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Abstract

In this paper we perform an hierarchical
clustering in high – dimensional spaces,
without first applying any space reduc-
tion. Instead, in each step of the algo-
rithm we perform a soft feature selec-
tion, witch does not have to be shared
among all input elements. The main
goal is to correctly identify the patterns
that underly in the data. The proposed
algorithm is applied, with promising re-
sults, in a well known and widely studied
set of medical data.
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1 Introduction

Automatic analysis of data for extraction of in-
formation, and eventually knowledge, has been a
quest for long. Researchers in the field of knowl-
edge extraction have worked in this direction for
more than a decade, producing important results;
still, this remains an open issue [1].

Efficient solutions have been proposed in the lit-
erature for this task, for the case in which a
unique similarity or dissimilarity measure is de-
fined among input data elements [2]. When, on
the other hand, multiple independent features
characterize data, and thus more than one mean-
ingful similarity or dissimilarity measures can be
defined, the task becomes more difficult to handle.
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Especially for the case when the count of features
is great, the meaningful analysis of data is almost
impossible. This is known as the dimensionality
curse.

A common approach to the dimensionality curse
is the lowering of input dimensions [3]. This may
be accomplished by ignoring some of the available
features, or by applying some space transforma-
tion. In the case when input features are not in-
dependent from each other, a decrease of dimen-
sions is very helpful. On the other hand, when
input features are independent, or when the rela-
tion among them is not known a priori, a decrease
of space dimensions cannot be accomplished with-
out loss of information.

Therefore, if the relation among features is not
known before hand, and the aim is to detect the
patterns that exist in the data, the decrease of di-
mensions is not possible. In this work we attempt
to tackle such a problem: we focus on the detec-
tion of patterns in high – dimensional data, when
the count of distinct patterns in the data and the
relation among input features are unknown. Our
approach is based on a soft selection of features
to consider when comparing data. This selection
is dependant on the data in question. The pro-
posed algorithm is an extension of agglomerative
clustering.

2 Soft Feature Selection and
Clustering in High – Dimensional
Spaces

The source of the dimensionality curse is that ele-
ments are usually grouped together based on their
similarity in a single or a few features. When the



total number of features is high, small distances
in a small subset of them barely affect the over-
all distance, when an aggregation of distances in
all features is used. Thus, only when the correct
subset of features is considered, can elements be
compared correctly.

In this paper, we tackle feature selection based
on the following principle: while we expect ele-
ments of a given set to have random distances
from one another according to most features, we
expect them to have small distances according to
the features that relate them. We rely on this
difference in distribution of distance values in or-
der to identify context, i.e. the features that most
probably relate a set of elements.

More formally, let c1 and c2 be two clusters of ele-
ments. Let also ri, i ∈ NF be the metric that com-
pares the i-th feature, and F the count of features
(the dimension of the input space). A distance
(dissimilarity) measure between the two clusters,
when considering the i-th feature, is given by

fi(c1, c2) = κ

√∑
a∈c1,b∈c2 [ri(ai, bi)]κ

|c1||c2|
(1)

where ei is the i-th feature of element e, |c| is the
cardinality of cluster c and κ ∈ R is a constant.

The context is a selection of features to consider
when calculating an overall distance value. We
can define it as a fuzzy set x defined on NF , with
a scalar cardinality of one. Then the overall dis-
tance between c1 and c2 is calculated as

d(c1, c2) =
∑

i

[xi(c1, c2)]λfi(c1, c2) (2)

where i ∈ NF , λ ∈ R is a constant and xi is the
degree to which i, and therefore fi, is included in
the context.

According to the principle presented in the be-
ginning of this paragraph, the features that re-
late c1 and c2 are probably the ones that produce
the smallest distances fi. Therefore, the “correct”
context can be calculated as the context that pro-
duces the best (smallest) overall distance.

When λ = 1 the solution is trivial: the feature
that produces the smallest distance is the only
one selected. The degree to which it is selected

is 1. If more than one features produce the best
distance, then they are equally selected, as there
is no information as to which should be favored.

When λ 6= 1 and fi(c1, c2) 6= 0∀i ∈ NF , then it is
easy to prove that the best context is given by:

x1(c1, c2) =
1∑

i[
f1(c1,c2)
fi(c1,c2) ]

1
λ−1

(3)

xi(c1, c2) = x1[
fi(c1, c2)
f1(c1, c2)

]
1

λ−1

where i ∈ NF . Proof is omitted for the sake of
space.

When λ 6= 1 and ∃i ∈ NF : fi(c1, c2) = 0, then
the features for which fi(c1, c2) = 0 are the ones
the are (equally) selected.

As λ increases, pairs of clusters that are related
by fewer features, and thus have greater values in
their contexts, are obviously assigned smaller dis-
tances. In order for distances to be used for clus-
ter comparison, in the process of agglomerative
clustering, it is imperative that they are trans-
formed as to become directly comparable to each
other, even when different contexts are used for
different pairs of clusters. Therefore, the follow-
ing metric is used:

CI(c1, c2) =
d(c1, c2)
xλ(c1, c2)

xλ(c1, c2) =
∑

i

[xi(c1, c2)]λ

We often refer to this metric as a compatibility in-
dicator among clusters. When features are quan-
tized to a small set of levels, as is often the case
with digital data, cases for which fi(c1, c2) = 0
are not rare. Especially in the first steps of ag-
glomerative clustering, when clusters are of small
size, the best CI is almost always zero. Since er-
rors in the initial steps of agglomerative clustering
propagate all the way to the final output, it is im-
portant to always make the best selection possible
for the pair of clusters to merge. Therefore, espe-
cially for the case of CIs that are equal to zero,
we introduce one more criterion: out of all the
pairs that have CI = 0, we will always select the



one that has zero distances for the most features.
In other words, out of all the pairs of similar clus-
ters, we select the ones that are similar according
to the greatest number of features.

For the process of agglomerative clustering to be
fully defined, in addition to the aforementioned
metric of cluster distances, a termination criterion
is needed [2]. In this work, a threshold on the
value of CI can be used. This is meaningful, as
the CI is increasing as we move from one step to
the next. Proof is again omitted for the sake of
space.

This way, the algorithm gradually groups ele-
ments together, based on their similarities; for
each cluster, a different subset of features may be
considered for the calculation of similarities. The
average values of features for each cluster form
the centroid, i.e. a “virtual” element that is lo-
cated in the center of the cluster, when all of its
elements are placed in the F -dimensional space.
Its position may be considered as a description of
the feature values of the pattern that this cluster
corresponds to.

Of course, not all features are equally important
when describing a pattern. The same principle
as in the calculation of context in equation 3 can
be used for the soft selection of the set of fea-
tures that matter the most for each pattern: if
gi(c) =

∑
a,b∈c[fi(a, b)]κ , i ∈ NF , then the clus-

ter’s context xc can be defined as the context that
minimizes the following:

G(c) =
∑

i

[xci)]λgi(c) (4)

In other words, the cluster’s context is the context
with respect to which the cluster’s elements are
most similar to one another.

3 Experimental Results

The algorithm has been applied to the Wisconsin
breast cancer database. This database contains
699 elements, which are characterized by the fol-
lowing attributes: clump thickness, uniformity of
cell size, uniformity of cell shape, marginal adhe-
sion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, mitoses. All these at-
tributes assume integer values in [1, 10]. Elements

Table 1: The clusters that the algorithm detected,
for different values of κ, λ.

κ = λ = 2 cluster 1 cluster 2 cluster 3
benign 218 192 34

malignant 5 56 178

κ = λ = 5 cluster 1 cluster 2 cluster 3
benign 192 3 249

malignant 56 154 29

are also accompanied by an id, and class informa-
tion; possible classes are benign and malignant.
65.5% of the elements belong to the benign class
and 34.5% to the malignant class. 16 elements
are incomplete (an attribute is missing) and have
been excluded from the database for the applica-
tion of our algorithm. In the past this database
has been used extensively for the generation of
systems for automatic detection of breast cancer.

In this work, we use the whole set as input of the
algorithm. The class labels are not included in the
input. The aim is to test whether the automat-
ically detected patterns are consistent with the
known patterns that exist in the data. In table
1 we present the three clusters generated by the
algorithm for different values of κ and λ. We can
observe that each one of the clusters corresponds
to a great extend to either malignant or benign
elements. In other words, the detected patterns
correspond to real patterns that are known to ex-
ist in the data, although the input data set is
linearly inseparable[4].

In order to verify that the pattern is extracted
correctly, we perform one more test. We compare
all elements in the data set to the centroid of the
malignant cluster. The comparison is performed
using the distance metric of equation 2. The con-
text used is the context of the cluster (it is cal-
culated via the minimization of equation 4). This
can be considered as querying the data set, using
the centroid and the context as query parame-
ters. Using a manually set threshold, we select
the elements that have a small distance from the
centroid. In table 2 we present precision and re-
call values for these queries. High values of both



Table 2: How the detected patterns relate to the
known classification to benign and malignant ele-
ments.

threshold recall precision
κ = λ = 2 3 86.19% 90.35%
κ = λ = 5 3.6 98.33% 94.71%

recall and precision indicate that, although be-
nign elements exist in the detected clusters, the
pattern is still extracted correctly.

Although class information was not used as input
for the generation of the system that queries the
data set, results are similar in recall and precision
to those reported in the literature in other works
[5], [6]; these works, in contrast to the one pre-
sented herein, use a part of the labelled data set
as training data in order to create a classifier.

From all the above, it is apparent that the pro-
posed algorithm is successful in revealing un-
known patterns in data sets of high dimensions.

The source code of the programs used to test the
proposed algorithm, together with a copy of the
used data set, can be found at [7].

4 Conclusions and Future Work

In this paper we performed an hierarchical clus-
tering in high – dimensional spaces. This was
based on an on-line soft selection of features to
consider when comparing clusters. The efficiency
of the algorithm was demonstrated through its
application on a medical data set. The proposed
algorithm can be used to detect and extract un-
known patterns in high – dimensional unlabelled
input data.

The results of the presented algorithm are depen-
dent on the selection of kappa, lambda and ter-
mination criterion thresholds. Currently, the se-
lection of such thresholds is manual; it is part of
our future work to explore ways to automatically
select them. As part of our future work, we also
intend to apply our algorithm on other data sets,
in order to further verify its efficiency, and study
whether the selection of thresholds is closely re-
lated to the data set in question.
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