Information
Model, analyses the information to be stored in

the database. He/she describes the different
entities and relationships using an XML-
Schema, thus providing a validating
mechanism for the XML documents that will
be created. This usually happens once at the
beginning of the project, although tables and
entities can be added into the database
afterwards.
2) The X-Database interface receives the XML
document created into step 1 (XML-Schema is
also an XML document) and generates SQL
commands to create the database.
3) The annotator provides descriptions of the
programs’ contents and generates an XML
document containing content information for
each video.
4, 5) The media administrator matches the
digitised program descriptions with real media
or media copies and adds all the media
information related to each audiovisual object.
The administrator inserts, updates, deletes and
selects information from the database (step 4)
and stores the digitised video files into the
database (step 5)
6) The end-user can query the database
through a web-based interface. User
commands will be translated to appropriate
XML documents before being sent to the
X-Database interface.
7,8) The X-Database interface receives the
XML document created during steps 4 and 6
and converts those to SQL commands. It also
retrieves the query results and constructs an
XML-Reply document, which is sent either to
the media administrator (step 7) or to the end-
user (step 8).

3. The X-Database (XML to Relational)
component

The X-Database component can be divided in
two parts. The first part is responsible for
parsing XML-Schema documents and
collecting information on the structure of XML
documents that follow this schema definition.
The second part parses XML documents and
constructs the appropriate SQL commands that
are processed by the database. It also takes
database results and formulates valid XML
documents as reply to user queries.

3.1. The XML-Schema explained

For a more detailed description of the first part
of the component works, the XML-Schema
used to describe video metadata, will be
presented in the following. The XML-Schema
definition contains three types of elements:
− complexTypes that represent the various

entities of our video metadata model.

Local Application
Annotator

XML

Local Interface
Media - Administrator

Web Interface
End-User

XML (Select)

XML
(Insert/Update/
Delete/Select)

Video - Information
Model

X-Database COM
XML (Reply)

SQL
Commands/Results

XML-Schema

Digitized media

1

3

2
4

5

6

7

8

Relational
Database



Complex types comprise of attributes, or
group of attributes and sequences of
elements.

− simpleTypes, which are used as
enumerations of string values.

− attributeGroups, which only contain
attributes and can be used for attributes
that are common in many complex types.

Complex types describe the structure of XML
elements. They contain:
− one ore more<xsd:attribute> tags (the

use=”required” attribute states if they are
required or not

− one ore more <xsd:element> tags to
describe sub-elements of the given
element. Each sub-element has a name
and a “type” or “ref” attributes. This
means that an element can contain a sub-
element as a whole, or can refer to the
sub-element using its id.

Definition 1: The complex types that are not
contained as“type” in other complex types are
referred asTop-leveltypes.

To give an example, the following XML-
Schema fraction

denotes that an AudioVisualDS:
- has two attributes (“id” which is a number

and “AVType” which can have one of the
values Movie, Picture or Document),

- may contain two sub-elements namely
Syntactic and Semantic (with their sub-
elements) and

- may contain a reference to a MetaInfoDS
element.

A valid XML file according to the above
schema would be:

In addition to this, since XML-Schema
supports inheritance, certain entities of the
schema extend the features of other entities.
This is performed with the use of the
<xsd:extension> tag. The extension entities
contain all the features of their parent entity.
The set of Complex types that represent
information entities is stored in an XML-
Schema file (namely xsdsource.xsd). This
schema file also contains the descriptions of
the available database commands.

The use of XML notation for describing the
database commands allows applications to
interact with the database using strictly defined
XML documents. These well-defined
documents not only contain the data that will
be sent to the database but also describe the
action that will be performed to the database.
As a result a wrapping facility for the XML
information that is sent or retrieved from the
database is created.

Definition 2: The complex types that represent
the information entities included in our model
are referred asbase elements.
Definition 3: The complex types that are used
to group base elements before they are sent for
a transaction to the database are referred as
extension elements.

The extension elements used are:
- DBCommand that may contain many

Insert, Update, Delete or Select elements,
- DBInsert, DBUpdate that contain the

elements to be inserted or updated. In
order to maintain the consistency of the
database, only certain elements can be
inserted or updated. The definition of
DBInsert or DBUpdate in XML-Schema
marks out which elements can be inserted
or updated. For example if an element A
contains an element of type B, only A can
be sub-element of aDBInsert element. On
the other side B can be inserted or updated
in the database only as sub-element of A.

- DBDelete that contains references to
elements that can be deleted, so into a
Delete element/command one can send the
ids of many different elements to be
deleted.

<xsd:complexType name="AudioVisualDS">
<xsd:attribute name="id" type="ID"

use="required" />
<xsd:attribute name="AVType"

type="AVTypeD" use="required" />
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0"

name="Syntactic" type="SyntacticDS" />
<xsd:element maxOccurs="1" minOccurs="0"

name="Semantic" type="SemanticDS" />
<xsd:element maxOccurs="1" minOccurs="0"

name="MetaInfoRef" ref="MetaInfoDS" />
</xsd:sequence>

</xsd:complexType>
<xsd:simpleType name="AVTypeD">

<xsd:restriction base="string">
<xsd:enumeration value="Movie" />
<xsd:enumeration value="Picture" />
<xsd:enumeration value="Document" />

</xsd:restriction>
</xsd:simpleType>

<AudioVisualDS id=”1” AVType=”Movie”>
<Syntactic>
….
</Syntactic>
<Semantic>
….
</Semantic>
<MetaInfoRef>2<MetaInfoRef>
</AudioVisualDS>

CORRECT

<Insert>
<A id=”50”>
<B id=”-2”/>
</A>
</Insert>

WRONG

<Insert>
<B id=”-2”/>
</Insert>



- DBReply, which is the element used to
enclose the retrieved information to
applications. DBReply may contain all the
base elements.

- DBSelect.This element has three parts: a)
a ”return” element that contains the base
element(s) to be returned, b) a”from”
element that contains the element(s) that
will be used as criteria for the query and c)
a ”where” attribute that contains the query
itself. Detailed examples of the Select
process will be presented in the following
paragraphs.

From the two groups of types only the base
types are used for the database creation. The
extension types are ignored during the
database creation phase. They are used only
for the validation of the commands that are
sent to and from the database.

3.2. The Database structure

One of the basic requirements of the project
was to retain the object-oriented nature of
XML through the database transactions. This
should allow users to access the database
contents having in mind the structure of video
information entities and not the structure of the
database tables.

XML supports inheritance between types,
which can be very confusing when using
references. The following example describes a
typical case of inheritance and reference.
Entities “Video_Tape” and “DVD” are
declared as extensions of entity “Medium” so
they inherit all the attributes and elements of
Medium in addition to their own attributes and
elements. A “Program” entity makes a
reference to the Medium it is stored in.

The reference is defined to the entity Medium
but the referred id may be the id of a
Video_Tape or a DVD. Therefore the
relational database system must be adapted to
support such features. In order to maintain

such behaviour a table named OBJECTIDS is
created in the database keeping record of the id
and type of each element that may inherit or be
inherited. A group of triggers certifies that a
reference to children elements through their
parent’s name is stored correctly as a reference
to the children element in the database.

Each “simpleType” in XML schema contains
an enumeration of strings that represent the
possible values an attribute can have. To give
an example, thecomplexTypeAudioVisualDS
has an attribute named AVType of type
AVTypeD, where AVTypeD is asimpleType
containing three different values (Movie,
Picture, Document). This attribute in the
database is mapped as a column AVType of
type VARCHAR2 in table AudioVisualDS. A
constraint is attached to the column:

AVType VARCHAR2(20) NOT NULL
CONSTRAINT CHECK (AVType IN
('Movie','Picture','Document'))

Each “complexType” in XML-Schema is

mapped into a table to the database. Additional
tables are created to represent one-to-many
relations between complexTypes. As already
mentioned one complexType may refer to
another in two ways: as“type” or as “ref”.
Additionally it can have zero, one or more than
one (unbounded) references. The number of
possible “ref” ÿ or “type”ÿ sub-elements is
defined by the maxOccurs attribute. The
minOccursattribute in the schema defines if a
field can be null (minOccurs=0) or not.

Combining the number of occurrences of a
sub-element and the kind of references, four
different types of relation between two
complex types appear:

ÿ� Complex type A has exactly one
referenceto a complex type C.

This means that an element C must be created
before an element A refers to it. The relation is
one-to-one and there is no need for an
intermediate table. So for complex types A and
C two are tables created in the database. When

<xsd:complexType name=”Program”>
<xsd:attribute name=”kind” type=”string”/>
…
<xsd:sequence>
<xsd:element name=”storedin” ref=”Medium”/>
…
<xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AudioVisualDS">
<xsd:attribute name="id" type="ID"

use="required" />
<xsd:attribute name="AVType"

type="AVTypeD" use="required"/>
<xsd:sequence>… </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="AVTypeD">
<xsd:restriction base="string">

<xsd:enumeration value="Movie" />
<xsd:enumeration value="Picture" />

<xsd:enumeration value="Document" />
</xsd:restriction>
</xsd:simpleType>

Medium
id

Video_Tape
id= 8

duration=

Program
kind = “Film”
stored_in= 9

…
DVD
id= 9

capacity=



an instance of C is destroyed then all the
references to this must become null.
Constraints
table A:
CONSTRAINT ÿ_C_ref FOREIGN KEY Cid
REFERENCES C(id) ON DELETE SET NULL
table C:
CONSTRAINT C_Pkey id PRIMARY KEY.

ÿ� Complex type A hasunboundednumber
of referencesto a complex type D.

This means that instances of D have been
created before A refers to them. The relation is
many-to-many, since two elements of type A
may refer to the same elements of type D, so
an intermediate table is needed (A_D_link),
which will keep record of the order of the
references inside A. So for complex types A
and D three tables are created in the database.
When an instance of A or D is destroyed then
all related records in A_D_link are deleted.
Constraints
table A:
CONSTRAINTÿ_Pkey id PRIMARY KEY.
table D:
CONSTRAINT D_Pkey id PRIMARY KEY.
(if minOccurs=1 then Did NOT NULL.)
table A_D_link:
CONSTRAINT D_Pkey (ÿid,Did) PRIMARY
KEY.
CONSTRAINT A_D_ref FOREIGN KEY ÿid
REFERENCESÿ(id) ON DELETE CASCADE
CONSTRAINT A_D_ref FOREIGN KEY Did
REFERENCES D(id) ON DELETE CASCADE

ÿ� Complex type A containsexactly one
elementof complex type B.

This means that the element B exists only
inside A. The relation is one-to-one and there
is no need for an intermediate table. So for
complex types A and B two tables are created
in the database. When an instance of A is
destroyed then the B contained in it must be
destroyed.
Constraints
table A:
CONSTRAINTÿ_Pkey id PRIMARY KEY.
table B:
CONSTRAINT B_Pkey id PRIMARY KEY.
CONSTRAINT B_A_ref FOREIGN KEY ÿid
REFERENCESÿ(id) ON DELETE CASCADE
CONSTRAINT Un_Aid Aid UNIQUE

ÿ� Complex type A containsunbounded
number ofelementsof complex type E.

This means that elements of type E are created
only after the container element A is created.
The relation is one-to-many, since two
different elements of type A have their own
distinct sub-elements of type E. The order of
appearance of elements E inside an A is stored
inside table E. So for complex types A and E

two tables are created in the database. When an
instance of A is destroyed then all the B
contained in it must be destroyed.

Constraints
table A:
CONSTRAINTÿ_Pkey id PRIMARY KEY.
table E:
CONSTRAINT E_Pkey id PRIMARY KEY.
CONSTRAINT E_A_ref FOREIGN KEY ÿid
REFERENCESÿ(id) ON DELETE CASCADE

3.3. Converting XML commands to
SQL commands

The XML-Schema is used to create the
database, but is also used to validate the XML
documents that are transferred among the
applications. During the creation of the XML-
Schema all the physical relations among the
various entities were expressed as relations of
containment or reference among the respective
complex types.

Therefore, when the complex types are
converted into database tables their relations
must be correctly expressed into database
constraints. Additionally, attempts to insert,
update, delete or select a complex type will
result in a set of insert, update, delete or select
queries that will handle all the information that
relates to the complex type. A correct set of
constraints, both database and programming
ones, guarantee the integrity of the database
into the aforementioned actions. Some of the
constraints are:

a) Certain entities exist only aspart of other
entities. The respective complex types appear
only as sub-elements of other complex types.
As a consequence these complex types cannot
appear inside aDBInsert command. To give
an example: the syntactical information is
related to an audiovisual medium, so
SyntacticDS appears only inside an
AudioVisualDS, so that nobody can store
syntactic information into the database that
does not belong to any audiovisual medium.
b) Certain entities can bere-used by more
than one entity. The complex types that
correspond to such entities must appear as sub-
elements ofDBInsert. When a complex type
refers to another complex type, the latter must
already have been inserted into the database.
c) Certain entities containordered instancesof
other entities, which in XML-Schema terms
means that a complex type may have more
than one sub-elements of another type. The
order in which these sub-elements appear is
important hence extra information must be



stored in the database during the XML
document parsing.
d) One or more commands can be send into the
X-database module at the same time. These
commands usually evoke a reply from the
database, so the DBReply module must be able
to group the database replies for each
command.

These constraints are incorporated into the
XML-Schema in the definition ofextension
elements. A pre-parsing of the XML-Schema
document gives the X-Database module all the
information needed for the parsing of the XML
documents.

The four database commands supported by the
module are:
1) Insert: One or moretop-levelcomplex types
can be found inside aDBInsert element. The
parsing starts from the top-level element and
continues recursively to all sub-elements, thus
generating and executing a series of SQL
INSERT statements.
2) Update: One or more top-level complex
types can be found inside aDBUpdate
element. All elements having anegative idare
inserted. The rest of the elements, which have
a positive number as id (this is the id provided
by the database) are updated. The ids are
returned (as inDBInsert)
3) Delete: Only top-level complex typeswith
attribute “id” can be found inside a DELETE
element. The database cascade deletes the
information of all sub-elements.
4) Select:
A DBSelect element has three parts:
- A wherepart that contains the filter of the

Select query.
- A from part where the elements that

contain the attributes to be filtered appear.
- A return part that contains the element(s)

to be returned.
The whole element is returned after a select
statement. The following XML fraction is an
exampleDBSelectcommand.

This command selects all the AudioVisualDS
entities that refer to a MediumDS with
id=1234. The values of various attributes that
appear inside the“from” tags are not taken
into account during the document’s parsing.
These values are randomly assigned to the
required attributes, to maintain the validity of
the XML document. Only the value of –100
field is important and that is because –100
appears in the where clause.

The value of where attribute is the
“where_clause” of our query. From the nested
structure of elements inside the “from” part of
the command, the parser is able to create all
the “join conditions” among the tables that
take part in the query. From the elements that
appear in the “from” and “return” elements
the“list_of_associated_tables”is generated.
The return element has a reference to the
complex type(s) that must be selected. These
references give the name of the table that
corresponds to the“return_entity” .
So the first query that is send to the database
has the following structure:

SELECTreturn_entity.id FROM
“return_entity”, ”list_of_associated_tables”
WHERE(“join_conditions”)
AND (“where clause”)

This query returns a list of ids of the entity to
be returned. Using these ids a set of recursive
select commands is addressed to the database
to obtain all the information of the entities to
be returned. The DBReply element contains
the entities in their complete structure.

4. Related Systems

Several research and commercial systems
provide automatic indexing and querying of
visual contents. QBIC [5] creates a colour
histogram for each image, detects shapes and
considers spatial relationship of objects.
Combined with IBM’s DB2 [6] and its
extenders it provides a powerful platform for
handling visual contents but it is not very
effective in audio contents. VIRAGE’s [7]
Audio and Video Logger provide a good tool
for annotating audiovisual sources and
building a retrieval mechanism upon these
annotations. All the previous platforms provide
solutions on the audiovisual content annotating
and indexing, but unfortunately are not
available for web applications. Nonetheless,
they can be used as a basis for extracting
information from the audiovisual sources that
can be wrapped in our XML model.

<Command>
<Select where="@-100@ = 1234">
<return>
<AudioVisualRef>-98</AudioVisualRef>
</return>
<from>
<AudioVisual id="-96" Name="Gladiator"

AVType="Movie">
<MediaInfo id="-97">
<MediaProfile>
<MediumRef>-100</MediumRef>
</MediaProfile>
</MediaInfo>

</AudioVisual>
</from>
</Select>

</Command>



As far as it concerns the XML part of the
project, a great effort was made to maintain the
validity of the transferred documents
according the XML-Schema. The X-Database
part of the platform achieved to keep the query
mechanism fairly simple, by combining the
default structure of XML documents with the
simplicity of SQL "Select" commands. The
query mechanism provided may not be very
powerful as those of other platforms, like
OQL-S of Ozone [8], or WebOQL [9] but has
certain advantages. The query itself is an XML
document, whose certain parts (from, return)
have the same structure as the other XML
documents that are inserted or updated and the
where part can be easily expressed in an SQL-
like manner. Most of the query categories
proposed in [10] could be performed using our
DBSelect element, such as Simple Visual
Feature Query, Feature Combination Query,
Query by Example etc.

Compared to the interfaces used by
commercial relational database management
systems, X-Database provides a complete
solution in XML documents manipulation.
DB2 XML extender [11] supports the use of
XML DTDs only for describing the database
schema but does not support XML-Schema,
which is more powerful in schema definition.
Microsoft SQL Server [12] uses specific
template files to describe the database schema.
Informix [13], Oracle [14] and Sybase [15]
mainly support creation of XML files from
database contents and do not support XML-
Schema. All the above systems do not provide
the ability to create the database schema based
on the XML-Schema and moreover to use the
same XML-schema to validate all the XML
documents and commands that are forwarded
to the database.

5. Experimental evaluation

In order to test the reliability but also the
scalability of the X-Database module a series
of test transactions is performed to the
database. These transactions included database
creation, multiple insertions and deletions,
updates and selections of database contents. In
all the transactions the total response time is
measured. This includes the parsing of XML
input documents the time for accessing the
database and creating the XML reply
document.

The system has been measured using a simple
interface, where XML documents are inserted
as text and the resulting XML is displayed in a
web browser. The simulation was running in a

Pentium II computer with 128MBytes of RAM
and an IDE HD. The working version of
Panorama platform uses a more powerful
machine and as a consequence its performance
is better.
The X-Database algorithm is tested using
different kinds of application loads in a
simulation. The performance of the module in
creating a small or larger database schema, in
handling multiple insert, update or delete
commands and in processing less or more
complicated select queries are evaluated.

5.1. Database Complexity

The most critical section in the X-Database
work is the creation of the database. The
module must analyse the structure of XML-
Schema document and create the appropriate
number of tables along with the required
foreign keys and triggers that will guarantee
the integrity of the database in the cascade
insertions and deletions. Several parameters of
the database schema have been measured, such
as the number of tables created, the number of
foreign key and triggers that guarantee the
schema integrity, as well as the database
creation time for XML-Schema files of
different complexity. When the number of
complexTypes, the number of references and
the number of extensions in the XML-Schema
increases, the number of tables in the database
schema increases respectively. The results are
presented in the following table.

5.2. Insertion-Selection time

In order to test the efficiency of our system,
the time needed for a set of insertion and
selections from the database has been
measured. The database schema used for the
test was created using an XML-Schema file of
increased complexity, with 68 complexTypes
and 18 extensions. It is explicit in the
following graphs that both insertion and
selection time is linear to the number of
retrieved elements given that all the elements
are of the same type. When elements of
different type are inserted, the number of

Complex
Types

Unbounded
refs

Extensions Tables Triggers Foreign
keys

Creation
time (sec)

Drop time
(sec)

68 35 18 140 77 260 52 31
63 31 14 111 51 197 41 20
56 29 14 99 44 172 38 20
50 27 13 88 40 154 31 20
45 26 9 81 36 139 29 11
37 23 8 69 30 93 19 9
28 18 5 50 21 64 15 8
15 9 5 26 10 31 7 4
5 5 0 11 6 12 3 3



consequent insertions differs and as a
consequence the relation to time is not linear.

Insertions/Insertion time

0

10

20

30

40

50

0 20 40 60 80 100 120

Elements inserted

T
im

e
(s

ec
)

SELECT

0
5

10
15

20
25

0 20 40 60 80 100 120

Number of retriev ed elements

R
es

po
ns

e
T

im
e

(s
ec

)

An audiovisual object stores its information
into 34 different tables. As a result, an attempt
to insert an audiovisual object into the
relational database evokes 34 insert SQL
commands, which are executed recursively
into the database.

In the following figure, the tables where the
information of an audiovisual object is stored
are listed.

6. Conclusion and further work

Attempting to create a platform that handles
digitised video data and meta-information,
where different modules will access the same
database, XML is chosen to be the wrapper of
the information transferred among them. A set
of rules formed as an XML-Schema document
is then developed, to guarantee the validity of
transferred documents. The explicitness of
XML-Schema has been exploited to build the
database where information is stored.

The X-Database module created plays the role
of the database interface. Client applications
interact with the relational database system
only using XML documents without taking
care of the underlying database schema. This
provides a simple and database independent
mechanism for storing and retrieving video
meta-information that can be easily extracted
to any kind of information. Fault tolerance is
achieved by adding appropriate control
procedures to the database, such as triggers
that check the validity of inserted values,
reference constraints that guarantee the
cascade removal of an object and its content
objects from the database. The last is very
critical since information for an object may be
stored in more than one table in our database.

Further research has to be focused into the
retrieval and advanced query tasks. The
retrieval process can be easily accelerated if
the appropriate indexes are created. For this
task the current XML-Schema can be enriched
to precisely define the information that must
be indexed, or even more the information
entities on which to perform similarity search
etc. Finding an efficient notation to describe
such necessities in XML-Schema is crucial in
creating a database schema that will serve
advanced retrieval needs.

7. References

[1] G. Akrivas, S. Iwannou, E. Karakoulakis, K.
Karpouzis, Y. Avrithis, A. Delopoulos, S.
Kollias, I. Varlamis, M. Vazirgiannis, An
Intelligent System for Archiving and Retrieval
of Audiovisual Material Based on the MPEG-7
Description Schemes, Technical paper.

[2] “XML Schema Part 0: Primer,” W3C Working
Draft, Sept. 2000
(http://www.w3.org/TR/xmlschema-0)

[3] ISO/IEC JTC1/SC29/WG11, “MPEG-7
Overview (v. 1.0),” Doc. N3158, Dec. 1999.

[4] R. Jain, A. Hampapur: Metadata in Video
Databases. SIGMOD Record 23(4): 27-33
(1994)

ÿ� AudiovisualDS
ÿ� ObjectIDs

�� SyntacticDS
� � SyntacticDS_ KeyFrameRef_link
� � ThemeDS

• ThemeDS_ KeyFrameRef_link
• ShotGroupDS

♦ ShotGroupDS_ KeyFrameRef_link
♦ ShotGroupDS_ ShotRef_link

• ShotDS
♦ KeyframeDS
♦ MovingRegionDS

�� SemanticDS
� � SemanticDS_EventRef_link
� � SemanticDS_ObjectRef_link
� � SemanticDS_ EventObjectRelationRef_link

�� SyntacticSemanticLinkDS
� � SynSemDS

• SynSemDS_ ObjectRef_link
• SynSemDS_ EventRef _link
• SynSemDS_ EventObjectRelationRef _link

�� MediaInfoDS
� � MediaProfileDS

• MediaRecordDS
• MediaProfileDS_Medium_link

�� Summarization
� � HierarchicalSummary

• ThemeSummaryDS
♦ ShotSummaryDS

�� ShotSummaryDS_KeyFrameRef_link
♦ ShotGroupSummaryDS

� � SequentialSummary
• SequentialSummaryDS_ShotRef_link
• SequentialSummaryDS KeyFrameRef link



[5] M. Flickner et al, Query by Image and Video
Content: The QBIC System, IEEE Computer
Vol. 28, No. 9, September 1995.

[6] DB2 Video extenders,
(http://www.software.ibm.com/data/db2/)

[7] A. Gupta, Visual Information Retrieval
Technology, A VIRAGE Perspective white
paper, Virage, 1995.

[8] S. Abiteboul, J. Widom, T. Lahiri, A Unified
Approach for Querying Structured Data and
XML. The Query Languages Workshop,
QL'98.

[9] G. Arocena, A. Mendelzon, WebOQL:
Restructuring Documents, Databases, and
Webs, Proc. ICDE'98, Orlando, February 1998.

[10] Y. Alp Aslandogan and Clement T. Yu,
“Techniques and Systems for Image and Video
Retrieval”, IEEE Transactions on Knowledge
and Data Engineering, vol. 11, no. 1, Jan.-Feb.
1999.

[11] IBM’s DB2 extender for XML
(http://www-4.ibm.com/software/data/db2/
extenders/xmlext.html)

[12] Microsoft SQL Server XML support,
(http://msdn.microsoft.com/msdnmag/issues/
0300/sql/sql.asp)

[13] Informix and XML,
(http://www.informix.com/xml/)

[14] Steve Muench, Using XML and Relational
Databases for Internet Applications, Oracle
Corporation
(http://technet.oracle.com/tech/xml/info/htdocs/
relational/index.htm#ID795)

[15] Sybase SQL server,
(http://www.sybase.com/products/
databaseservers/ase/whitepapers/L01041.pdf)


