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Abstract 

Triple-correlation-based representations of images have recently been combined with 
neural network architectures to derive invariant, with respect to translation, rotation and 
dilation, robust classification of images. Multiresolution image analysis is used in this paper 
to reduce the size of these representations in an optimal way, based on autoassociative 
linear networks. Hierarchical neural networks are then proposed as an efficient architecture 
for classification or retrieval of multiresolution invariant image representations. An effective 
procedure for designing and training such networks is also described and simulation results 
are presented which illustrate the capabilities of the proposed approach. 

Keywords: Invariant; Multiresolution image analysis; Triple correlations; Autoassociative; 
Hierarchical neural networks 

1. Introduction 

Image recognition is an essential part of high-level systems used in a variety of 
fields, including robotics and industrial automation, military reconnaissance, re- 
mote sensing, optical character recognition and content-based image retrieval from 
large databases. Most existing recognition systems are based on the extraction of 
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appropriate features or small-sized representations of the images, thus reducing 
the redundancy, as well as the dimension of the data to be further classified and 
interpreted by the system [5]. Generation of a ‘good’ feature or small-sized image 
representation data set is a crucial aspect of the whole recognition procedure, 
requiring that as much as possible from the useful information of the original 
images be included in the derived feature data set. This requirement can ensure 
that small distortions in the shape of the objects shown in the images would not 
affect the subsequent feature-based classification process. Moreover, a flexible 
system should recognize an object regardless of its size, orientation or position in 
an image. This invariance property refers, therefore, to the requirement for 
extraction of features which are invariant with respect to transformations of the 
input image, such as translation, scale and rotation [19,11]. 

Multilayer perceptrons have been widely examined in the neural network field 
as a tool for image classification, based on appropriate feature extraction from the 
images. Apart from deterministic features, many statistical features, such as 
moments and linear prediction coefficients, have been used in the classification, 
for example, of textured images [11,22]. A crucial aspect concerning the perfor- 
mance of multilayer network classifiers is generalization, i.e. the ability of the 
network to classify correctly input data which were not included in its training set. 
Results from various applications have shown that good generalization is a result 
of appropriate network design; a rather small network size can make the network 
learn incomplete solutions, while an unnecessarily large size may lead the network 
learn only the specific training samples and noise. A small number of interconnec- 
tion weights (i.e. free parameters during training) should be generally used and any 
a-priori knowledge about the problem should be included in the network structure. 
It should be mentioned that some very good results have been obtained when 
structured networks, including weight sharing and receptive fields are applied 
directly to image pixel values [15,6]. 

Third-order neural networks have been proposed as a classification method for 
invariant recognition of binary images [20,13]. However, the ability of such net- 
works to provide solutions to complex real-life problems has been an open 
problem, mainly due to the excessive number of interconnections that are required 
in cases of large input image sizes. It has been recently shown that third-order 
neural networks are a specific category of triple-correlation-based neural network 
architectures [3]. Third order, or triple, correlations are higher-order signal statis- 
tics [17], which in case of deterministic signals have an one-to-one correspondence 
with the original signal (except of a shift ambiguity). Moreover, triple correlations 
of Gaussian or linear and symmetrically distributed noise are zero in the mean and 
tend to zero w.p.1 as the size of the available data record tends to infinity. In [3] 
appropriate clustering of the 4-D triple-correlation domain computed in the case 
of 2-D images has been proposed as an effective technique that provides invariant 
image representations to which neural networks can be applied for optimal 
classification purposes. However, in the case of real images these invariant repre- 
sentations are of large sizes. Consequently, the required number of the classifying 
network interconnection weights, especially between the units of the first hidden 
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layer and the network inputs, can be very large, resulting in prohibiting learning 
times, as well as in poor network generalization. 

In this paper we propose a multiresolution analysis procedure to reduce the size 
of appropriate forms of the above-mentioned invariant representations in an 
optimal way. We also present an hierarchical image recognition approach, which 
achieves a major reduction in the number of interconnection weights of the 
classifying network, as well as in the required learning times. Section 2 gives a brief 
derivation of triple-correlation-based invariant image representations. Section 3 
investigates multiresolution image representations and proposes a new technique 
for obtaining low resolution images in an optimal way, using autoassociative linear 
neural networks. Section 4 describes hierarchical neural network architectures 
which provide efficient solutions to the invariant image recognition problem. 
Section 5 presents simulation studies which illustrate the ability of the proposed 
approach to correctly classify images irrespectively of their position, orientation 
and resolution level. 

2. Triple-correlation-based invariant image representations 

Let x(t) be a real two-dimensional signal with support S = [O.. . N - 11 x 
[O.. . N - 11. Its triple correlation is defined as, 

(1) 

where~1,~2aredefinedinS’=[-(N-1),...,(N-1)]~[-(N-1),...,(N-1)]. 
In general, there is one to one correspondence between the signal and triple 

correlation domain, implying that we can move indistinguishably from the signal 
domain to the triple correlation domain without loss of information, or, in other 
words, that we can distinguish two signals by comparing their triple correlations. 
Moreover, when the signal plane shifts, the triple correlation is unaffected and 
when the signal plane rotates and/or is scaled, the same happens in the triple 
correlation domain for both lag indices ri, TV. Triple correlation is also insensitive 
to additive Gaussian or any other linear and symmetrically distributed noise [17]. 
Various transformations of images have been recently proposed, based on triple 
correlation processing, which provide image representations that are invariant with 
respect to scale, rotation and translation of the original images [24,3]. 

The triple correlation of a 2-D signal .x(t) is a function of two 2-D vector 
indices, rr, ~z, each of them spanning the subset S’ of R2. Let ,us cluster the 
resulting 4-D triple-correlation domain; by definition, x&T~, TV) is the accumula- 
tion of all triple products formed by the values of x(t) that lie on the corners of 
those triangles that are shifts of a prototype triangle defined by arbitrary vectors 
TV, TV. Let us define, next, classes C(T~, TV) of triple correlation lags whose indices 
form, on the R2 plane, triangles similar to the triangle defined by vectors TV, TV. 
This definition of C(T~, TV) is such that rotation by an angle C#J and/or scale by a 
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factor p (in log form) does not cause inter-class interference, while resulting in an 
internal circular shift of the content of each class. Based on this, it can be shown 
[3] that the amplitude and phase of the 2-D Fourier transformation of the triple 
correlations of each class, with respect to the space variables p and 4, provide a 
representation F, which has a unique correspondence with the class of original 
images that are mutually related with scale-rotation-translation transformation. 
The dimensionality of this representation is, however, high; for this reason, it has 
been suggested to abolish ‘uniqueness’ of representation in favor of computational 
simplicity. This can be achieved, if another representation, say F,', is used that 
contains only the amplitude of the Fourier transform of each triple-correlation 
class. A further reduction can be achieved, providing another representation, say 
F:, if only the zero-th frequency Fourier coefficient is retained from each class. 

It should be added that indices (pi, rJ can be replaced by the angles 8,, 19, 
included between the plane vectors (ri, rJ and CT,, T* - ri); these angles can be 
then quantized to, say, L, and L,, levels respectively, leading to a considerable 
reduction of the four dimensional space spanned by (ri, TJ, without any loss of 
information, to the 2-D space [O, r/2] X [O, 7r/2]. 

3. Triple-correlation-based neural network classifiers 

All derived invariant representations consist of 2-D images of various sizes. The 
latter one, F:, is a 2-D (L, XL,) image, where L, and L, are the numbers of 
quantization levels for angles f3, and 8, respectively. In the former one, Fi, a 2-D 
(R x M) image corresponds to each class defined by (0,, 0,>, resulting in an 
invariant representation of size (L, X R, L, Xkf), where R and M are the 
numbers of quantization levels for parameters p and C#J respectively. 

For small sizes of L,, L,, R and M, it is possible to apply multilayer 
fully-connected neural networks to perform the classification task. A multilayer 
network can, for example, accept any of the above-derived image representations 
directly in its input layer and be trained by some supervised learning algorithm, 
such as learning vector quantization, or a backpropagation variant [10,12], to 
classify these representations in different categories. It may also be shown [3] that 
third-order neural networks are a specific category of triple-correlation-based 
neural networks, in the sense that the input to the former networks is equivalent to 
representation Fx2 of each triple-correlation class. 

For larger, however, sizes L,, L,, R and M, the number of network inputs, 
which equals the number of pixels in the invariant representations, increases very 
rapidly; as a consequence, the number of free-parameters during network training, 
i.e. the number of interconnection weights, especially between the input and the 
first hidden layer, will become very large, imposing problems on the efficiency, as 
well as on the generalization ability of the network. Thus, the ability of the 
network to successfully perform the invariant recognition procedure requires a 
drastic reduction of the number of its weights. In the following we propose a 
technique for achieving such a reduction, by using algorithms that attempt to 
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define the correct network size, together with an hierarchical, multiresolution 
network architecture. 

Since the optimal size of feedforward neural networks is generally an unknown 
quantity in most neural network applications, various techniques have been pro- 
posed for approximating it. Pruning algorithms start by considering a rather large 
network and delete, during training, nodes or weights that do not contribute to the 
minimization task. Weight decay, which penalizes the complexity of the network by 
letting each weight decay towards zero at a rate that is proportional to its 
magnitude, is such a simple technique; weight elimination [27], or weight sharing 
and receptive fields architectures [15] are similar methods, which are also amenable 
to parallel implementations [14]. Despite the fact that such methods can produce 
some reduction of the necessary network interconnection weights, they cannot 
provide a solution to the problem, especially for large input image sizes. 

Constructive algorithms [21], on the other hand, first build an approximate 
model of low size and then add nodes to the network while learning more details, 
approaching, therefore, the optimum network size from below. Algorithms like 
node or network splitting [28,91, as well as procedures such as the ones used by 
cascade-correlation [7] can be included in this framework. Nevertheless, simple use 
of constructive methods cannot provide an effective solution to the problem, 
mainly due to the large size of the input network layer, which generally equals the 
size of the invariant representation. It is, therefore, essential to combine the above 
algorithms with a reduction of the input layer size. 

A reduction of the network input layer size could be achieved, if local averaging 
of the invariant image representations was used as a preprocessing step. These 
representations could, for example, be separated in non-overlapping blocks of 
8 x 8, or 16 X 16, pixels and each block be then replaced by the mean value of all 
pixels belonging to it; significant reduction of the number of input layer nodes 
would be achieved in this way, but at the cost of losing ‘detail’ information about 
the input images that may be significant for the classification task. In the next 
section we present a multiresolution decomposition of the invariant image repre- 
sentations, which can optimally be designed in specific applications so that the lost 
‘detail’ information is as low as possible; following that, we propose a constructive 
procedure for designing a feedforward network to classify the derived invariant 
multiresolution image representations. 

4. Invariant multiresolution image representations 

4.1. The multiresolution decomposition 

Representation of signals at many resolution levels has gained much popularity 
especially with the introduction of the discrete wavelet transform, implemented in 
a straightforward manner by filter banks using quadrature mirror filters (QMFs) 
[16,25]. In image processing the above are equivalent to subband processing [29]. 
Image decomposition is performed with an appropriate filter bank of decomposi- 
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Fig. 1. Multiresolution (subband) image decomposition. 

tion (or decimating) QMF filters. An appropriate bank of reconstruction (inter- 
polating) QMF filters guarantee perfect reconstruction of the original image from 
its subband components. Multiresolution decompositions result in approximation 
images of low resolution that contain coarser information of the image content and 
in a set of detail images which contain more information as resolution is gradually 
increasing. A serious problem of multiresolution representations is that they can 
only provide scale-invariant features and not shift and rotation invariant ones. In 
the following this problem is aleviated by applying multiresolution decompositions 
to the derived triple-correlation-based invariant image representations, decompos- 
ing them in pyramids of images of gradually decreasing resolution. 

Let x0 denote an N X N invariant image representation. Using appropriate 
finite impulse response (FIR) perfect reconstruction filters h,(n) and h,(n), 
where h,(n) generally is a low-pass and h,(n) a high-pass filter, we can split the 
image into four lower resolution N/2 X N/2 images [2], as shown in Fig. 1. 
Applying, for example, the low-pass filter H,(n) in the horizontal and then in the 
vertical direction of the original image (let us consider the separable case, for 
simplicity, at this point), we get the approximation image at the lower resolution 
level j = - 1, denoted as x_“?, where 

x_Lf(m, n) = E EhL(2 m - k)h,(2n - I)x,(k, I) (2) 
k=l I=1 

By applying all other possible combinations of the above FIR filters shown in Fig. 
2, we get three lower resolution detail images, denoted as x6?, xc?, x!‘F. As is 
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Fig. 2. Conventional decimation subband filters. 

described in the next section, it is possible to use non-separable analysis (and 
synthesis) filters to perform the multiresolution decomposition. In this case, Eq. (2) 
takes the form 

x!+(m, n) = 5 &,,(2m - k, 2n -1)x,( k, 1) 
k=l I=1 

(3) 

Perfect reconstruction of the original image x,(k, 1) can be achieved through 
synthesis of all four subband components, i.e. the approximation and the three 
detail images. It is, however, possible to obtain an approximate reconstruction 
x,(k, 1) of the original image, by using only the approximation image x!f<m, n) 
and synthesis filter fLL(m, n) as follows 

N/2 N/2 

x,,(m, n) = c ~f,,(m - 2k, n - 2l)+(k, I) 
k=l I=1 

(4) 

If the image decomposition procedure, described by Eq. (3), is successively applied 
to the approximation images we have a multiresolution approximation of the 
original image, providing images of continuously decreasing size. Optimal design of 
the analysis and synthesis h and f filters in specific applications is examined next. 

4.2. Optimal design of the multiresolution decomposition 

The design of perfect reconstruction filter banks is based on the assumption 
that all the subband signals are available to the interpolation bank with infinite 
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precision. This is not, however, true, when only a part of subband components, and 
particularly only one of them, is used for reconstruction; in this case perfect 
reconstruction filters lose their optimality. Design techniques for analysis and 
synthesis filters that perform optimal reconstruction of an original image from a 
low-resolution representation of it have been recently proposed in [23]. Based on 
the minimization of the mean squared error between the original signal and the 
low-resolution representation of it, the 2-D filters are optimally adjusted to the 
statistics of the input images, so that most of the signal’s energy is concentrated in 
the low resolution subband component. The procedure that is followed to achieve 
this goal is briefly described next. 

Let us separate the input image into blocks of P X P pixels and then vectorize 
each block by placing its columns, one after the other, in an M-dimensional vector, 
say x(m, n), where A4 = P* and m,n denote the position of the first element of the 
block within the image. Let x(m, n> be considered as a zero-mean process with an 
M x A4 autocorrelation matrix which generally is space-varying over the whole 
image 

R,,(m, n; ~1, ~2) =E{x(m + ~1, n + ~2)x~(m, 4) (5) 

Let us then form R&r, u2) as the spatially-averaged autocorrelation matrix 

The 2-D Fourier-transform of R&r, u2) will be the spatially-averaged spectral 
density matrix sXX(wl, CO,). The design problem examined in this subsection 
searches for optimal non-separable (Q x M) and (it4 X Q> matrix filters H(n,, n,) 
and F(n,, n,). Filter H(n,, it*), when applied to each vectorized block of the image 
x(m, n), produces a low resolution vectorized image block, say y(m,n), 

y(m,n)=~~H(k,f)x(m-k,n-I) 
k 1 

(7) 

with Q = L* elements, where the block size L of the low-resolution image in most 
practical situations approximately equals half of the original image block size P. 
The synthesis filters reconstruct the original image blocks, also in vectorized form, 
as follows 

i(m,n)=~~F(k,I)y(m-k,n-I) 
k 1 

(8) 

Filters H and F are formed in terms of the analysis and synthesis filters h and f so 
as to fit the vectorized x and y image blocks. The design of the optimal filters is 
based on minimization of the following criterion 

J=jjy_&y yE{[f(m, n) -x(m, n)lT[f(m, n> --(my 41} (9) 
m=O n=O 
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In [23] it is shown that the 2-D Fourier transforms of the optimal analysis and 
synthesis filter matrices, i.e. H(w,, w,) and F(wl, wz), can be computed as follows 

H(w,, w2) = , F(q, 02) =H(q, QT* (10) 

where vJw,, w,) is the eigenvector corresponding to the ith largest eigenvalue 
of s,(o,, OJ and vT* denotes the complex transpose of v. 

For each frequency (w,, wZ), the above procedure computes these filters in the 
frequency domain by performing an eigenvector/eigenvalue analysis of the spec- 
tral matrix [24,23], requiring a very high computational load. In the following we 
present a computationally efficient technique for designing the optimal filters in 
the spatial, and not the frequency, domain, based on autoassociative linear neural 
networks. 

4.3 Neural-network-based optimal multiresolution filter design 

Let us concentrate next on the problem of generating four subband components 
from each image, as shown in Fig. 1, only one of which is retained, as the low 
resolution representation. Using the notation adopted in the former two subsec- 
tions, let the M-dimensional vector x(m, n) denote the vectorized P x P blocks of 
the input image n,(m, n), with M= P2, the Q-dimensional vector y(m, n) denote 
the corresponding CL x L) blocks of the low-resolution representation x_,(m, n> 
also in vectorized form with Q = L* and finally the M-dimensional vector Xm, n) 
represent the reconstructed vectorized image blocks. 

The above vector notations have been adopted in this section, so that it be 
possible to denote the whole convolutional analysis and synthesis operations 
described by Eqs. (3) and (4) as multiplications of the above defined vectors by 
appropriate matrices, say H and F respectively, as was mentioned in the previous 
subsection. In particular Eqs. (7) and (8) can be written as 

y(m, n) =Hx(m, n) (11) 

%(m, n) =Fy(m, n) (12) 

Straightforward but tedious calculating, using Eqs. (3) and (4) provides analytical 
expressions of the (Q x M) and (A4 X Q) H and F matrices in terms of the, say 
(.I x J), optimal filters h and f respectively. First, it can easily be verified that the 
dimension Q of the low-resolution vector y(m, n) can be expressed in terms of the 
input vector dimension M and the length J of filter h. In particular, if P and J 
add to an even value, L will be equal to (P + J)/2, otherwise it will equal 
(P + J + 1)/2. Moreover, the dimension of reconstructed vector 2 will be greater 
than the input signal dimension A4 due to the effects of the synthesis filter length 
1. In this case, it is the first M elements of 2 which are retained for comparison 
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with the original vector. Following the above, if, for example, A4 = 8 and J = 4, 
then matrix H has the following structure 

H= 

‘H3 0 0 0 0 0 0 0 

H, H, H3 0 0 0 0 0 

0 H,, H, H2 H3 0 0 0 

0 0 0 H,, H, H, H3 0 

0 0 0 0 0 6 HI H2 

0 0 0 0 0 0 0 Ho 

where Ho is a submatrix of the form 

--” 

(13) 

0 0 
0 0 1 

0 

0 
0 

0 

0 
0 

0 

0 
0 

0 0 
h(O,O) 4170) w&O) h(3,O) (14) 

0 0 4020) w, 0) w&O) 
0 0 0 0 

0 J 

MO, 0) 

where h(0, 01, h(1, O), h(2, 01, h(3, 0) form the first column of filter h(k, 1). 
Matrices H,, H, and H3 are formed in exactly the same way using the correspond- 
ing columns of filter h, while extension to other values of M and J can easily be 
obtained. Matrix F is similarly formed in terms of corresponding matrices F,, F,, 
F2 and F3. 

Based on Eqs. (11) and (12), we propose next to use a feedforward neural 
network to compute the optimal J XJ analysis and synthesis filters, h and f 
respectively, through minimization of the mean squared difference between the 
original and reconstructed images. The network contains one hidden layer and 
linear hidden and output units. In particular the network accepts at its input the 
M-dimensional input image vector x, uses Q hidden units and is trained to produce 
a reconstructed vector, at its M output units, that is equal to the input vector. As a 
consequence, the network operates in autoassociative form and during training is 
provided with the same input and desired output image blocks, in which the 
particular image, or a sequence of images, has been separated into; a backpropaga- 
tion variant (see e.g. [12]) with a linear activation function can be the training 
algorithm. It is desired that the interconnection weights between the hidden units 
and the network inputs form a matrix W,, equal to matrix H defined above in 
terms of the optimal filter h, while the interconnection weights between the output 
and hidden units form a matrix W,, equal to the corresponding matrix F, so that 
the network implements the operations described in Eqs. (11) and (12). It should 
be added that formulations using similar autoassociative linear networks have been 
proposed for principal component analysis of data [18,30]. In the following, we 
impose appropriate constraints in the proposed network architecture, so that it is 
able to solve the filterbank design problem. 
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Based on the fact [23,1] that the optimal synthesis filter is related to the analysis 
one through Eq. (14) in the frequency domain, or equivalently in the spatial 
domain 

f(m, n) =h( -m, -n) 

the following constraint on the network structure is easily verified 

(15) 

w.0 = WL (16) 

Moreover, in order to force matrices W,, and W,, obtain the required forms (as, 
for example, the ones given in Eqs. (13)-(14) for the analysis matrix filter H), the 
weights corresponding to zero entries in the matrices are fixed to zero during 
training. Furthermore, when a specific weight of matrix W,, (similarly for W,,) is 
updated, its value is copied to all other weights that correspond to the same 
sample value of the optimal analysis filter h(m, n), as determined by Eqs. (13)-(14); 
this procedure is the same as the one used for training time-delay networks (see 
e.g. [26]), where the need for copying the updated weight values to groups of 
weights with identical values also arises. 

5. Multiresolution invariant neural network classifiers 

Hierarchical neural network architectures are proposed next as an efficient 
scheme for classifying the resulting optimal multiresolution invariant representa- 
tions. A feedforward multilayer network is used first to classify an approximation 
image of quite low resolution, trained by some backpropagation variant, including 

nn output layer 

LLj Network 

1st hidden layer 

Fig. 3. Network training at level j. 
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Fig. 4. Transfer of weights between levels j and j + 1. 

some pruning technique, such as weight decay. The hierarchical network is then 
recursively constructed to handle the image at higher resolution levels. More 
specifically, the proposed procedure starts by training a network at, say, resolution 
level j with j I - 1, (network Ui) to classify approximation images xi”” at that 
resolution level (see Fig. 3). After training, the network performance is tested, 
using a validation set of approximation images at the same resolution level j. If the 
performance is not acceptable, training is repeated at the j + 1 resolution level. 

In this approach, it would be desired that the network at level j + 1 (network 
LL,, 1) a priori includes as much as possible from the ‘knowledge’ of the problem 
acquired by the former network at level j. Some early results in this topic [8] 
suggested to use the computed weights of the low resolution network as initial 
conditions for the weights of the high resolution one. In this paper, we use the 
property that the contents of the derived optimal approximation and detail images 
at level j are uncorrelated to each other [23] and that the information of the 
approximation image at level j + 1 is equivalent to the information included at 
both the approximation and detail images at level j. As a consequence, we can 
train three more networks (LH,, HL,, HHj), separately (dr in parallel) from the 
former one, to classify the detail images at level j and let the network at level j + 1 
contain in its first hidden layer a number of units equal to the union of the first 
hidden layer units of all four lower resolution networks, as shown in Fig. 4. 

We then derive forms that permit transfer of the generally large number of 
(already computed) weights between the input and the first hidden layer of the low 
resolution networks in corresponding positions of the high resolution network 
LL,, 1 and keep these weights fixed during training of the high resolution network. 
A small number of nodes can be added to the first hidden layer of the LLj+l 
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network, while computation of the resulting new interconnection weights, as well 
as of the generally less complex upper hidden layers is performed then by training 
the corresponding parts of the high resolution network LLj+l. The above-men- 
tioned addition of hidden nodes can be performed sequentially during training, 
similarly to the cascade correlation methodology [7]. To implement the weight 
transfer, we impose the constraint that the inputs to the units of the first hidden 
layer of network LLj+ 1 be identical to the corresponding inputs of the units of 
networks at level j. In the case of network LL,, for example, with j = - 1, the 
input to each unit of the first hidden layer is 

L L 

C C w44( jr, jz)xL?(jlP j2) (17) 
j,=l jz=l 

where w!f( ji, j,) is the weight connecting each hidden unit to the (jr, j,) pixel of 
the L x L image block at level - 1. Then in the first hidden layer of the LL, 
network classifying each N x N image block, the input to the corresponding unit 
will be analogously 

If the computed values in the above equations are required to be equal to each 
other, then it can be easily shown using Eqs. (3), (17) and (18) that 

Wyk,, ,q = 5 
0 f h,,(2j, -k,, 2j, -k2)w?(jlT jd 

j,=l j2=1 

(19) 

A similar form can be derived relating the weights in each network LHj, HL,, HH, 
and the corresponding weights in network LL,+,, as shown in Fig. 4. The above 
forms permit computation of the generally large number of weights between 
network’s input and first hidden layer be efficiently performed at lower resolution. 

It should, however, be mentioned that training and use of all LL, LH, HL, HH 
networks at level j is not always meaningful; this is due to the fact that in most 
cases only some of the four subband images contain significant portion of the 
content of the original image. To overcome this problem, we propose to use only 
one set of weights in Eq. (19) corresponding to the low resolution image which 
contains the most significant part of the original image among the four subband 
low-resolution images; this image should be created following the procedure 
presented in the previous section. 

6. Simulation results 

The performance of the proposed triple-correlation-based multiresolution neu- 
ral network classifiers was examined next, using inspection of solder joints in 
printed circuit board manufacturing as an application in which conventional 
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(b) 

Fig. 5. (a) Characteristic images of two categories of solder joints; (b) Corresponding invariant 
representations. 

pattern recognition techniques have not shown sufficient reliability. 2-D gray-scale 
images, showing either the height or the intensity as functions of the position 
across solder joints, were obtained by an optical laser scanner and used as signals 
to be classified in two categories; namely, good or poor solder joints, the latter 
containing insufficient amount of solder. 100 input images, 50 of each category, 
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Fig. 6. Optimal analysis filter at level 0. 

were transformed in this domain and used as training data, while another set of 
100 images, 50 of each category, was used to test the generalization ability of the 
networks. An example of each category is shown in Fig. 5(a), while the correspond- 
ing Fx2 invariant representations are shown in Fig. 5(b), the values of (C3,, 19,) being 
quantized to a discrete grid of 34 X 49 pixels. 

Training a fully connected network at this resolution level, using a pruning 
mechanism like weight decay, did not provide good generalization results; only 
86% of the test data were correctly classified. We then used multiresolution 
analysis to reduce the input image size. As has been discussed in Section 4, it is 
crucial to include as more information as possible into the approximation repre- 
sentation at each resolution level. We, therefore, examined first the performance 
of the linear autoassociative networks described in Section 4.3 for obtaining 
optimal analysis and synthesis filters. We used five images from each category, 
separated in blocks of 8 x 8 pixels, as training data at level 0. After training, we 
obtained the optimal analysis filter shown in Fig. 6. We applied this filter to all 
images of both categories. The low resolution representations (level - 1) contain- 
ing 21 X 29 pixels, which correspond to the images of Fig. 5(b), are shown in Fig. 7. 

It should be mentioned that the optimal filter is of high frequency type. 
However, it is quite different from the HH filter that is used in conventional 
multiresolution analysis and is included in Fig. 2. For comparison purposes, we 
used the derived optimal synthesis filter to reconstruct the images at level 0. We 
then did the same, using the high pass (HH) conventional synthesis filter applied 
to the subband low resolution image obtained through the HH conventional 
analysis filter; the reconstructed images are shown in Fig. 8 and 9, verifying the 
optimality of the single-band representations provided by the proposed linear 
autoassociative networks. We continued the decimation procedure one step more, 
obtaining low resolution representations of 15 x 19 pixels at level -2; the derived 
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2.5 

Fig. 7. Optimally derived low resolution representations at level (- 1). 

optimal analysis filter, shown in Fig. 10, is quite similar to that obtained at the 
previous level, verifying the high frequency nature of the multiresolution invariant 
triple-correlation-based representations. 

We then examined the performance of the proposed hierarchical network 
classifiers using the optimally derived low resolution representations. We started 
by training a two hidden layer network at level -2, using 8 and 4 hidden units 
respectively; the generalization ability of it was found to be 84%. We then used the 
procedure described in section 5 to transfer weights between the input and first 
hidden layer of this network to corresponding weights of the network at level - 1. 
Using a node splitting procedure [28] we constructed a network with 2 more units 
in the first hidden layer and two more hidden layers with 4 and 2 units respec- 
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6 
1 

Fig. 8. Image reconstruction at level 0 using optimal results of linear autoassociative network. 

tively; generalization of this network was very good, providing 92% correct classifi- 
cations in the test data set. Adopting this procedure for transferring weights 
between networks at - 1 and 0 levels, we managed to obtain a classification rate of 
94% at level 0, which was higher than the one obtained by direct training of a 
network at this level. 

In the last experiment we considered the problem of printed character recogni- 
tion using image data obtained by a laser scanner as a means to further investigate 
the nature of the computed optimal filters, in relation to the invariant representa- 
tions used. Fig. 11 depicts some of the images that were used, the average size of 
which was 20 x 20 pixels. 
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Fig. 9. Image reconstruction at level 0 using conventional HH analysis and synthesis filters. 

The F,’ criterion, which uses the amplitude information of the Fourier trans- 
form, was used next to obtain invariant triple-correlation-based representations, 
using 16 quantization levels for each 8, and 13~ angle and 8 levels for quantization 
of each inter-class parameter p and 4. 

Fig. 12 shows a characteristic single class (Fourier transformed in the p, # 
domain) of the representations of the horizontal capital letters ‘N’, ‘T’, ‘U’, ‘A’. 
These representations are quite different from each other, while on the contrary, 
the representations shown in Fig. 13, which belong to three scaled and rotated 
versions of letter ‘N’ are almost identical, demonstrating invariance as well as 
robustness to small shape distortions. Tables 1 and 2 use the Euclidean distance as 
a measure of the difference between representations of the above letters and 
between rotated and scaled versions of them respectively. 
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Fig. 10. Optimal analysis filter at level (- 1). 

NTUA &Jb 

ntua (\,,a 

NTUA @P 

nlua ,Lua 

NTUA fl+ 

ntua ,&Lua 

Fig. 11. Printed character sample data. 

Fig. 12. A single class of the invariant representations of different characters. 
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Fig. 13. A single class of the invariant representations of scaled and rotated versions of character ‘N’. 

The derived 2-D invariant character representations in total, i.e. including all 
computed (i.e., 16 x 16) classes, consist of 128 X 128 pixels. Fig. 14 shows the 
representation of horizontal character ‘N’; only the first quarter part of the 
representation, consisting of 64 X 64 pixels, is shown, since the rest parts are 
computed through third order correlation symmetries. Optimal analysis filters 

Table 1 
Euclidean distances of representations of different characters 

Horizontal, pointsize 10 

N T U A n t U a 

N 0.00 0.96 1.70 0.44 1.31 1.63 1.02 0,85 

T 0.96 0.00 2.65 0.63 2.78 0.89 2,19 1,79 

U 1.70 2.65 0.00 1.82 0.88 4.58 1,17 1,47 

A 0.44 0.63 1.82 0.00 1.49 1.59 1,04 0,77 

n 1.31 2.78 0.88 1.49 0.00 4.40 0,24 0,55 

t 1.63 0.89 4.58 1.59 4.40 0.00 3,55 3,09 

u 1.02 2.18 1.17 1.04 0.24 3.55 400 0,34 

a 0.85 1.79 1.47 0.77 0.55 3.09 0,34 O,OO 

Table 2 
Euclidean distances of representations of scaled and rotated versions of characters 

Rotated, pointsize 9 

N 

N 

0.06 

T 

0,97 

U 

2,49 

A 

0,49 

n 

1,55 

t 

1,88 

U 

1.68 

a 

0,97 

T 1,35 0,07 3,69 0,62 2,9L? 1,34 3,20 1,99 

U 1,94 2,44 0,18 1,97 1,45 4,57 1,36 1,46 

A 0,57 0,55 2,48 0,08 1,47 1,77 1,68 0,84 

n 1,30 2,54 1,23 w 0,47 4,47 0,37 0760 

t 1,90 1,21 5,92 1,52 4,61 0,16 4,87 3,34 

U l,oo 1,94 1,62 1,15 0,33 3,59 0,29 0,72 

a 0,91 1,66 2,ll 0,84 0,64 3,35 0,76 0,13 
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Fig. 14. The invariant representation of horizontal character ‘N’, including all classes. 

were then computed, using the proposed linear autoassociative neural networks 
and training data from all character representations in the form of Fig. 14. To 
indicate the nature of such filters, the filter computed using the image in Fig. 14 is 
shown in Fig. 15. This filter, apart from high pass areas, also includes a strong 
low-pass component; this is due to the large portion of ‘smooth’ small valued 
information that the image of Fig. 14, as well as other images of this form, contain. 

7. Conclusions 

Appropriate 2-D representations based on third-order correlations of images 
have been used for invariant with respect to translation, rotation and scale 

2000. 

1500. 

4 

Fig. 15. Optimal analysis filter based on the image shown in Fig. 14. 
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classification by neural network architectures. An efficient scheme has been 
proposed for this purpose, introducing hierarchical neural networks, which are 
created in a constructive way. Linear autoassosiative networks have been proposed 
for optimally selecting filterbanks which are used in the above constructive 
approach. Very promising results have been presented, testing the performance of 
the method in image classification problems; other studies in efficient retrieval of 
images, or video, from large image databases, using the proposed multiresolution 
network approach are currently investigated. 
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