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A neural nexwork architecture is proposed and shown to be very
effective in performing lossy compression of medical images. A
novel ROI-JPEG technique is introduced as the coding platform, in
which the neural architecture adaptively selects regions of interest
(ROI’s) in the images. By letting the selected ROI's be coded
with high quality, in contrast to the rest of image areas, high
compression ratios are achieved, while retaining the significant
(from medical point of view) image content. The performance of
the method is illustrated by means of experimental results in real
life problems taken from pathology and telemedicine applications.

1. INTRODUCTION

Image compression and coding techniques usually consist
of solid mathematical models tuned so as to globally
minimize the reconstruction error. Consequently, they reach
decisions according to metrics and statistics extracted glob-
ally on a large variety of input data categories, while
in most applications any a priori available knowledge is
disregarded.

In contrast, in most real life applications, data is dis-
tributed over few categories, for which already available
knowledge may be exploited in order to develop an op-
timum application specific coding platform. This is par-
ticularly the case in image encoding models, where one
may have available significant information concerning, for
example, the most frequently utilized colors, the signifi-
cance of information contained in the chrominance versus
luminance components, the desired compression ratios, or
the target transmission times.

The scheme presented in this paper stems from the idea
that the majority of medical images consist of areas of min-
imal contribution to the information finally perceived (e.g.,
background), and of foreground objects or regions which
are of extreme interest to the expert/end-user examining
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the images. An efficient coding and compression scheme -
is developed, which takes advantage of the difference in
visual importance between areas of the same image and
exploits it by coding regions of interest (ROI's) with
maximum precision, while implementing a tolerably lossy
reconstruction of the low-interest areas.

Medical image compression has been up to now mainly
concerned with lossless coding techniques [1], [2], which
provide compression ratios of around 2:1, ensuring that all
significant information for medical purposes is retained in
the reconstructed images. The Digital Image and Communi-
cations in Medicine proposed standard (DICOM3), that has
been derived and adopted by the American College of Ra-
diology and National Electrical Manufacturing Association
(ACR-NEMA), includes lossless coding and compression
of medical images. However, recent studies concerning,
for example, the amount- of quantization error in digitized
images indicate that lossy compression can be adopted if the
reconstruction error does not significantly affect the image
quality from a medical point of view: Based on such results,
in 1995 the ACR-NEMA announced a call for proposals for
lossy image compression techniques that are to be included
in DICOM3.

The definition of ROI’s can be used to achieve variable
spatial reconstruction of the original medical images. De-
pending on the ratio of high- to low-importance regions,
substantial saving can be obtained in the time/space re-
quired for transmitting or storing the image, while causing
an unperceivable degradation in the image quality. A big

gain is generally expected in images where information is

concentraied in relatively small portions of the image, a
case which is met in various disciplines, such as.pathology
imaging, radiology examinations (e.g., computed tomogra-
phy, magnetic resonance imaging (MRI), nuclear imaging,
and mammography), and X-rays (breast, chest, bone, and
skull). Especially when transmission of such images is
required, for example in telemedicine applications, high-
compression ratios are necessary, together with a very good
quality rendition of the areas containing certain parts of the
images.
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Variable spatial reconstruction is, however, possible, if
a priori levels of reconstruction quality for relevant in-
formation can be guided by the contents of the images.
This implies that a mechanism is required, which examines
the medical images and assists the doctor performing the
examination, by automatically providing him with the “sug-
gested” ROT’s in the images. An appropriate neural network
architecture is proposed in this paper as an efficient and
powerful technique for performing this task.

Several neural network techniques have been applied to
the problem of image compression [2]. They include non-
linear predictors for predictive coding, principal component
extraction of image data for block transform coding, as
well as vector quantization approaches. Nonlinear predic-
tors are mainly based on multilayer perceptrons [3], [4],
without excluding recurrent network architectures. Several
approaches for the calculation of principal components have
been proposed, which are typically established upon some
form of Hebbian learning algorithm [5], [6]. As far as vector
quantization is concemed, the self-organizing map (SOM)
[7] has formed the basis of several algorithms for codebook
generation. Although. most of the above techniques have
been claimed to yield promising results, it must be admitted
that a thorough and comprehensive evaluation is needed
to assess the benefit of using neural networks in place of
well-established conventional approaches to image com-
pression. Nevertheless, the availability of efficient hardware
implementations exploiting the massively parallel nature of
neural networks constitutes a promising perspective in this
direction [8].

On the other hand, neural network methods have shown
an admittedly good performance in solving problems as-
sociated with pattern recognition and classification tasks
[9]-[11]. Several issues relating to the potential and limi-
tations of widely used network models, such as multilayer
perceptrons and radial basis function networks, have been
investigated during the last several years by means of
theoretical results and real-world experimentation [3], [12],
and [13]. Other neural network approaches, including the
categories of probabilistic neural networks (PNN’s) [14]
and learning vector quantizers (LVQ’s) [15], have been
applied to a variety of problems. If properly designed, the
above approaches can yield near-optimal performance in
pattern classification, in most cases.

In this paper, the ability of neural networks to provide
effective solutions to image classification and recognition
problems is exploited in order to adaptively select ROI’s in
medical images. More specifically, a neural network module
is generated and embedded in a novel ROI-JPEG approach
to lossy compression of medical images that uses standard
coding techniques (e.g., JPEG, MPEG, and H-26x).

The ROI-JPEG scheme presented next is composed of
two distinct algorithmic modules. The first one corresponds
to the segmentation stage, which is neural-network-assisted
and performs ROI selection and localization. The second
stage performs lossy adaptive compression using a coder
derived from the JPEG baseline [16], where the ROI-
based approach generates spatial reconstruction of suitably

nonhomogeneous quality. Following the selection of areas
of high/low importance in the image, important regions are
coded with appropriately selected high-quality quantization
tables, in contrast to the rest of the image which is coded
with low-quality quantization tables (i.e., fewer bits per
block). Section II describes the coding platform, focusing
on the introduction of ROI’s in the JPEG coder. Section IIT
presents the proposed hierarchical neural network archi-
tecture for performing the ROI selection task, while the
specific neural network models included in this architecture
are described in Section IV. Experimental studies using real
life medical image data, which illustrate the performance of
the method, are given in Section V, while conclusions are
provided in Section VI.

II. ROI IN JPEG IMAGE CODING

A. The JPEG Standard

The JPEG standard [16] for still image coding is based
on the discrete cosine transform (DCT) [17]. Color images
represented in the component (R, G, B) color space are
transformed to the luminance/chrominance Y, C,., Cj, space
prior to coding. According to the baseline encoder model,
the input image is divided into blocks, usually consisting
of 8 x 8 pixels, which are transformed into the DCT
domain. The transform coefficients are then quantized using
a user-specifiable quantization matrix and the quantized
coefficients go through a lossless coding procedure us-
ing either arithmetic or Huffman coding. Following this
structure, it is possible to design quantization matrices that
take into account image-dependent information according
to specific properties of the human visual system. In this
case, the coder may provide images of subjectively better
quality than the respective quality of images provided by a
coder which uses the default matrices included in the JPEG
standard. Nevertheless, the above procedure can still work
only at a global level, since the quantization matrices will
be fixed within the whole image. :

A progressive coding scheme is possible if the coeffi-
cients of the DCT table are divided into groups, which
can be subsequently handled sequentially. A frequently met
case generates groups of coefficients corresponding to the
low, medium, and high-frequency content of the original
image; such groups are designated as L, B, and H in
Fig. 1. The boundaries of any group may be modified
to describe the appropriate frequency band. Moreover,
since coefficients corresponding to very high frequencies
generally concentrate a small fraction of the total image
energy, coefficients from groups B or H can be set to
zero, yielding imperceptible errors in conjunction with
a significant reduction of code length for compression
purposes.

B. The ROI-JPEG Compression Algorithm

The ROI-JPEG coder provides the means for encoding re-
gions of low/high interest in the image by differentiating the
quantization tables among these areas. This goal is achieved

PANAGIOTIDIS et al.: NEURAL NETWORK-ASSISTED EFFECTIVE LOSSY COMPRESSION OF MEDICAL IMAGES 1475



(7.0) a7

Fig. 1. Spectral decomposition in DCT domain. -

by using different quantization quality factors (QF), as
defined in the baseline JPEG algorithm, for each category
of image regions. Thus while blocks belonging to important
regions are coded with high-quality quantization tables, a
substantial reduction in bitstream volume is achieved by
quantizing the rest of the image blocks with low-quality
quantization tables. Further reduction in the: volume of
information transmitted may be achieved by further filtering
of the low-importance regions. This is achieved through
the DCT transform, and does not affect the perceived
quality of these regions, since coarse quantization already
incorporates a low-pass filtering process. Additionally, for

off-line storage applications, visually optimal quantization -

tables on a bits/pixel target rate basis can be computed for
both the high interest and background regions of the imag
[18]. ‘
A block diagram of the ROI-JPEG procedure is shown in
Fig.. 2. It includes the typical components of the JPEG sys-
tem, i.e., the DCT transform, the quantizer, and the entropy
coder (Huffmann or arithmetic), applied to each block of the
image. A decision step is added, which classifies the image
block either to the window category. (ROI) requiring high

reconstruction quality, or to the category of relatively low.

importance. Using more than two categories is possible;
however in most applications of interest, two categories
seem to be enough for achieving high compression ratios.
Let us assume first, that the decision is based on information
which an expert interactively gives to the system; this can
be, for example, performed by marking the important areas
on the captured image, before applying the compression
procedure to it. Since this is infeasible, when dealing with
large volumes of data, a neural network architecture is
proposed in the next section as a means for assisting
the expert in automatically selecting the regions of high
importance. The coordinates of high importance regions
are stored in the coded image header, thus modifying the
standard JPEG header structure. Apart from the coordinates
of these regions, the decision block provides the quantizer
with the specific value of the QF that is required to define
the quantization matrices for each ROI category. It is
generally desired that the differences between the QF’s used
are not large, so that blocking artifacts at the borders of the
areas are not perceivable.

The image is coded -on a block-based scheme, as is the
case with baseline JPEG, which defines horizontal and
vertical sampling factors for each color component. The
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sampling factors specify the number of samples of each
component relative to the other components in the frame,
in the corresponding direction (horizontal or vertical). For
example, in a 4:1:1 Y, C,., C, image, the sampling ratios
are equal to two in each dimension for the luminance
component and to one for the chrominance components,
as shown in Fig. 3. Naturally, for a single component input
image (e.g., grayscale picture) all sampling factors are equal
to one.

The selection of regions of interest results in a classi-
fication map of the image blocks; this map uses one bit
(when classifying blocks in- two categories of high/low
importance) per block to denote whether it belongs to- a
ROI or not. The encoder stores this classification map in
the image header bit stream according to the JPEG standard,
so that the decoder is capable of recognizing the category
of each decoded block. The quantization tables, which are
used for coding and reconstructing blocks belonging to

~ROI’s, are also stored in the image header, according to

the JPEG specifications. Different quantization tables can
be defined by letting the user specify a QF value for low-
importance regions, and a window ‘quality factor (WQF)
for high-quality regions (ROI’s); the use of more than two
categories of regions is possible, if respective QF’s are
defined for each category. The properties of QF and WQF
are similar to those of the standard JPEG QF; both are used
for the derivation of quantization tables from the standard
templates incorporated into the JPEG: baseline. In general,
QF and WQF lie in the intervals [30], [60], [70], [85],
respectively.

In’ summary, the encoding process consists -of the fol-
lowing steps. The image is divided into blocks of 8 x 8
pixels, which are transformed in the DCT domain. If the
block currently processed belongs to a RO, it is quantized
using the high-quality quantization- tables, if not, low-
quality quantization and low-pass filtering are performed.
The quantized block is subsequently routed to the lossless
coding unit, Huffman or arithmetic coding having been
chosen by the user during initialization.

On the decoder side, first the bitstream header is pro-
cessed in order to extract the stored quantization tables
and the classification map, including a description of the
category of each image block. According to- the previous
decision, the corresponding inverse quantization tables are
used to generate the signal in the DCT domain. Subsequent
inverse-DCT transformation generates the decoded image
block.

III. THE NEURAL NETWORK ARCHITECTURE

The ROI selection stage is a time consuming process
in real-time applications, where large amounts of medical
image data are considered. In the following a neural net-
work system is proposed for efficiently performing the ROI
selection task in an adaptive way.

The proposed system is composed of anhierarchical
two-level architecture. The first level of this architecture
automatically selects -all edges appearing in the examined
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Fig. 2. ROI-JPEG coder block diagram.
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medical images and classifies the corresponding blocks to
the ROI category. This is due to the fact that, in most
applications, the edges existing in the image belong to
regions -that are of major importance for recognition or
classification purposes. This level consists of a feedforward
network which performs the frequency dependent edge
detection task, classifying each image block to a “shade”
or “edge” category. “Shade” blocks correspond to homoge-
neous areas containing no significant edges, while “edge”
blocks generally include significant high-frequency content.
Due to the fact that edge blocks have more energy in the
high-frequency components, a higher QF should be used in
order to keep the same quality in the reconstructed block.
To accomplish this task, the network accepts at its input
the computed DCT coefficients of each image block and
exploits high-frequency information appearing in all three
components, i.e., luminance (Y") and chrominance (C;., Cy),
of the image. Usage of all three components is necessary
because in medical imaging and in other applications edge
information depends not only on luminance, but also on
color spatial variations.

To let the network detect edges along all different ori-
entations, most, or even all, DCT coefficients from the
three components of each image block may be required
and should be therefore presented at the network input;
consequently, the number of network input units can be
up to 192 (3 x 64), while the number of network outputs
is assumed to be equal to two, which correspond to the
above defined two categories. In Section V, we consider
the number of DCT coefficients which are necessary for
coding medical images in real life applications.
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Supervised learning has been adopted for training the
network to perform edge detection. According to it, a
predefined training set of characteristic images is selected,
to which conventional spatial edge detection operators,
such as Sobel or gradient methods, or more advanced
morphological operators are applied; the results of these
operators are further examined by experts to.improve the
quality of detection. Following this selection the images are
divided into blocks which are DCT transformed and labeled
as “shade” or “edge” ones. The block DCT coefficients for
all image components and the corresponding labels for each
block are then used to train the network.

The operation of this network is, therefore, similar to that
of an edge detector, enriched due to training in accordance
with the expert’s advice. Furthermore, direct application
on the DCT coefficients computed within the JPEG cod-
ing scheme provides real-time operation, eliminating the
need for preprocessing the images with conventional edge
detection masks or filters.

After training, the network is able to classify each block
of an image similar to the ones used for training, to
an “edge” or “shade” category. In the former case, the
block is automatically selected to belong to a region of
high visual importance (ROI). If, however, the block is
found to belong to an homogeneous region, no decision
is taken, but the block is subsequently fed as input to the
second level of the proposed architecture, which consists
of another network that finally classifies it to a ROI or
not. This step is necessary in order to accurately render
features like color or amplitude levels, which, although
not corresponding to high-frequency information, can be
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Fig. 4. The proposed neural network architecture.

of high importance in medical, as well as in other appli-
cations.

The second network is similar to the first one, in the sense
that it also uses the computed DCT coefficients of the block
as input features. The number, however, of these features
is generally smaller than the corresponding number of the
first network input units, which had to detect edges, i.e.,
high-frequency information across all possible orientations.
In particular, the input features that are chosen to feed the
second network are the DC coefficient and a small number
-of AC coefficients following the well-known zigzag DCT
scanning of each image component. A supervised learning
algorithm has also to be followed in order to train the
network; using images from the specific application under
consideration. Whenever a block is classified as one of
high importance, i.e., belongs to a ROI, fine quantization
of its pixel values is used when coded, whereas coarser
quantization is applied to pixels belonging to blocks of
lower importance. A diagram of the hierarchical network
architecture -is shown in Fig. 4.

It should be mentioned that in cases where edges do not
play an important role, e.g., in texturelike medical images,
it is possible to bypass the first level of the hierarchical
architecture, focusing on the results of the second level.

The above-described architecture finally provides a clas-
sification map per image, which is a binary image indicating
whether each image block belongs to a ROI or not; the maps
are generated by joining together the outputs of both levels

of the proposed architecture. Since classification maps are

constructed on a 8 x 8 pixel block basis, their size is 1/64
of the original images (1/8 in each dimension). Further
compression of these maps is possible in bits per pixel basis,
due to their binary (bitmap) nature. The classification maps,
as well as the corresponding quantization tables, are stored
in the image header, so as to be used for the subsequent
coding and reconstruction procedure.

Various learning algorithms can be used for' training
each level of the above-described hierarchical feedfor-
ward architecture. Such algorithms include variants of
backpropagation [3], [19], the learning vector quantization
method with optimized learning rate [15], or probabilistic
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networks [14], [20]. An important issue for selecting the
most appropriate learning algorithm is the retraining of
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Fig. 7. (a) Original image, (b) neural network-based edge detection, (¢) neural network-based

classification map, and (d) reconstructed image.

the networks that will be required whenever the doctor or
expert wishes to include a new case study in the already
available training set. It would be desirable that the doctor
or expert does not have to extensively run the training
algorithm, adjusting parameters so as to achieve the best
performance. PNN’s are used as an appropriate scheme
for the learning procedure. A hierarchical multiresolution
model of such networks is presented in Section IV, which
efficiently implements the desired classification task.

IV. PROBABILISTIC NETWORKS

Many neural network classifiers provide outputs which
estimate Bayesian a posteriori probabilities. When esti-
mation is accurate, network output values sum to one
and can be treated as probabilities. Bayesian probabilities
can be estimated by multilayer perceptrons, based on the
minimization of a mean squared error or a cross entropy
cost function [21]. The desired network outputs correspond
to, say, M classes; one output is equal to unity and all
others are equal to zero. Error feedback supervised learning
algorithms using the Kullback Leibler (KL) criterion and
the generalized sigmoidal function [21], [22] have been
shown capable of producing Bayesian a posteriori proba-
bilities or conditional likelihood estimates for classification
purposes. The estimation accuracy generally depends on the

network complexity, on the amount of training data, and
on the degree to which training data reflect true likelihood
distributions and a priori class probabilities.

Unlike perceptron type networks, which classify input
vectors by learning multidimensional decision surfaces,
PNN’s [14] classify input vectors by forming nonparametric
probability density functions (PDF’s). The network struc-
tures are similar to those of multilayer perceptrons; the
primary difference is that the sigmoid activation function is
replaced by the exponential one. Key advantages of PNN’s
are that training requires only a single pass and that decision
surfaces approach the Bayes-optimal decision boundaries as
the number of training samples grows.

PNN’s utilize the fact that, in the limit, any smooth and
continuous PDF, say f4, of a class of multidimensional
data X, can be estimated by a sum of multivariate Gauss-
ian distributions centered at each training sample [23] as
follows

fa(X)

1 1 X — Xai
= (271’)1’/2 a Z €xXp [— (X— - X—ai)T o2 jl (1)
=1

where ¢ is the pattern number, m is the total number of
training patterns in category A, X,; denotes the ¢th training
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Fig. 8. (a) Original image, (B) neural network-based edge detection, (¢) neural network-based

classification map, and (d) reconstructed image.

pattern from category A, p is the dimensionality of input
vector X and ¢ is a smoothing parameter.

Fig. 5 shows a neural network which can be used for
estimating the PDF of classes of input patterns X and for
subsequently classifying them into categories. A two cate-
gory classification, into classes A and B, is shown in Fig. 5;
extension to a larger number of classes is straightforward.
The input units are merely distribution units that supply the
p elements of each input data vector to all pattern units, the
number of which is equal to the number m of training data.
The ith pattern unit forms a dot product of the input data
vector and a corresponding weight vector W, and passes
it through the exponential activation function, as follows:

@

W, XT -1
o2 '

exp [

Assuming .that both X and W, are normalized to unit
length, the output of the ith pattern unit is equivalent to
a probability measure:

- (3)

X-W,;
Pi = exp {—(X -wy)T —‘202—}
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The network summation units compute through (3), each
class PDF represented by (1). The output units simply select
the class with the maximum PDF.

The network is trained by setting the W, weight vector
of the 7th pattern unit equal to the corresponding X pattern
in the training set, and by then connecting the unit output to
the appropriate summation unit. The smoothing parameter
o controls the activation function; large (small) values of o
reduce (increase) the sensitivity of the exponential function.

The basic problem with probabilistic networks is the
increase of pattern units proportionally to the number of
training examples; this increase’ generates a requirement
for large storage and computing power of the system im-
plementing the algorithm. In the following, multiresolution
analysis is used‘as a means for efficient use of probabilistic
networks in compressing medical images.

A. Two-Dimensional Multiresolution Analysis

Multiresolution image representations have been known
for a long time in applications such as-correlation matching,
edge detection, segmentation, and image analysis [24], [25].
These representations are generally used to reduce the
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dimensionality of the problem as well as the associated
computational load and to perform feature extraction at
different resolution levels. Resolution reduction is most
commonly performed by subsampling or local averaging
of the image pixel values.

Multiresolution image analysis and processing based on
the use of the wavelet/subband decomposition has recently
attracted major interest, mainly for coding and scalability
applications [26], [27]. In general, the transition from
one level of resolution to a lower one is implemented
by subsampling each dimension of the higher resolution
data, usually by a factor of two, and by using a finite
impulse response (FIR) filter with fixed taps; typical eight
or 32 tap filters are given in [27]. As a consequence, four
(N/2 x N/2) low-resolution images are produced from
each color component of a (/V x N) color high-resolution
image; one of them, generally corresponding to the low-
frequency content of the image, is the approximation image,
while the rest are the detail images, generally including
high-frequency content. :

B. Hierarchical Probabilistic Networks

PNN’s have serious advantages with respect to training
time when compared to multilayer perceptrons, since they
are single layer networks with a single-pass training proce-
dure. As a consequence, a doctor can handle such networks
more easily, especially if one has to frequently retrain them
with new data sets obtained from different experiments.
Probabilistic networks are therefore appropriate to be in-
cluded in the two-level architecture proposed in Section III
for adaptive ROI selection and compression of images.

The main drawback of probabilistic networks, however,
is their requirement for large memory, since during training
all training samples are stored in the weights of pattern
units. It is, therefore, desirable to reduce the memory
requirements, with negligible degradation of the network
performance. Multiresolution analysis is an effective means
for reducing the size of input images; use of the approxima-
tion image instead of the original one provides a significant
reduction of the required number of weights of the pattern
units in the corresponding probabilistic network; it is,
however, required that this approximation image contains
the maximum information quotient of the original image.

In the following, instead of using the subband/wavelet
image decomposition, we generate the low resolution ap-
proximation and detail images by selecting different fre-
quency bands of the original images, according to the
progressive procedure included in the ROI-JPEG algorithm.
The definition of low, medium, and high areas (see Fig. 1)
can form the basis for this spectral partition. For example,
let us assume that only the low-frequency area of Fig. 1,
composed of 16 (4 x 4) out of 64 coefficients, is used
to reconstruct the images, with no significant degradation
of the quality of the original images. Then, for a sample
training set consisting of a large number of image blocks
m, the required number of weights connecting the pattern
units to the inputs significantly reduces from 64m to only
16m. Other choices of the frequency bands, which are

®

(©)

Fig. 9. (a) Original image, (b) neural network-based classification
map, and (c) reconstructed image.

defined following the well-known zigzag scanning of the
DCT coefficients, are also possible and are considered when
implementing the method, as described in Section V.

Let us assume that after training the network using a low
resolution approximation image, the network generalization
ability is tested using, for example, a validation data set
and is not found satisfactory. In this case the method
includes a projection of the computed weights toward the
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Fig. 10. (a) Original image, (b) neural network-based classifica-
tion map, and (c) reconstructed image.

next resolution level, so that the already derived network '

knowledge, i.e., weight values, be included in the network
architecture of the following level [28]-[30]. )

Let the image X at some resolution level j + 1 be split
into two parts X = [X,X], the first of which represents the
approximation image and the second the remaining detail
subsampled replica of the original image. Let us consider
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Fig. 11. (a) Original image, (b) neural network-based classifica-
tion map, and (c) reconstructed image.

a probabilistic network which is trained at resolution level
7 using only the approximation image. As was mentioned
above, if the network performance is tested and not found
acceptable, then training should proceed to the next higher
resolution level j + 1; it would, however, be desired that
the training already performed at level j be used in this
procedure, so that training at level 57 + 1 does not start

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 10, OCTOBER 1996



Fig. 12. (a) Original image, (b) neural network-based classifica-
tion map, and (c) reconstructed image.

from zero initial conditions. To accomplish this, the detail
image at resolution level j can be classified by a second
network that is separately trained. It is shown next that the
outputs of the two networks can be combined to construct
the network at j + 1.

(b)
Fig. 13. (a) Edge detection and (b) block classification.

Following the decomposition of the input vector X, a
corresponding decomposition of the network weights can
be performed as follows:

W, = [Wa, Wy. @

The output of the pattern unit p;(X) can be consequently
decomposed in the following form:

W, XT -1
pi(X) = exp {T]
. . . NT _
= exp (Wazwbz)(;aszz) 1}
— k- exp |:(W041'Xaz‘ - 1) -g (Wi Xps — 1)}
o
=k pai(X) - pri(X) ‘ 5

where & is a scaling factor equal to exp (1/02).
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Fig. 14. ROI-JPEG compression ratios.

3

Thus in order to combine the probabilistic networks
trained to classify the approximation and detail images at
level j for classification at level j + 1, we simply have
to multiply the outputs of their respective pattern units
and then feed them in the appropriate summation units,
as depicted in Fig. 6.

V. EXPERIMENTAL STUDY

The proposed neural network architecture has been im-
plemented and tested for adaptive lossy compression of
images in two real life medical applications, namely trans-
mission of images through a low 'bit rate telemedicine
system and coding of pathology examinations in hospital
environments. )

The coder described in the previous sections has been
implemented first to accommodate the requirements of a
telemedicine system regarding dermatology examinations,
using conventional telephone lines. between remote health
care centers and central hospitals. A set of still images
has been obtained and, through a guided user interface, a
medical expert selected the areas of the images (ROI’s) that
contained the most useful visual information (e.g., bruises,
burns, and tumors). These areas have been used next to
train the proposed two-level neural network architecture
s0 as to automatically select ROI’s in images containing
similar visual information. '

Figs. 7(a) and 8(a) show characteristic images of typical
sizes 320 x 240 pixels which contain important ROI’s (from
amedical point of view), as well as areas of low importance.
The left half of the image shown in Fig. 7(a), which
includes ROI’s (moles on human skin) and background
areas (rest of the skin), was used to train the two-level
neural network architecture described in Sections III and
IV. As a preprocessing step, the ROI and background areas
were separated into blocks of 8 x 8 pixels which were tagged
both for edge/nonedge selection and for texture high/low-
quality coding. The first level of the network architecture
was trained to extract the edges and the second to classify
background blocks to ROI’s or non-ROY’s, based on their
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frequency content. To accomplish this, the DCT transform

. of each block was computed, followed by zigzag scanning

of the DCT coefficients. Various experiments have been
performed to appropriately partition the frequency content
of the blocks into two areas, that were used next to form the
corresponding lower resolution approximation and detail
image blocks for the proposed probabilistic network model.
Our results indicated that the quality of the results was
not affected, if at least the first 32 out of the 64 DCT
coefficients of each (Y, C,, C) component of the image
block were selected to form the approximation image for
the edge extraction task; in the second case, for texture
ROI/non-ROI classification, the least required number of
DCT coefficients was nine out of 64 for each image block
component.

Following the above, the low resolution probabilistic
network of the first level accepted at its input 96 (3 x 32)
DCT coefficients. To compute the number of necessary
DCT coefficients (which, in the selected form, are half
of those computed for each block) we used the multires-
olution analysis presented in Section IV-B (using a value
of 6 = 0.0001); we considered an initial set of the first
24 (3 x 8). DCT coefficients as the approximation image
and sequentially added DCT coefficients, in multiples of
eight coefficients, as detail images, until the obtained results
were satisfactory enough. The training set was composed
of 400 image blocks, 70 of which belonged to the ROI
category, the network, therefore, included 400 pattern units.
As a test set to examine the performance of the network
we used the right half of the image shown in Fig. 7(a),
as well as the whole image shown. in Fig. 8(a). Finally,
the computed outputs for all image blocks were collected
over the whole images; the results are shown in Figs. 7(b)
and 8(b), respectively. It can be easily verified that all
significant edges have been detected and are included in
these figures. In fact, the network was able to learn all
edge information included in the DCT coefficients of the
left half of the image; this knowledge was sufficient for
successful generalization of the network performance in the

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 10, OCTOBER 1996



Table 1 Comparative Compression Ratio Table (ROI-JPEG versus JPEG)

ROIJPEG

BASELINE

JPEG 12.21 lODl

11.06 | ¢

classification of the right half of the image in Fig. 7(a) and
of the image in Fig. 8(a).

The second level of the proposed architecture was then
used to select ROI's from the nonedge textured areas. In
this case the network accepted 27 (3 x 9) DCT coefficients
for each image block (which are only about 14% of the
computed ones) and used the same training and test sets.
The results of the network performance are shown in
the classification maps of Figs. 7(c) and 8(c), which are
constructed by combining the network outputs from both
levels of the architecture. The success rate of the proposed
architecture was very high; it was 96% in selecting ROI
blocks and 98% in selecting background ones.

The proposed ROI-JPEG coding scheme was then applied
to the original images, using the computed classification
maps and corresponding quantization tables with WQF =
75 and QF = 50. The reconstructed images are shown in
Figs. 7(d) and 8(d), respectively. It is easy to see that they
are very good replicas of the original images.

The second application involves the coding for optimal
storage and speedy retrieval of pathology images. These
pictures are typically obtained from optical microscopes,
with objectives ranging from 2.5x to 40X (typical eyepiece
lens: 12.5%). The frames are photographed on slide format
(35 mm) and subsequently scanned at resolutions ranging
from 1200-2400 dots per inch (dpi). The images are
initially stored in raw 24 bpp format, and are submitted
in this form to the coding scheme already described. The
frames appearing in this paper represent typical cases of
pulmonary tuberculosis [31].

Figs. 9(a)-12(a) show four characteristic images that
include regions of various shapes, which are of major

importance for medical diagnosis. It can be seen, however,
by testing the appearance of the images, that edge detection
does not play a crucial role in the definition of ROI’s, since
the latter are basically textured; on the contrary, background
seems to be rather noisy, including a lot of high frequencies.
This example clearly indicates the fact that the proposed
architecture is superior to any scheme which selects as
ROI all blocks containing edges or contours, as well as
the “interior” of the selected “edge” regions. The fact
that extreme care should be taken for obtaining “closed”
contours, which permit the definition of interior versus
exterior areas, and that specific attention should be given
to the choice of thresholding operations in edge extraction,
leads to the conclusion that the use of edge detection for
ROI selection is highly inadequate for the aforementioned
image categories. Fig. 13(a) shows the edges extracted
using standard Sobel and Prewitt operators on the image
of Fig. 10; Fig. 13(b) shows the image blocks which have
been selected as ROI, by testing whether each of them con-
tained at least six pixels belonging to edges (approximately
9% of the block’s pixels). It can be easily seen that this
map greatly differs from the one shown in Fig. 10(b), which
approximates the desired classification from a medical point
of view. Consequently, we applied only the second level of
the proposed architecture for classifying the image blocks
to a ROI, or a non-ROI category, using only 27 (3 x 9)
DCT coefficients (as in the previous experiment) as inputs
to the network. The training set consisted of 30 images,
resulting in 3000 training blocks, 750 of which belonged
to the ROI category.

After training, the network performance was tested over
the whole set of images. The results concerning the ef-
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fectiveness of the network in classifying the images of
Figs. 9(a)-12(a) are shown in the classification maps of
Figs. 9(b)-12(b), which are constructed directly from the
network output for each block of the images. The obtained
success rate was very high, in this case as well; it was
97.13% in selecting ROI blocks and 97.90% in selecting
background ones.

"The ROI-JPEG coding scheme was then applied to the
images of Figs. 9(a)-12(a), using the computed classifica-
tion maps and corresponding quantization tables with WQF
= 70 and QF = 50. The reconstructed images are shown
in Figs. 9(c)-12(c), respectively. It can be easily observed,
as was confirmed by visual assessment from the medical
expert, that the reconstructed images constitute very good
replicas of the original ones.

In the final set of our experiments we examined the
compression ratios obtained by the proposed ROI-JPEG
technigue in all the above-described cases. Fig. 14 shows
the average obtained compression ratios, for different val-
ues of the factors QF and ROI QF (WQF) factors which
define the quantization tables used in the compression
procedure. These ratios are also compared to the corre-
sponding ratios that would be obtained, if the baseline JPEG
compression algorithm were used instead of the ROI-JPEG
one. The average ratios are also shown in Table 1, which
also presents their minimum and maximum values, for each
examined value of the quantization factors. It can be seen
that an additional average compression of 20-25% was
obtained in the above experiments (with WQF = 70-75
and QF = 50) compared to baseline JPEG. The percentage
of the image blocks which have been classified as ROI
varied from 17-55% with an average of 32% in the above
images.

VI. CONCLUSIONS

An adaptive ROI-JPEG coding platform has been de-
veloped in this paper for effective lossy compression of
medical images. The method uses a hierarchical neural net-

~work architecture, including probabilistic network models
with multiresolution extensions, to adaptively select regions
of interest in the images, following appropriate training
with examples that an expert in the specific field provides
and examines. The neural network architecture has been
included as a separate subsystem in a coder based on the
JPEG standard, controlling the quantization tables used for
each block of the examined image.

The method is capable of achieving high compression
ratios through the proposed local adaptivity of quantization
and the corresponding source image coding. The adapta-
tion of quantization is heavily psychophysically dependent,
since ‘training of the proposed neural network architecture
has been based on decisions and knowledge of experts in the
specific application domain. Since the algorithm uses the
JPEG standard formulation, it can be easily implemented
through a progressive or hierarchical procedure, where parts
of the image are coded and then stored or transmitted
sequentially. Moreover, since image edges, in the great
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majority of cases, belong to image ROI’s, they are generally
reconstructed without annoying ringing effects, particularly
at low bit rates; edge enhancement and postprocessing can
be also effectively applied only to the selected regions of
interest.

Extension of the method to compress moving medical
images, such as those used in ultrasonography, nuclear
medicine, and angiography is possible by interweaving
the proposed neural network architecture with an MPEG-
like coding scheme [32]. Such experiments are now
under investigation and constitute a topic of further
research.

ACKNOWLEDGMENT

The authors wish to thank Dr. I. Panayiotides for provid-
ing medical data and for his assistance in examining them
from a medical point of view, as well as for the visual
evaluation -of the obtained output images.

REFERENCES

[1] S. Wong, L. Zaremba, D. Gooden, and H. K. Huang, “Radio-
logic image compression—A review,” Proc. IEEE, vol. 83, pp.
194-219, Feb. 1995.

2] R. D. Dony and’S. Haykin, “Neural network approaches to
image compression,” Proc. IEEE, vol. 83, pp. 288-303, Feb.
1995.

[3] D. R. Hush and B. G. Home, “Progress in supervised neural
networks,” IEEE Signal Process. Mag., pp. 8-39, Jan. 1993,

[4]1 S. Haykin, Neural Networks: A Comprehensive Foundation.
New York: Macmillan, 1994.

{51 E. Oja, “Principal components, minor components and linear

neural networks,” Neur. Net., vol. 5, pp. 927-935, 1992.

[6] S. Y. Kung, X. I. Diamantaras, and J. S. Taur, “Adaptive prin-
cipal component extraction (APEX) and applications,” IEEE
Trans. Signal Process., vol. 42, pp. 1202-1217, May 1994.

[7] T. Kohonen, Self-Organizing Maps. Berlin: Springer-Verlag,
1995.

[8] L Pitas, Ed., Parallel Algorithms for Digital Image Processing,
Computer Vision and Neural Networks. New York: Wiley,
1993.

[91 Y. Pao, Adaptive Pattern Recognition and Neural Networks.
Reading, MA: Addison Wesley, 1989.

[10] A. Ravichandran and B. Yegnanarayana, “Studies on object
recognition from degraded images using neural networks,”
Neur. Net., vol. 8, no. 3, pp. 481488, 1995.

[11] D. Kontoravdis, S. Kollias, and A. Stafylopatis, “A two-phase
connectionist approach to invariant picture interpretation,” to be
published in Mathematics and Computers in Simulation: Special
Issue on Neural Networks.

[12] Z. Wang, C. Di Massimo, M. T. Tham, and A. J. Moris, “A pro-
cedure for determining the topology of multilayer feedforward
neural networks,” Neur. Net., vol. 7, pp. 291-300, June 1994.

[13] J. A. S. Freeman and D. Saad, “Learning and generalization in
radial basis function networks,” Neur. Computat., vol. 7, no. 5,
pp. 1000-1020, Sept. 1995.

{14] D. F. Specht, “Probabilistic neural networks and the polynomial
adaline as complementary techniques for classification,” IEEE
Trans. Neur. Net., vol. 1, Mar. 1990.

[15] T. Kohonen, “Improved versions of learning vector quantiza-
tion,” in Proc. Int. Joint Conf. Neur. Net., 1990, vol. 1, pp.
545-550.

[16] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data
Compression Standard. New York: Van Nostrand Reinhold,
1993.

[171 K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms,
Advantages, Applications. New York: Academic, 1990.

[18] N. Panagiotidis and S. Kollias, “A progressive windowed JPEG
coder for efficient image transmission,” in Proc. SPIE Europe.
Symp. Adv. Net. and Services, Amsterdam, 1995.

[ty

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 10, OCTOBER 1996



[19] S. Kollias and D. Anastassiou, “An adaptive least squares
algorithm for the efficient training of multilayered networks,”
IEEE Trans. Circ. and Syst., vol. 36, pp. 1092-1101, 1989.

[20] M. Morrison and Y. Attikiouzel, “A probabilistic neural net-
work based image segmentation network for magnetic reso-
nance images,” in Proc. IJCNN 92, Portland, OR, 1992.

{21] R.P.Lippmann, “Neural network classifiers estimate Bayesian a
posteriori probabilities,” Neur. Computat., vol. 3, pp. 461483,
1992.

[22] J. Makhoul, “Pattern recognition properties of neural networks,”
in Proc. IEEE-SP Workshop Neur. Net. Signal Process., Prince-
ton, NJ, 1991, pp. 173-186.

[23] E. Parzen, “On estimation, of a probability density function and
mode,” Ann. Math Stat., vol. 33, pp. 1063-1076, 1965.

[24] R. Fisher, From Surfaces to Objects, Computer Vision and Three
Dimensional Analysis. New York: Wiley, 1989.

[25] S. Tanimoto and T. Pavlidis, “A hierarchical data structure for
picture processing,” Comput. Graph. and Image Process., vol.
4, pp- 104-109, 1975. '

[26] S. Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Trans. Patt. Anal. Mach.
Intell., vol. 11, pp. 674-693, 1989.

[27] I Daubechies er al., “Image coding using the wavelet trans-
form,” IEEE Trans. Image Process., vol. 1, pp. 205-220, 1992.

[28] C. Hand et al., “A neural-network feature detector using a
multiresolution pyramid,” in Neural Networks for Vision, Speech
and Natural Language, R. Linngard, Ed. New York: Chapman
and Hall, 1992.

[29] S. Kollias, “A multiresolution neural network approach to
invariant image recognition,” Neurocomput., 1996.

[301 S. Kollias and D. Kalogeras, “A multiresolution probabilistic
neural network for image segmentation,” in Proc. [CASSP-94,
Adelaide, Australia, 1994,

[31] J. Panayiotides, E. Protopappa, and G. Delides, “Nuclear mor-
phometry as a prognostic factor in laryngeal squamous cell
carcinomas,” Zentralblatt fur Pathologie, vol. 139, pp. 221-224,
1993. '

[32] A. Murat Tekalp, Digital Video Processing. Englewood CIliffs,
NJ: Prentice-Hall, 1995.

Nikos G. Panagiotidis (Student Member, IEEE)
received the Diploma in electrical and computer
engineering from the National Technical
University of Athens (NTUA), Greece, in 1991.
He is currently working on a Ph.D. dissertation
at the NTUA.

projects for the NTUA. His research interests
include medical imaging systems, low bitrate
video coding, applications of neural networks,
and multimedia technologies. He has published
six papers in refereed conferences and journals.

Mr. Panagiotidis is a member of the Technical Chamber of Greece.

#e

He has participated in several research .

Dimitris Kalogeras' (Member, IEEE) received
the Diploma and the Ph.D. degree in electri-
cal and computer engineering from the Na-
tional Technical University of Athens (NTUA),
Greece, in 1990 and 1995, respectively.

He is presently with the Computer Science
Department at the NTUA. His research interests
include high-speed .data networks design and
implementation. He has published eight papers
in refereed conferences and journals. His re-
search interests include low bitrate video coding,
applications of neural networks, and applications of video transmission
over various network architectures.

Dr. Kalogeras is a member of the Technical Chamber of Greece.

Stefanos D. Kollias (Member, IEEE) received
the Diploma in electrical engineering from
the National Technical University of Athens
(NTUA), Greece, the M.Sc. degree in com-
munication engineering from the University of
Manchester Institute of Science and Technology,
Manchester, U.K., and the Ph.D. degree in signal
processing (computer science) from NTUA in
1979, 1980, and 1984, respectively.

He is currently an Associate Professor of
Computer Science at NTUA. During 1987-1988
he was a Visiting Research Scientist in the Electrical Engineering
Department of Columbia University, New York. His research interests
include image processing and analysis, video coding, artificial neural
networks, and multimedia applications. He has published more than 70
papers in international journals and conference proceedings.

Andreas Stafylopatis (Member, IEEE) received
the Diploma in electrical and electronics engi-
neering from the National Technical University
of Athens (NTUA), Greece, and the Ph.D. de-
gree in computer science from the University
of Paris-Sud, Orsay, France, in 1979 and 1982,
respectively.

He has been with the Department of Electrical
Engineering at the NTUA since 1984, where
he is now an Associate Professor. His research
interests include parallel processing and compu-

tational intelligence.

Dr. Stafylopatis is a member of the IEEE’s Computer and the Systems,
Man and Cybernetics Societies. He is also a member of the Association
for Computing Machinery, the European Neural Network Society, and the
International Neural Network Society.

PANAGIOTIDIS ef al..: NEURAL NETWORK-ASSISTED EFFECTIVE LOSSY COMPRESSION OF MEDICAL IMAGES 1487



