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Abstract

In this paper a modular approach of gradual confidence for facial feature extraction over real video frames is
presented. The problem is being dealt under general imaging conditions and soft presumptions. The proposed
methodology copes with large variations in the appearance of diverse subjects, as well as of the same subject in various
instances within real video sequences. Areas of the face that statistically seem to be outstanding form an initial set of
regions that are likely to include information about the features of interest. Enhancement of these regions produces
closed objects, which reveal—through the use of a fuzzy system—a dominant angle, i.e. the facial rotation angle. The
object set is restricted using the dominant angle. An exhaustive search is performed among all candidate objects,
matching a pattern that models the relative position of the eyes and the mouth. Labeling of the winner features can be
used to evaluate the features extracted and provide feedback in an iterative framework. A subset of the MPEG-4 facial
definition or facial animation parameter set can be obtained. This gradual feature revelation is performed under
optimization for each step, producing a posteriori knowledge about the face and leading to a step-by-step visualization
of the features in search.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding what the visual content of hu-
man face reveals has been a very active field of
research for almost three decades. Researchers
through time have endeavoured in various ap-
proaches on coding the content of the face (as with
the MPEG-4 standard) and on using it for
identification or emotion recognition reasons
[6,8]. Applications have involved a wide range
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that meets telecommunications and human-com-
puter interaction. Most of the times, the key issue
for all approaches has been the suitable selection
of features, having as an objective either facial
representation or facial evaluation.

The specific problem of automatic facial feature
selection falls under the general problem of
automatic image segmentation. Segmentation
using sole traditional low-level image processing
techniques often requires interactivity in a large
degree in order to achieve the desired results. On
the other hand, automation frequently involves
models in order to guide the segmentation

0923-5965/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PIL: S0923-5965(02)00103-0



68 G.N. Votsis et al. | Signal Processing: Image Communication 18 (2003) 67-89

processes. Choosing the right model set for the—
as generic as possible—representation of objects is
difficult due to shape complexity and variability
within and across a set of objects belonging to the
same class. It has been reported that for fixed
objects (and the facial features could well be
considered as such) it is possible to partition the
image into a globally consistent interpretation
through the use of deformable templates, while
using statistical shape models to enforce prior
probabilities on global deformations within the
same class [41]. Other recent work in image
segmentation includes stochastic model-based
approaches [11,25,34,52,55] morphological wa-
tershed-based region growing [43], energy diffu-
sion [28], and graph partitioning [44]. Non-model-
guided segmentation aims at separating homo-
geneous colour-texture regions [12], but generally
do not satisfy semantic partitioning.

Robust and accurate facial analysis and feature
extraction has always been a complex problem
that has been dealt with by posing presumptions or
restrictions with respect to facial rotation and
orientation, occlusion, lighting conditions and
scaling. These restrictions are being eventually
revoked in the literature [36,3], since authors deal
more and more with realistic environments, while
keeping in mind pioneering works in the field
[19,40,5,21,6].

Video approaches try to combine both spatial
and temporal information in order to assess the
segmentation performance [9,17,3]. The use of
stereo vision and special processors [29] promises
fast feature tracking, given that the initial position
of the features is predefined. Hierarchical feature
extraction uses the combination of prior statistics
and linear discriminant and complementarily
aggregates multiple Gabor jet representations for
a whole sequence [42,31,37]. Simpler approaches
on video use heuristics for the purpose of practical
implementation [26]. Parallel processing employ-
ing motion and spatial cues are combined colla-
boratively to prove that fast segmentation can be
achieved by using only standard and complemen-
tary techniques. In an earlier work of Black et al.
[3], local parameterized models of image motion
had been used for recovering and recognizing the
non-rigid and articulated motion of human faces.

Parametric flow models were used in order to
provide a concise description of facial motion
(intuitively related to facial feature motion) in
terms of a small number of parameters. The work
dealt with facial expression understanding, but
feature extraction and tracking seemed to be the
input in order to reach any expression estimate.

Model-based estimation of facial features uti-
lizes matching of either generalized or subject-
dependent textured models, but requires compu-
tationally consuming actions, such as model
rendering with modified shape and position [16].
Investigation for the reduction of computational
complexity has been attempted by regarding
model-based facial feature extraction as an opti-
mization problem [1].

Higher-level approaches attempt to exploit a
large amount of evidence, related and reinforced
by model knowledge through a probabilistic
framework [53]. Under this framework, feature
groupings that form meaningful entities using
perceptual organization are examined under the
assignment of probabilities for each grouping and
their reinforcement using Bayesian reasoning
techniques.

The work proposed in this paper aspires to deal
with more realistic environments by considering
general imaging conditions and developing more
structured solutions. A gradual, robust analysis of
facial features is presented, coping with large
variations in the appearance of diverse subjects,
as well as of the same subject in various instances
within real video sequences. Soft a priori assump-
tions are made on the pose of the face or the
general location of the features in it. The gradual
revelation of information concerning the face is
supported under the scope of optimization, energy
or error minimization for each step, producing a
posteriori knowledge about it and leading to a
step-by-step visualization of the features in search.
This comes in contrast with the basic perspective
of other solutions proposed in literature
[16,47,38,1,32,45], which use specific feature re-
presentation models or presume an upright posi-
tion of the face. It merges, however, some of the
tools already proposed in literature with new ones,
under a unified hierarchical approach, each step of
which is thought of as an optimization question.
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The main focus of this work is on structured
facial feature extraction on already detected and
segmented facial images; its contribution may be
summarized as follows:

® The problem is being dealt under general
imaging conditions and soft presumptions.
Other existing approaches that deal with video
sequences assume that in the first frame the
features have already been segmented.

® Rotation-independent feature extraction yields
a fuzzy mechanism for automatically detecting
in-plane facial rotation.

® The objective of each step of the structured
procedure is considered as a separate optimiza-
tion problem.

® Integrating attractive techniques proposed in
literature with new ones provides more power-
ful tools towards the achievement of our goal.

The remainder of the paper is organized as
follows. In Section 2, some of the adopted
techniques are elaborated. Their effectiveness is
presented and their drawbacks under circum-
stances are briefly discussed. The proposed facial
feature segmentation method, formulated as a
step-wise optimization problem, is thoroughly
discussed in Section 3. In Section 4 a series of
simulation results on real sequences containing
faces is considered. Conclusions are presented in
Section 5.

2. Adopted technologies

2.1. Facial feature segmentation by min-max
analysis

Integral projections have played an important
role in the long bibliography on face recognition
and feature extraction, as a tool for estimating the
position of features. This technique was intro-
duced by Kanade in his pioneering work [22] on
recognition of human faces. Projections are simple
to implement, while being at the same time
extremely effective in determining the position of
features, provided the window on which they act is
suitably located to avoid misleading interferences.
Kanade performed the projection analysis on a

binary picture obtained by applying a Laplacian
operator on the gray-level picture and by thresh-
olding the result at a proper level. Since then,
authors have used the same tool from time to time.
Brunelli and Poggio [5] have performed edge
projection analysis by partitioning the edge map
in terms of edge directions, horizontal and vertical.
Areas pointed out by the integrals formed a good
first estimate of where the templates were to be
applied. Other researchers found out that more
exact results can be obtained by applying the
projection analysis on the intensity image, because
of the smooth contours of most of the facial
features [38,23,45,51,33]. In [38] rubber snake
models are applied on the areas where the integral
projections point out. This is performed in a
sequential manner analogously to the template
deformation on different epochs used by Yuille
et al. [54]. In [45] the authors compute the y-
projection of the topographic gray-level relief.
They smooth the y-relief through average filtering.
Significant minima are determined in the y-relief
by checking the gradients of each minimum
to its neighbor maxima. Each significant mini-
mum is considered as a possible vertical position
for facial features. For each y-candidate,
smoothed local x-relief is calculated and the
minima reached by this procedure are candidate
feature points.

In the above-mentioned works, the authors
exploit the a priori knowledge that faces within
images are in an upright position, by labeling the
significant minima of the projections as candidate
estimates of specific features or feature groups, i.e.
upper group (eyebrows, eyes), middle group
(nostrils), lower group (mouth chin). In more
realistic environments the hypothesis of facial
upright position is usually not valid, a fact that
eliminates any assumption on where a feature
group lies within the image. Even so, all relevant
papers have shown how powerful such a simple in
concept tool can be.

2.2. Unsupervised color—texture segmentation
The problem of unsupervised segmentation is ill

defined, because semantic objects do not usually
correspond to homogeneous spatial regions in
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color or texture. Recent work in image segmenta-
tion includes stochastic model-based approaches
[25,52], morphological watershed-based region
growing [40], energy diffusion [28] and graph
partitioning [44].

In a recent work presented by Deng et al. [12],
the goal is homogeneous color—texture region
segmentation. According to this work, colors in
the image are quantized to several representative
classes, generating a class-map, which may be
viewed as a special kind of texture composition.
Spatial segmentation is performed directly on this
class-map without considering the corresponding
pixel color similarity.

Let Z be the set of all N data points in a class-
map. Let z = (x,y), zeZ and m be the mean,

m :% Z z. (1)
zeZ

Suppose Z is classified into C classes, Z;, i =
1, ..., C. Let m; be the mean of the N; data points
of class Z;,

1
m; = — Z. 2
7 2; (2)
Let also
St=)_ llz—ml (3)
ze”Z
and
C
Sw=>_ > llz—mi, )
i=1 ZEZ,’

where St is the total variance and Sw is the
variance of points belonging to the same class. Let
us also define

J = (St — Sw)/Sw. (%)

For an image with several homogeneous regions,
color classes are well separated from each other
and J takes large values. If all classes are
uniformly distributed over the image, J takes
small values. If we calculate J over each segmented
region, we may define

- 1
T= ij My Jy, (6)

where Ji is calculated over neighborhood k, Mj is
the number of points in neighborhood k and N is
the total number of points in the class-map.
According to Deng et al. [12], J is an expression
of an energy function, which has proven to be a
good criterion to be minimized over all possible
ways of segmenting the image, given the number of
regions. By constructing an image whose pixel
values correspond to J values calculated over
small windows centered at the pixels, the so-called
J-images are built. The higher the J value is, the
more likely that the corresponding pixel lies near a
region boundary.

This new criterion for color—texture segmenta-
tion is complex enough to require offline proces-
sing for medium quality images. However, if
applied in better-specified segmentation scenarios,
the procedure may be significantly less computa-
tionally consuming.

2.3. Segmentation and active contours

In the general field of segmentation as well as in
facial feature extraction, deformable models and
active contours (snakes) have often been used
[7,10,20,24,30,46,3,47,38]. For example, Yuille
et al. [54] employ deformable templates to model
facial features. The template-based approach
allows for inclusion of object-specific knowledge
in the model. Nevertheless, such methods require
careful construction and parameterization of
templates.

Snakes in general incorporate knowledge about
a contour’s smoothness and resistance to deforma-
tion. A regular estimate of a contour is obtained
by defining image forces that pull on the snake
model, while at the same time intrinsic contracting
or inflating forces can be used in order to either
shrink or expand the snake, respectively, towards
directions that are irrelevant to the image content.
One of the chief virtues of snake representations is
that it is possible to specify a wide range of
snake properties through its energy function, in
analogy with physical systems. Controlling a snake
causes it to evolve as to reduce its energy. By
specifying an appropriate energy function, we can
make a snake that will evolve to have particular
properties.
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One of the most common forms of the energy
function representing a snake is the following:

Esnake = Eint + Eext

= Lelastic + Eimage

N N
=K Z (d(i,i— 1))’ + K> Z I(x;, 1), (7)
p py

where by d(i,i — 1) we denote the distance between
two successive control points and by I(x;,y;) we
denote the intensity at pixel i. The constants K;
and K, are arbitrarily selected and control the
influence that each of the two factors has.

The internal or elastic energy is the part that
depends on intrinsic properties of the snake, such
as its length or curvature. The external or image
energy generally depends on image structure and
particular constraints the user wants to impose.
Each of the energies corresponds to a related force,
a fact that allows for a simple implementation of
the dynamics of the snake. At each step, each
control point moves by an amount proportional to
the force acting on it. In the physical analogy, this
is like making a light snake move through a
viscous fluid—it should dissipate its energy with-
out oscillating. These forces are used to move the
control points and are computed based on
gradient descent of each of the two energy terms
in Eq. (7).

Speeding up snake evolution could be achieved
through dynamic programming techniques, by
calculating directly the configuration of the snake
that will cause the internal forces to balance a
given set of external forces. This allows bigger
steps to be taken, and is more efficient overall,
despite the extra computation involved.

In the seminal paper on snakes [24], snakes are
regarded as a “power assist”’ for a human operator
needing to measure structures in images. The
operator would point the snake at, say, particular
cells in a histological image, or at a road in a
satellite image, and the snake would lock on to it
and provide an accurate measure of its shape. In
our case, as it will be described in the following,
snakes will need to be initialized automatically in
order to finally settle on the objects that will serve
as potential features.

3. The proposed approach
3.1. System overview

According to our approach, primary facial
features, such as the eyes and the mouth, are
considered as major discontinuities on a segmen-
ted, arbitrarily rotated face. Due to arbitrary
facial rotation, as well as to occlusion, labeling
of those features requires careful selection
among all possible discontinuities. Selection is
based on criteria that give birth to a posteriori
knowledge about the face, such as dominant
angles of the candidate features and symmetry
considerations.

Fig. 1 shows the proposed approach. The pipe-
line of processing steps mainly consists of three
stages: (i) optimized segmentation and extraction
of main facial features, (ii) estimation of the
dominant facial angle based on the extracted
features, and (iii) extracted feature labeling. Stage
(i) generates an initial estimate of the facial
segments (seeds), which it uses as input to an
iterative optimization scheme that provides opti-
mal seed estimates. The stage also includes a post-
processing enhancement task (also expressed as an
energy minimization problem), which assists in
obtaining closed segments and removing some
of the created artefacts. The following stage
(ii) targets another issue, i.e., determination of
the dominant facial angle, for in-plane rotation
(pose) estimation. It takes as input the results
(seeds) of stage (i), models them by active
contours, and computes, using a fuzzy system,
the dominant facial angle. Stage (iii) follows stage
(i1), adopting the obtained results (i.e., the
dominant angle), and wuses knowledge about
the facial position of mouth and eyes to label
the extracted features and evaluate them.
Evaluation is based on knowledge about the
symmetries and relative positions of features
in the facial area, making it possible to iterate
on stages (ii)) and (iii)), so as to make the
selection of dominant angle and feature labeling
more accurate. MPEG-4 feature definition
(FDP) and animation (FAP) parameters can be
finally extracted from the proposed three-stage
procedure.
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Fig. 1. Schema representing the method followed in our
approach.

In the following, we describe the steps of our
approach one by one.

3.2. Segmentation and seed determination

The input to this module is an image X of size
k x [ containing a face segmented from its back-

ground, i.e. a masked facial image. This image is
assumed to depict only information that lies within
the facial closed boundary, defined by the visible
facial skin’s perimeter. Typical examples are given
in Fig. 2. Initial processing is based on pure
statistical analysis. The assumption under which
the module works is simple: all facial features in
the input image are viewed as discontinuities upon
a generally smooth surface. Of course, one has to
deal with irregularities of this surface, such as
illumination disparities depending on the direction
of the light source in relevance with the object’s
position, occlusion cases, where other objects’
parts hide part of the object of interest, as well
as various rotation and orientation angles of the
face which change the shape and the distribution
of the features upon it. Occlusion is definitely a
complex matter, which requires content knowl-
edge. Such cases are being tackled through the
existence of a symmetry control mechanism, which
is discussed later on in this paper and uses
knowledge of the already traced and appointed
facial features.

Statistical analysis of facial images—as subse-
quently described—presents a significant advan-
tage compared to other feature tracking
approaches: it does not require knowledge of
feature allocation upon a face in the first place, a
fact that greatly disassociates it from head rotation
and orientation variations. This means that
significant characteristics of the face are first
detected, even if at this stage this module “knows”
nothing about their labeling.

In this context, combination of fundamental
image processing tools was used to determine
areas of the face that probably contain regions of
interest. Edge detection using Sobel operators was
applied on the masked facial image and the
resulting vertical and horizontal integrals were
calculated. Fig. 3 illustrates the results on
some of the subjects of the used natural video
database.

Under the same rationale, the inverse grayscale
information of the masked face was both vertically
and horizontally integrated, as seen in Fig. 4.
Inversion was deemed useful both for comparison
and for combination with the respective graphs
depicted in Fig. 3. The projections in both cases
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Fig. 2. Six representative input frames depicting subjects of the natural video database. The samples illustrate the variability in pose
(rotation and orientation), lighting conditions and scaling.
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Fig. 3. Vertical and horizontal integral projections for edge image, in our six representative input examples.

point out—in a strict and a wider sense, respec- Some of the information that the raw edge
tively—the one-dimensional (1D) windows where image includes is irrelevant to the characteristic
one may detect the regions of interest. features. So, the plots of Fig. 3 were weighted,
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Fig. 6. The product of the vertical and horizontal weighted vectors yields a map M, where one may discern the valleys and the hills

(pixel accumulations) that form different “objects”.

using as envelopes the respective plots viewed in
Fig. 4. This kind of modulation (implemented
through multiplication of the respective curves)
was adopted, because it refines the windows in
both horizontal and vertical directions, also
reducing the noise that has occurred by edge
detection. Results are shown in Fig. 5.

The resulting weighted windows, Py and Py for
the horizontal and vertical projections, respec-
tively, provide 1D clues on where the regions of
interest within the image liec. The next step
postulates expansion of the windows in two
dimensions, as well as thresholding and binariza-
tion of the output’s values. To achieve this
expansion, the product of the vertical and hor-
izontal weighted vectors was created, yielding a
map M, as the one depicted in Fig. 6.

M = Pl - Py ®)

On this map we may discern pixel accumulations,
according to their M-values, forming different
“objects”.

In the following, and for each ‘‘object” we
identify its respective “‘seed” as its closed subset
with maximum area and minimum hue variance.
An initial estimate of the seeds My, is the binary

map that comes from M, where M(i,j)>0 for
those areas that include discontinuities, as seen in
Fig. 7. We assume that, based on the former steps,
this initial estimate includes all possible seed
candidates. The above concept is expressed in
mathematical formalism as follows, where for
simplicity, we consider M, to contain only one
object.

Let S be a vector containing the probability that
each pixel

xieX, ie[l, ...k xI:my=1 )
belongs to the seed or not,
S = [s(x1), 5(x2), ..., s(xn)], (10)

where mé is the value of the ith element of My, N
is the number of the 1-valued pixels of M, and
s(x;) = p' is the probability that pixel x; belongs to
the seed.

For a given image X (with a specific hue
component, as in the examples given in Fig. 8)
and an initial estimation M, of the seed within it,
our target is to find the probability vector S, as
well as a finer estimate M; of the seed. This may
be mathematically expressed as a maximization
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Fig. 8. Hue component (from the Hue-Saturation-Value representation) for our six input examples.

problem of a conditional likelihood function,
{ My, 8} = arg max L(My, S/ My, X), (11)
s

where L denotes the log-likelihood function.
The probability density included in the above
expression may be written, given the fact that the

input image is given,
Pr(My, S/ Mo)
= Pr(S/Mo) Pr(M;/ My, S)

= Pr(S/My) Pr(M;/S),

(12)
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where the fine estimate of the seed M; depends
explicitly on the probability vector S. However,
since we are interested in maximization of the
likelihood function, the second factor of the above
expression takes the value 1 only when S>T,
where T is an appropriate threshold vector. This
implies that the factor may be omitted, in the
following sense:

A

S = arg max{log Pr(S/Mo)}
s
= arg max{log Pr(M,/S) — log Pr(M))
s

+ log Pr(8)}
= argmin{—log Pr(M,/S) — log Pr(S)}. (13)
s

By assuming that for a given probability vector
S there is only one initial estimate My, there exists
a matrix R that linearly relates the two vectors.
This allows us to omit the first of the two terms
under the condition of minimization, due to the
fact that the related probability is 1 if the linear
relation is fulfilled and 0 otherwise [13]. Such a
simplification means that the only term we have to
minimize for a given input is the second one.

On the one hand S is a vector random variable
(RV), which is actually a function that depends on
the hue component of the input image on a
neighborhood of pixels, as well as on the area
defined by that neighborhood. To be more precise,
the function, which we want to minimize, is
proportional to the hue variance of the neighbor-
hood and inversely proportional to the neighbor-
hood area. This function is an RV, since it has the
following required properties [35]:

® [ts domain includes the range of the variable x;,
which is also considered as an RV.

® [t is a Baire function, since for every s, the set of
X, Ry, such that s(x;)<s consists of the union
and intersection of a countable number of
intervals (on the x-axis).

® The events s(x;) = + oo have zero probability.

On the other hand, the elements of S represent the
probabilities that a picture element x; is classified
in one of two classes, i.e. to a seed or not. It is
known, however, that pixels are strongly corre-
lated to their spatial neighbors. This fact has as a

consequence local correlation among neighboring
elements of §. This property characterizes an
MREF [4,18].

These two observations allow us to use a Gibbs
distribution in order to model Pr(S), since this
kind of distribution is able to explicitly express
MRFs in probabilistic frameworks,

Pr(S) = Fexp{—a > G,,(x)}, (14)
neN

where F and a are normalization factors, n are the

neighborhoods, N is their union, and G,(x) should

be expressed in terms of hue variance minimization

and area maximization within each neighborhood.

We chose

Gu(x) =Y {(H(xp) — Hy)” + (s(x1) — mo(x)},

(15)

where i is the index for each pixel, H is the hue
component for the image X and H, is the mean
hue for neighborhood #n. The first term of the sum
models hue variance in neighborhood n. The
second term is minimal in the case that neighbor-
hood’s probabilities remain as high as possible,
meaning that the neighborhood remains as big as
possible (maximum area).
From Egs. (13)—(15), we may find

S = arg max{log Pr(S)}
s

= arg min{z Z {(H(x) — H,)
s

neN ien
+ (s(x;) — mo(x:)*} }- (16)

Since both factors of the above expression are of
squared form, (16) defines a convex function (see
[27, p. 178]), a fact that implies that a global
solution is present. Minimization of (16) is
straightforward, if we calculate the derivative of
the expression in (16),

D = 0w Sieal(H () = Hy)” + (s(xi) — mo(x)*}}

os
B L - PH(x)
= 2; Z {z(H(x,) H)—
+2(s(x;) — mo(x,-»}, (17)
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where 0H(x;)/0s is either zero in the case where the
value of My at pixel x; is the same from state j to
state j + 1, or —H(x;) in the case where this value
changes. Through Eq. (17) we observe that there is
indeed a linear relation between S and M, as
assumed before. Due to the neighborhood struc-
ture of our problem, the iterative conditional
modes (ICM’s) technique [13] has been used to
estimate the optimal vector S. The respective
optimal vector % is estimated through S with
the selection of an appropriate threshold vector, as
mentioned before.
Examples of the output are shown in Fig. 9.

3.3. Enhancement and seed growing

The output of the previous module provides a
minimal estimation of the facial features’ posi-
tions. The goal of the current module is to enhance
the occurring pixel set. In determining the seeds of
our objects of interest, the hue component of the
input image was merely used to locally define those
maximal areas where hue variance was minimal.
As hue represents the chromatic component (H) of
an image, a region-based enhancement for each
one of the minimal objects tracked in the first

module is applied. On the other hand, the value
component (V) has a significant amount of
information to offer in this stage. Of all the edge
information that is gathered from ¥, only the lines
that partially overlap with the seeds are kept. This
kind of enhancement results in objects with holes,
with no concave shape and which do not
accurately describe human facial features. More-
over, the existence of noise is still evident. For
these reasons, a series of morphological operators
are used to provide further smoothing of the
located regions; these include majority morphing
(setting a pixel to 1 if five or more pixels inits 3 x 3
neighborhood are 1’s) and filling of gaps (i.e.,
isolated interior pixels with a value of 0 sur-
rounded by 1’s) for the removal of noise and the
determination of closed objects, as well as brid-
ging, for retaining connectivity of objects that
originally seem to be separate and extremely close
to each other, but in fact comprise the same object.
Finally, successive application of such operators
results in superfluous perimeter enhancement,
which calls for perimeter erosion. The kernel for
all morphological operations is automatically
adapted according to object size and complexity,
with the scaling factor being empirically selected,

Fig. 9. Fine estimates M; of the seeds in our six representative examples.



G.N. Votsis et al. | Signal Processing: Image Communication 18 (2003) 67-89 79

based on the number of practiced morphological
operators.

The enhancement procedure is viewed as an
energy minimization problem of the terms
FEy, Evm, where the first term refers to hue
enhancement, while the second term is related to
value and morphological enhancement, as de-
scribed above in principle.

Hue enhancement is based on the idea of energy
minimization proposed by Deng et al. [12], only
that in our case there are only two classes (i.e. one
class of interest) and the computational complex-
ity is considerably reduced due to the fact that:

® calculations are restricted in neighborhoods
that are well specified by the seeds,

® color reduction and quantization is easily
achieved, since for each seed there is a dominant
color.

Consequently, the first term of the enhancement
energy takes the following form:

1
Ey =¥ Z My Jy, (18)
keWw

where the summation is performed over neighbor-
hoods k, i.e. windows W defined around the seeds
determined in the previous module. N is the total
number of points in the W-masked class-map.
Another essential modification to the approach
proposed by Deng et al. is that for each neighbor-
hood, J; is calculated over different classifications.
To be more precise, the classes Z;, i =1,2, as
presented in (2), are different for each k and
depend on the respective seed’s dominant color’s
presence and absence. So, (18) is minimized over
all possible extensions for the hue components, as
well as for multiple extension window sizes, which
are adapted for each seed by its area and structure.

The value-morphological enhancement term
Evy) is defined as a seed/enhancement overlapping
model,

AsAvm
Evw =—F75—,
A5

(19)

where Ag is the area of the seed, Ay is the area of
the value-morphological enhancement and Ag is
the overlapping area. As the common area
between the two regions gets larger, Eyy gets

lesser. Minimization of this ratio maximizes the
overlap between the seed and the intersecting
value/morphological enhancement object. No
threshold is applied, due to the fact that the
segmentation seed could be significantly smaller
than the enhancement combination. Convergence
of this term is based on the assumption of value
connectivity for each feature in search.

The two enhancement procedures are indepen-
dent. The final enhanced seeds are computed as the
logical OR of the regions (objects) provided
independently by the two minimization proce-
dures.

Some results are shown in Fig. 10.

3.4. Object determination and dominant angle
calculation

The processing steps that have been utilized up
to this stage yield a set of objects that are
candidates for the desired features within the input
facial image. Let us denote by

Se = {0c: (0ce F)v (O ¢ F)} (20)

the candidate object set, where the candidate object
O, may or may not belong to the desired feature
set F. Each object O, may be modeled by an active
contour (snake), which is able to describe its shape
as well as its direction in the 2D space. The active
contour model consists of a set of control points,
connected by straight lines forming closed loops.
For each O, an initial snake is estimated by the
rectangle including the object in the image, as seen
in Fig. 11. Automatic snake initialization is
accomplished in this manner. Approximation of
the actual object is achieved by combining two
kinds of energy: the so-called internal or elastic
and the external or gradient [24], as described
earlier. Sequential minimization of these terms is
applied, for a number of iterations that depends on
the object’s size and structural complexity. For our
examples, the final active contour models for all
objects O. may be seen in Fig. 11.

As mentioned above, the active contour models
are directional by nature. This means that for each
O. we may define an angle 0; that reveals the
object’s orientation in the 2D space. The dominant
angle 64 is computed using a fuzzy subsystem. For
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(d)

Fig. 10. Enhanced seeds for the examined input images.

Fig. 11. Initializations and final approximations of active contours for all enhanced seeds within each input image.

each object O, its angle 0; is assigned a triangular
membership function, whose amplitude is propor-
tional to the size of the object. The summation of
all the membership functions over the 60 axis
usually shows an accumulation around a specific
angle. So, the angle that obtains the maximum

amplitude is the one we call 4. The same problem
may be viewed as an error minimization issue,

No

Eang = Y [C = fu(O)]Fo, Q1)

i=1
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where C is a constant, Ny is the number of objects
in the set Sc, f,, is the selected membership
function for objects O; and corresponding snake
angles, while Fp is an outlier factor. This error
reflects the selection of the fuzzy system (accumu-
lative membership function maximization) includ-
ing the outlier exclusion factor. For a given
membership function fy,, it depends on the snake
angle and the amplitude of f;,, for the object O;. We
chose to use a triangular membership function
(which could also be Gaussian) with amplitude
that is linearly proportional to the object area, in
order to express a degree of uncertainty around the
angle estimate, which is automatically calculated
for each candidate object. The scalar outlier factor
included depends on the object’s relative size.
The angle that minimizes (21) is used in order to
rotate the segmented faces. Results on dominant
angle estimation and on facial rotation are
illustrated in Figs. 12 and 13, respectively.

3.5. Basic feature selection and feature labeling

The dominant angle serves as a criterion for
further restriction of the set S;. Using the standard
deviation of the angle distribution that our fuzzy
system yields, a range of values around 64 is
defined, which provides this restriction. Objects
that lie within this angle window form the new set.
Let us denote by

S.=10,:(0,eF)v(OL¢F)} (22)

the refined candidate set. Some results on the test
images examined are shown in Fig. 14.

Up to this stage of the algorithm, we have made
soft assumptions on the nature of the features and
we have used no a priori knowledge about the
specific or relative positions of the features in the
facial area. Feature labeling is attempted at this
point for the three basic facial features, i.e. the eyes
and the mouth. These are considered to be
sufficient to form the basis for further feature
extraction, since they may provide a posteriori
knowledge on the real position of other facial
features, such as eyebrows, nose and nostrils, as
well as transient features (nasolabial furrows, nose
wrinkles, eyebrow wrinkles) [47], if these are
visible. In this attempt, we employ vague knowl-

edge of the geometric interdependence that these
features have on a rotation-wise normalized face,
as seen in Fig. 15.

The normalized triplet of candidates that is
closer to the geometric pattern expressed in (23)
and illustrated in Fig. 14 is considered to be the
winning triplet,

Egym = (la| — |b]) - 190° — ¢|/max(|al, |b]). (23)

This triplet is estimated by examining the number
of possible triplets, which is

n n!
<3> T3l -3y (24)

where 7 is the dimension of S..

The case, however, where all three features are
not present, is possible. This could be due to
occlusion, or failure of the algorithm to include all
of them in S/, or even due to dimension
insufficiency of the set S, (n<3). In the case where
n =2, or generally in the case of couple candi-
dates, when these lie in the same parallel line with
the horizontal axis (after rotation normalization),
even if small deviations are present, they may be
labeled as the eyes. For n=1 and for unit
candidates, there can be no sound conclusion on
the feature’s label. Moreover, when n =1, the
question of how one feature imposes a dominant
angle arises. Both in this case and in the case of
only two detected features, we can automatically
repeat the whole process from the stage of
determining a new dominant angle and forth, by
enhancing the contribution of any correctly
labeled features or decreasing the respective
contribution of solely detected ones. It should
also be mentioned that other, e.g. semi-automatic,
evaluation of the features can be used to lead to
such iterative implementation of the procedure.
Some results of feature labeling are shown in
Fig. 16.

3.6. Feature definition or animation parameter
estimation

Once the winner objects are labeled, a subset of
the facial definition (FDP) or animation (FAP)
parameter sets (as defined in the MPEG-4
standard) can be calculated. FDP extraction is
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Fig. 12. Output of the fuzzy system that determines the dominant angle. Triangular membership functions for each object are added,
forming accumulations around the dominant angle 04.

4
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Fig. 13. Rotated input images, according to the automatically calculated dominant angles 64 for each case.

based on the computation of minima and maxima detected facial points we can measure their
according to the orientation of the dominant displacements between two successive frames.
angle. After specifying the coordinates of the The measured values can be modeled through
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Fig. 14. Normalized geometric pattern for eyes and mouth.

FAPs and, e.g., fed to an MPEG-4 decoder. The
labeled FDP points for some test frames may be
seen in Fig. 17.

4. Simulation results

Each of the aforementioned optimization pro-
cedures was applied on real video frames, where
the facial segmentation had already been per-
formed [2,48].

The system was implemented on a PC with a
Pentium III processor and for the simulations we
used MATLAB language. All performance statis-
tics are reported for non-optimized code. To
support the system’s efficiency, the code was run
for over 100 cases coming from various natural
sources of emotionally rich material: pictures, lab
recordings, or even broadcast shows [8].

Figs. 3-9 show all the stages of the seed
determination phase for a number of characteristic
frames. The optimization of the initial estimates
yields the fine maps M; that may be viewed in
Fig. 9 for our example images. Fig. 10 illustrates
seed growing as a result of expansion energy
minimization, as mathematically described in
(18)—(19). In Fig. 11 snake initializations and final
snake estimates may be seen. Figs. 12 and 13
report the estimation of the dominant angles, i.e.
the facial rotation angles for each of the presented
examples. Refined object sets S, and the normal-
ized winner triplets are depicted in Fig. 15. The
primary features are selected and labeled in
Fig. 16. Finally, resulting feature points are
calculated as in Fig. 17, and form a subset of the
MPEG-4 FDP set.

Automatically obtained results were compared
to manually extracted and labeled ones on the
input material. In order to measure the consistency
of the results, a series of metrics was applied for
each feature as well as on the assemblage of all the
features, in both cases (automatic and manual). To
be more precise, the Euclidean distance was
computed between the two cases for each feature
point, for the centroid of each feature, as well as
for the relative position of all centroids. Presence
of artefact features or absence of existing ones was
taken into account. These three levels of measures
and the outlier factor were jointly employed so as
to estimate the success or the failure of the
procedure for all examined frames. Results show
that only a 4% of the feature sets was totally
mislabeled. It is deemed that this failure is mainly
due to imprecise facial segmentation, meaning that
paraphernalia not expected to be present in the
input image actually were. For 7% of the input
images the feature sets were not detected at all. In
this case, the system proved its attribute of
realizing its inability to come up with a confident
solution, by presenting no solution at all. This was
a result of the symmetry mechanism as described
in the above. For the rest 89% of the input images,
almost 9% of the features (mouth) were not
detected while present, a fact that is again mainly
due to the system’s uncertainty on whether the
missing feature actually belongs to the sought
feature set. Only a 1% of the features were
incorrectly placed, while the rest of the features
were acceptably detected. The efficiency of the
automatic in-plane rotation mechanism was as-
sessed separately. Failure percentages for the
estimation of the rotation angle go along with
mislabeling percentages, i.e. 4%, the reason being
the same. These results may be viewed in Table 1.

The focus of the proposed approach is on facial
feature extraction from already detected and
segmented facial images. However, problems can
exist, especially when real-time simple, e.g. color-
based, face detection methods are used, causing
missing facial features and facial areas, imprecise
external contours, disconnected regions, or inclu-
sion of hair/background in the facial area. Missing
facial areas and features can be evaluated in
the feature labeling stage. Imprecise contours,
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(d)

Fig. 15. The refined candidate object set S.. In the upper part of each image, one may observe the winner triplet (where present),
rotated by 0.

(d)

Fig. 16. Feature labeling.

background and hair can provide false feature to our method. Fig. 18(b) illustrates snake initi-
generation. We tested the robustness of the alizations and final snake estimates, showing a
proposed method to such cases. Fig. 18(a) shows significant increase in the number of estimated

a poorly segmented face, which was used as input seeds. Almost every part of the visible background
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(d)

Fig. 17. The obtained feature point sets, as subsets of the MPEG-4 FDP set.

Table 1
Results in terms of success and failure percentages, concerning
the three levels: feature sets, features and in-plane rotation
angles

Feature sets Features Rotation angles

Mislabeled (%) 4

Not labeled (%) 7

Labeled (%) 89 Mislabeled (%) 1
Not labeled (%) 9
Labeled (%) 90

Incorrect (%) 4
Correct (%) 96

and of the person’s hair is considered as a
candidate facial feature. The primary features that
were labeled from our approach are shown in
Fig. 18(c): only the right eye and the mouth were
successfully labeled.

We investigated two methods to overcome such
poor initial face detection. The first one has been
by iterating through stages (ii) and (iii) of the
procedure shown in Fig. 1, gradually increasing
the contribution of the two successfully detected
features in stage (i) computations. The second
approach first computed an active contour of the
poorly segmented input face [50], thus improv-
ing face detection, and then applied our 3-stage

procedure to the modeled facial area. Fig. 18(d)
shows the active contour of the face drawn in
white line. Fig. 18(e) shows the facial area given as
input to the 3-stage procedure. Fig. 18(f) shows the
correct labeling that has been achieved by either of
the two methods.

Next, for comparison purposes, we applied a
low-level method for facial features extraction [15]
on one of the images we used in our experiments.
The method consists of the following steps. It first
uses a vertical edge edge-detection. After thresh-
olding, the gradient image is dilated and eroded
(using an 8-connectivity kernel), so that blobs are
created, that are candidate feature areas. The
resulting blob image is then vertically split in two
windows, and twin blobs are searched for in them,
to locate the left and right eye. Spatial horizontal
location and the area are the criteria used to select
the twin blobs. Similarly, continuing the applica-
tion of vertical edge detectors below the estimated
eye locations, followed by thresholding and
morphological operations, blobs that correspond
to the nose and the mouth position can be
obtained [15]. Fig. 19 shows the result obtained
by this method. By comparing Figs. 19 and 16, it
can be seen that the proposed method provided
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Fig. 18. Test with a poorly detected initial image (a); estimated seeds (b); labeled features (c); active contour of the initial facial image
(d); corresponding initial input image (e); and the labeled features (f).

much better estimation of the facial features, as
well as their pose.

Finally, we provide some experimental results in
the direction of MPEG-4 facial animation through
the use of FDPs and FAPs. Based on [49,39], we
have been using FDP estimation between neutral
and slowly, but continuously varying facial states,
to estimate FAPs. For our experiments on creating
the animation of the face we used the face model
developed in the context of the European Project
ACTS MoMuSys, available at the website http://
www.iso.ch/ittf. Using the FDPs provided by our
method when applied to consecutive frames a
video sequence (Figs.2 and 17 (a—c)) and con-
sidering one of the frames as the initial neutral
state, we generated the corresponding facial
animations shown in Figs. 20(a, b).

Implementation of the 3-stage procedure of
Fig. 1 took about 10-15 s per image. Each images’
dimensions were approximately 150 x 200 pixels.
The procedure could be significantly accelerated in
the case that:

® code optimisation was supported,
® parallelisation was operated, where applicable,

Fig. 19. Comparison with a low-level facial method.

® the code was converted to C and graphic
representations were omitted and
® special hardware was used.

All these reasons indicate that even real time
processing could be achieved, taking under con-
sideration a standard video sequence frame rate
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Fig. 20. MPEG-4 facial animation based on estimated FAPs: neutral position (a); and animation corresponding to image 17(c) (b).

(i.e. PAL, NTSC). However, this is still a postula-
tion and needs to be further explored.

5. Conclusions

In the current work, a gradual confidence
approach concerning facial feature extraction over
real video frames is presented. The proposed
methodology copes with large variations in the
appearance of diverse subjects, as well as of the
same subject in various instances within real video
sequences. In this sense, the problem of feature
extraction is being dealt with under general
imaging conditions. The system extracts the areas
of the face that statistically seem to be outstanding
and forms an initial set of regions that are likely to
include information about the features of interest.
It then enhances their content, producing closed
objects, which generally include the desired fea-
tures. The system determines the dominant angle
over all objects of the object set (which is thought
of being the facial rotation angle), using a relevant
fuzzy system. The object set is restricted using the
dominant angle. An exhaustive search is per-
formed seeking for an anthropomorphic pattern
that suits that of the eyes and the mouth among all
candidate objects. These features are finally
labeled. As a consequence, the associated feature
points, which constitute a subset of the MPEG-4
facial definition parameter set, as well as cor-
responding facial animation parameters can be

extracted. The gradual revelation of information
concerning the face is supported under the scope
of optimization for each step, producing a poster-
iori knowledge about it and leading to a step-by-
step visualization of the features in search. By
expressing all stages of the proposed method as
energy minimization problems, a block component
method (BCM), which iteratively implements all
three stages, can be created. Convergence of such a
scheme is an interesting research topic that is
currently under investigation.

In our approach, primary facial features, such as
the eyes and the mouth, are being consistently
located. Future work involves extensions towards
reliable, hierarchical extraction of secondary and
transient facial features, as well as their robust,
real time tracking over video sequences. We are
currently investigating the use of the proposed
approach for generating emotionally rich HCI,
where a workstation analyzes its user’s speech and
facial gestures to recognize his or her emotional
state and behave analogously [14].
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