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Summary. Fusion of multiple cue image partitions is described as an indispens-
able tool towards the goal of automatic object-based image and video segmentation,
interpretation and coding. Since these tasks involve human cognition and knowl-
edge of image semantics, which are absent in most cases, fusion of all available cues
is crucial for effective segmentation of generic video sequences. This chapter inves-
tigates fuzzy data fusion techniques which are capable of integrating the results
of multiple cue segmentation and provide time consistent spatiotemporal image
partitions corresponding to moving objects.

1 Introduction

Fusion of multiple cue segmentations has proved to be an indispensable tool
towards the goal of automatic object-based video segmentation and coding,
mainly in the framework of the MPEG-4 standard [20]. State of the art
video analysis/coding systems such as the SESAME system and the Eu-
ropean COST 211 Analysis Model [10] achieve content-based spatiotempo-
ral segmentation of video sequences employing fusion of multiple cue image
partitions. Individual cues usually include color, motion as well as motion-
compensated partitions of previous video frames, mainly for the purpose of
object tracking [1,9]. The fusion process itself is accomplished by generation
of hierarchical image partition structures, construction of decision trees and
heuristic rule-based partition processing. In many cases, current approaches
mainly focus on video coding, usually through rate-distortion criteria [17].
Other approaches perform simultaneous fusion and segmentation, making it
hard to extend the fusion process to multiple cues [16]. Although such sys-
tems offer robust distinction between objects with different motion patterns,
such as moving and stationary objects, many limitations exist.

First, it has become clear that additional cues, including depth, texture
and shape apart from color and motion, are generally necessary for accurate
object detection. Each additional cue can offer enhanced segmentation perfor-
mance in specific cases where other cues fail. Moreover, each segmentation is
given as an image partition, or, in a more general approach, is represented by
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a set of image partitions at different levels of detail, forming a partition tree
derived from a multiscale coarse-to-fine strategy [17]. Unified handling and
processing of more complex data representations becomes difficult, especially
in the presence of uncertainty.

Moreover, the fusion process should interact with object identification,
categorization and recognition; cognitive vision systems require use of a pri-
ori knowledge about specific objects for robust segmentation fusion [4]. Strict
associations between image partitions make existing systems susceptible to
noise, hence fuzziness should be introduced in all levels of partition repre-
sentation. Adaptation mechanisms are needed for adjustment of the fusion
modules behavior in real life dynamic environments. Integration of large cue
sets, a priori knowledge, fuzzy representation, intelligence and adaptation
mechanisms into fusion algorithms will allow their robust operation in generic
cognitive vision systems and in real-life conditions [18].

The above issues give rise to fuzzy rule-based fusion systems [15] that are
able to handle complex partition tree representations and accommodate for
integration of numerous cues including intensity, color, texture, motion and
depth. Fuzzy rule based fusion techniques with built-in complex knowledge
representation will enable robust image / video segmentation in contrast to
conventional fusion techniques based on rate-distortion criteria or elementary
heuristic rules. They may also permit reliable multiple object tracking, effec-
tively dealing with occlusion / disocclusion, appearance variation, articulated
motion and distraction problems.

In this chapter, we focus on integration of the results from multiple cue
segmentation and on derivation of fuzzy decisions for handling inconsistencies
and improving segmentation accuracy. The proposed approach takes into ac-
count a priori knowledge related to the expected characteristics of the differ-
ent cue based segments. For instance, motion information is related to moving
parts of objects, depth information defines the main object planes/views, but
rather imprecisely, and color information provides precise but oversegmented
objects. The target of our approach is to fuse individual single cue partitions,
group image regions into objects and derive a representation of candidate
objects by projecting and combining the generated cue segments.

In more detail, the generic properties of each candidate cue segmentation
is given below, illustrating that segment partitions generated by single cues
cannot be directly exploited for semantic object extraction:

e color / intensity segmentation, derived on the basis of spatial homogeneity
criteria, allows very accurate definition of region boundaries, but fails to
identify objects composed of regions with varying color characteristics

e texture segmentation permits extraction of areas with specific color /
intensity patterns but still generates a large number of segments for each
object
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e motion segmentation, usually based on parametric motion models, pro-
duces a more limited number of regions, but produces coarse region
boundaries due to matching errors and occlusions, while it segments ob-
jects with articulated motion

e depth segmentation, either though stereoscopic analysis or relative mo-
tion / occlusion between neighboring regions, achieves reliable approxi-
mation of real objects; however it fails to detect distant, stationary ob-
jects while depth regions have inaccurate boundaries too

e motion-compensated partitions of previous video frames provide a clear
clue of the expected object positions and are necessary for temporal ob-
ject tracking and detection of newly exposed objects, but need refinement
using partitions derived from other cues

In general, image partitions obtained from color, texture, motion and
depth segmentation form a hierarchical tree structure, in the sense that a
depth region is composed by one or more motion region, motion regions
contain several texture regions and so on. Fusion can then be accomplished by
means of projection and hierarchical grouping of low-level partitions based on
high-level ones. However, this is not always the case, since an object might be
decomposed into independent non-overlapping partitions, according to color
or motion. For this reason the proposed fusion approach performs intelligent
region grouping based on a priori knowledge.

Specifically, based on existing efforts on fusion of color and motion seg-
mentations, an initial set of heuristic rules is constructed, for instance:

1. projection of a color region onto motion regions identifies its degree of
membership in each motion region

2. grouping of color regions that belong to the same motion region provides
a single region with accurate boundaries

3. projection of such regions onto motion-compensated regions of previous
frames permits object matching and tracking

4. discrepancies between motion regions and motion-compensated regions
of previous frames identify appearance of new objects or object splitting
due to articulated motion.

This set is enriched by additional rules to accommodate for depth seg-
mentation. The system presented in this chapter focuses on color, motion,
depth and motion-compensated segments of previous frames; however, the
formulation of the proposed fusion approach permits integration of an arbi-
trary number of cues in a uniform and consistent way. Artificial intelligence
techniques, and in particular fuzzy rule based systems are employed for the
implementation of the fusion process [14]. Adaptation is possible, allowing
addition, removal and updating of rules. Experiments on natural video se-
quences are presented in this chapter to illustrate the performance of the
proposed technique. In particular, the output of the intelligent segmentation
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Fig. 1. General System Architecture

fusion and grouping procedure is shown to be of better quality than the one
provided by each separate segmentation process.

The remaining of this chapter is organized as follows. In Section 2 the
proposed integrated system architecture is described and details on the ex-
traction of color, motion and depth segments are given. Section 3 deals with
the formulation of the fusion process and provides a detailed description of
the proposed fuzzy segmentation fusion approach. In Section 4, experimental
results on natural video sequences are presented and compared to single cue
segmentation approaches. Finally, conclusions are drawn and a brief descrip-
tion of further work is given in Section 5.

2 The proposed system architecture

In order to take advantage of depth segmentation in the fusion process, depth
estimation is performed on stereoscopic video sequences consisting of two
channels. Each stereoscopic sequence is first separated into two sequences,
one for the left and one for the right channel. The left-channel sequence is
used by the color, depth and motion segmentation modules. The right-channel
sequence is only used by the depth segmentation module for the creation of
the disparity map. For each frame, when all the modules produce their final
segmentation, the segmentation maps are passed to the fuzzy fusion system
which produces the final segmentation map. This final segmentation is fed
back to the system to be used by the scene detection [11] and the motion
estimation / compensation [12] modules. All segmentation modules use the
M-RSST algorithm to create the image partitions. The block diagram of the
proposed system along with its modules is shown in Fig. 1. A description of
the M-RSST algorithm and its application to each module follows.
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2.1 The M-RSST Algorithm

The Recursive Shortest Spanning Tree (RSST) algorithm [5] is our basis for
cue segmentation of each frame in a given video shot. Despite its relative
computational complexity, it is considered as one of the most powerful tools
for image segmentation, compared to other techniques (including cue clus-
tering, pyramidal region growing and morphological watershed). Initially an
image I of size M x N pixels, is partitioned into M x N regions (segments) of
size 1 pixel and links are generated for all 4-connected region pairs. Each link
is assigned a weight equal to the distance between the two respective regions,
which for example in the case of color segmentation could be defined as the
Euclidean distance between the average color components of the two regions,
using a bias for merging small regions. All link weights are then sorted in
ascending order, so that the least weighed link corresponds to the two closest
regions. The iteration phase of the RSST is then initiated, where neighbor-
ing regions are recursively merged by applying the following actions in each
iteration:

1. The two closest regions are merged and the new region cue components
and size are calculated.

2. The new region link weights from all neighboring regions are recalculated
and sorted.

3. Any duplicated links are removed.

The iteration terminates when either the total number of regions or the
minimum link weight (distance) reaches a target value (threshold). A distance
threshold is in general preferable since it provides a result that is independent
of the image content. The execution time of the RSST is heavily dependent
upon the choice of the sorting algorithm, which is certainly a bottleneck
of the algorithm. For this reason, a new approach has been proposed, the
Multiresolution RSST [6] which recursively applies the RSST algorithm on
images of increasing resolution. Initially a multiresolution decomposition of
image I is performed with a lowest resolution level of Lg so that a hierarchy
of frames I(0) = I,1(1),...,I(Lo) is constructed, forming a truncated image
pyramid, with each layer having a quarter of the pixels of the layer below.

The RSST initialization takes place for the lowest resolution image I(Lg)
and then an iteration begins, involving the following steps:

1. Regions are recursively merged using the RSST iteration phase.

2. Each boundary pixel of all resulting regions is split into four new regions,
whose cue components are obtained from the image of the next higher
resolution level.

3. The new link weights are calculated and sorted.

This ’split-merge’ procedure is repeated until the highest resolution image
I(0) is reached. It is shown in [6] that effectively only the segment contour
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shapes are affected at each iteration, since no segments are created or de-
stroyed, hence the multiresolution segmentation approach yields much faster
execution compared to RSST. Although its computational complexity is not
straightforward to calculate, since it depends on the number, shape and size
of segments, it is shown by experiments that it is at least 400 times faster
than RSST for a typical image size of 768x576 pixels.

2.2 Color Segmentation

The M-RSST algorithm is directly applied on the left-channel image for color
segmentation. Using the RGB color space, a distance measure between two
adjacent regions (segments) Sy and Sy is defined as

2 1/2 ASI ASz
As, + As,
(1)
where Rg,,G s, and Bg, respectively represent the average R, G and B values
of all pixels inside region S; and Ag, is the number of pixels within this region.

dc(slasz) = (RSI - R52)2 + (GSI - GS2)2 + (le - BS2)

2.3 Motion Segmentation

In order to solve the motion segmentation problem, numerous different tech-
niques can be employed, such as direct intensity based methods, optical flow
based methods, or simultaneous motion estimation and segmentation meth-
ods [3,21]. Each method has its own advantages and disadvantages, restricting
its use to specific applications. For example, simultaneous motion estimation
and segmentation methods are unattractive due to their high computational
complexity, while direct intensity based methods cannot handle camera noise
and illumination changes. Optical flow methods are quite popular and widely
used both for video coding and image analysis and understanding. In this
system a block matching algorithm is used to create the motion field. In low-
texture areas, the produced motion field can be noisy, thus, a post-processing
step for motion field smoothing is indispensable. Median filtering is selected
for this purpose due to its speed and its ability to preserve object contours.

Motion field segmentation is performed by dividing each frame into re-
gions of homogeneous motion. The M-RSST algorithm described above is
now applied on the motion field with the following distance:

/2 Ag As,

M = X —X 2 Y _Y 2
d™ (S1,52) [( 51 s2)” + (Ys, = Ys,) ] As, + As,

(2)

where Xg,,Ys, represent the average x and y coordinates of the motion vec-
tors on segment S;.
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2.4 Depth Segmentation

The use of three-dimensional (3-D) video, obtained by stereoscopic or multi-
view camera systems provides very efficient visual representation. The prob-
lem of content-based segmentation is addressed more precisely since video
objects are usually composed of regions belonging to the same depth plane.
Therefore, 3-D video enables efficient handling and manipulation of video ob-
jects by exploiting depth information provided by stereoscopic image analysis
[2,7].

Stereoscopic video sequences consist of two channel images obtained by
two cameras and provide the perspective projection of 3-D points onto the
two 2-D image planes of the cameras. In the framework of this chapter, the
technique proposed in [8] is employed to generate a disparity map from the
two images. As described in [19], a depth map is then obtained from the
disparity map, occluded areas are detected and compensated for, and finally
depth segmentation is performed by applying the M-RSST algorithm on the
final depth map. The following distance is used for depth segmentation:

As, As,
As, + As,

where Dg, represents the average depth of segment S;.

d°(81,8:) = |Ds, = Ds, 3)

3 Fuzzy Segmentation Fusion

We have now extracted the color, motion and depth segments, using the M-
RSST algorithm. The next step is to fuse the color and motion segments as
these segments identify the object boundaries very accurately. Additionally
depth segments can provide us with a coarse separation of the semantic ob-
jects because usually objects consist of segments that are located at about
the same depth. So by using depth segments as a constraining mask we can
project color and motion segments onto this mask. Then for every color seg-
ment we find in which depth it belongs and finally we fuse the color segments
of the same depth into one new segment.

The Fuzzy Segmentation Fusion (FSF) takes as input the color, motion,
depth and motion-compensated previous segmentations and gives to the out-
put the final fused segmentation.

Let us first provide the reader with the formal mathematical description
of our work. We denote with

SO = {Slovsgv"' 78%}
SM: {S{wﬂséwa"' 7811\(4}
SD = {59,85,"‘ 785}

SP = {sfﬂsga"' 785}
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the color, motion, depth and motion-compensated previous segmentations
(the inputs of the FSF module), while

SF :{vasga"' 785}

stands for the fused segmentation (the output of the FSF module). For sim-
plicity reasons, we did not involve the time in the above notation. Thus, we
assume that time ¢ is implied, unless something else is clearly stated. The
above mentioned segmentations are actually crisp image partitions.

The FSF module tries to take advantage of the information provided by
S¢,8M SP and S¥ in order to improve the precision and the semantic
framework of the segmentation. Since the color semgnetation provides the
most precise boundaries, it is reasonable to use S¢ as the basis on which
S¥ will be constructed. Furthermore, we assume that S¢ provides an over-
segmented image partition. Thus, FSF actually produces a more “unified”
partition S¥ in comparison with S¢. This means that:

Vie Ny and j €Ny we have s,-ogsf

where
N,=1,2,--- ,a.

In order to compute ST out of S¢, 8™ SP and SP we use the M-
RSST algorithm. Roughly speaking, we take all the possible color segment
pairs provided by S¢ and compute the distances between them. Then, the
two closest segments (smallest distance) are united (if their distance is less
than a threshold) and the whole process is repeated until no segments are
united. Obviously, the intelligence of the method lies on the way in which the
above distances are computed. Let us now describe this process.

We first introduce some useful operators. For each pair of segments s1, s2
the projection operator R(sl,s2) is defined by:

|s1 N s2
R(sl,s2) = ———— 4
(s1,02) = (W
where | - | denotes the cardinality of the set (in this case the number of the

pixels of the segment).

Given a segment s and a set of segments S, the 8-neighborhood operator
Iy(s,S) is defined by:

Iy(s,S) = {i € Nig| : |R(s,si) — max R(s,si)| < 6}
JEN[g|

where theta is a threshold and R(-,-) the projection operator defined by 4.
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The cue-based distance of two segments is defined (for any cue like motion,
depth, motion-compensated previous) with the aid of the @-neighborhood
operator. For example the motion-based distance DM (s¢,5%) of two color

8¢ ]
segments s, 85 s¢,(i,j € Ny) is defined by:

DM(s¢ s =a-b-6, —a-b-b,

8155
where
M
a = maxR s
kENK (z: k)

b= m%xR( ; ¢ M)

= 8(|1o (s, SM) N Iy (s, S™M)])

6y = 5( €M) U I (s, $M)] = [T (s, $M) N 1o (56, 8™ )
5= 1,1fm760
T 10,ifz=0

The distance D(s{, s; 5¢) between two color segments s¢ and SJC, used in the
M-RSST segmentation process of the FSF module, is derlved from the

motion-based (DM( % so))

l 277
depth-based (DP(s¢, f))
and previous-based (D¥ (5%, JC))

distances computed with the aid of the above process. This is actually the
intelligent part of the FSF module that provides the system with the ability
to fuse the various cues using a priori knowledge in the form of fuzzy linguis-
tic rules [13]. Figure 2 shows the structure of the fuzzy inference system that
implements the above idea. The system takes three inputs: the motion-based
distance, the depth-based distance and the previous-based distance. Obvi-
ously, they are fuzzy values (between -1 and 1) representing the degree in
which the specific cue “advises” the fusing fuzzy inference system to provide
or not a high value of “unity” between the two color segments (its output).

The operation of the fusing fuzzy inference system is based on a set of lin-
guistic rules provided by experts. The rules map the input linguistic variable
to the output one, i.e. the fuzzy partitions defined on

DM( DD( C C) and DP( c O)

z?g) z:] z;g

to the fuzzy partition defined on D(s¢, 85 5¢) (Figure 3). Table 1 summarises
this set of rules. Finally, in Figure 4 the surface view of the system input-
output mapping is shown.
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4 Simulation Results

4.1 Equipment

We tested our algorithm in a real 3-D video sequence. This sequence was
obtained with the aid of the “SX2000 Stereo-Optix” lens from NuView con-
nected to a normal MiniDV video camera. The SX2000 lens projects two
images on the camera’s focus with the aid of a mirror; those two images
are not recorded simultaneously but sequentially by taking advantage of the
interlaced nature of the CCD video signal. Therefore the even lines of the re-
sultant video sequence represent the left view and the odd lines represent the
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right view. The focal distance can be adjusted through mechanical means.
Apparently this method diminishes the vertical resolution by half (720 x 288)
but it is still satisfactory for our use.

The obtained stereo video sequence is first analyzed and for each pair
of stereo frames a depth map is estimated. The application of the M-RSST
algorithm on the depth map results on the depth segmentation. The color
and motion segmentation cues are then constructed from the left channel
image.

4.2 Color

Since the fusion process merges color segments we want those segments to
have precise boundaries. Thus, for the color segmentation we use a level 1
resolution (of size 2 x 2 pixels) on the M-RSST. Since we also want an over-
segmented image, we choose a very low distance threshold for the region
merging process. For this experiment we used a distance threshold of 0.05%
in the RGB space, but any low threshold would produce similar results. An
enlarged segmentation result is illustrated in Fig. 5 where the segments are
clearly shown. An interesting feature of the RSST algorithm is that it can
stop at a predifined number of segments and this would be an alternative
way of achieving an oversegmented color image.
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|If Motion is |and Depth is |and Previous is |then Merging is |
M-Negative D-Negative P-none VeryLow
M-Negative D-Neutral P-Negative VeryLow
M-Negative D-Neutral P-Neutral VeryLow
M-Negative D-Neutral P-Positive Low
M-Negative D-Positive P-Negative VeryLow
M-Negative D-Positive P-Neutral Low
M-Negative D-Positive P-Positive Medium
M-Neutral D-Negative P-Negative VeryLow
M-Neutral D-Negative P-Neutral VeryLow
M-Neutral D-Negative P-Positive Low
M-Neutral D-Neutral P-Negative Low
M-Neutral D-Neutral P-Neutral M-Positive
M-Neutral D-Neutral P-Positive High
M-Neutral D-Positive P-Negative Medium
M-Neutral D-Positive P-Neutral High
M-Neutral D-Positive P-Positive High
M-Positive D-Negative P-Negative Low
M-Positive D-Negative P-Neutral Medium
M-Positive D-Negative P-Positive Medium
M-Positive D-Neutral P-none High
M-Positive D-Positive P-none VeryHigh

Table 1. The set of linguistic rules of the fusing fuzzy inference system

4.3 Motion

A block-matching algorithm is used to construct the motion field. The search
area of the block matching in our test was set at 10 pixels in both directions
and the block size is 3 x 3 pixels. Despite the small blocksize, the motion field
is quite accurate. During the block matching process for the motion field
creation, if a block’s minimum distance from the test block is less than 20%
greater than the distance of the respective zero-motion block, then we con-
sider the corresponding motion vector as zero. This step reduces the motion
noise in low texture areas. A median filter is then applied at the motion field
before the segmentation process. For the motion segmentation we apply the
M-RSST with a highest resolution level of Ly = 3 (block resolution of 8 x 8
pixels) to speed up the segmentation process.

4.4 Depth

A disparity map is estimated from the left and right channel images. A depth
map is then obtained from the disparity map, occluded areas are detected and
compensated for, and finally depth segmentation is performed by applying the
M-RSST algorithm on the final depth map. The search area for the disparity
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estimation is 10 pixels with a block size of 3 x 3 pixels. The depth segmentation
is created with a block resolution of 4 x 4 pixels.

4.5 Fusion

The fusion subsystem is then started with the color, motion and depth seg-
mentation maps as inputs along with the cue fusion result of the previous
frame. In the case of the first frame where no previous fusion results exist,
a blank map is used instead. The fusion subsystem continues with the color
segment merging by considering now their fuzzy distance.

4.6 Results

An example of the fusion process is illustrated in figure 5, where the color,
motion and depth segmentation results are shown along with the fusion result
of the previous frame. More examples are given in figures 6-17 for two video
sequences. On the first one the camera is still and the person is moving
from left to right with his right hand extended. A 6-frame sample of this
sequence is shown in figures 6-11. In this sample, the color segmentation
produces about 140-150 segments; the motion segmentation produces two
segments, one for the background and one for the moving person; the depth
segmentation produces three to five segments: one for the background, one
for the person’s body, one for his hand and additionally some false segments
especially in areas with low energy in the high horizontal frequencies.

It can be seen that the person’s boundaries in the fused result are more
precise than the boundaries of the cue sources. This is not due to the higher
resolution of the color segmentation but due to the fusion of color and depth
segmentations; a depth segmentation at higher resolution would not have the
accuracy of the color segmentaton. The person on the fused image has been
seperated succesfully from the background; his hand, having a different depth
from his body, is split in a different segment. At frame 59 in figure 10 the
hand is separated in two segments due to the vertical expansion of the hand
segment of the depth channel.

On the second sequence, both the camera and the person are still but the
person is waving his hand. A 6-frame sample is shown in figures 12-17. As
it can be seen, up to two motion vectors are created on the palm and arm
areas which when combined with the depth and color channels result in the
fused images. Note that the area below the the person’s right arm (at the
bottom left) is considered to be in a different segment than the rest of the
background, because the corresponding color segments are not adjacent; they
are separated by the arm’s color segments. In figure 12 two motion segments
have been detected due to the higher linear velocity of the palm. Because of
this, the palm is a seperate segment in the fusion result (Fig. 12) and this
separation propagates to the following segmentations. If this separation is
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desirable, the M-RSST algorithm could be adjusted to be more sensitive and
produce more segments. If the separation is not desirable, the use of a full
parametric motion model would detect the circular motion and thus preserve
the arm and palm in one segment.

Because of the inaccurate depth segmentation, one can observe an ex-
tra segment in figure 15 near the palm (in black color). This segment was
not merged with the rest of the palm because of the previous and motion
segmentations, and thus it was not propagated to the following frames.

5 Conclusions

In this chapter, we examined the integration of multiple cue segmentations
and the use of fuzzy decisions for handling inconsistencies and improving
segmentation accuracy. The resulting segmentation is shown to be superior
to the individual cue segmentations.

One way to improve the fusion performance is by augmenting its memory:
more than one previous frames could be taken into account thus minimizing
the error propagation. Kalman filters could be introduced in combination
with the fused-result memory, to implement object tracking and further en-
hance segmentation reliability.

Fuzziness may also be introduced in the partitions themselves, so that
the transition between neighboring regions may be gradual, as well as in the
generation of the partition trees, by means of link weights expressing the
strength of decomposition of a coarse region into finer ones. Fuzzy partitions
can be defined on the partition trees, giving linguistic meaning to low level
visual descriptors and allowing the numerical interpretation of inference rules.
Moreover the fusion module parameters could be dynamically adapted with
the aid of higher level object description information.
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Fig. 6. Sequence 2, Frame 55
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Fig. 7. Sequence 2, Frame 56
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Fig. 8. Sequence 2, Frame 57
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Fig. 9. Sequence 2, Frame 58
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Fig. 10. Sequence 2, Frame 59
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Fig. 11. Sequence 2, Frame 60
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Fig. 15. Sequence 1, Frame 33
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Fig. 16. Sequence 1, Frame 34
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