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Abstract

This chapter presents a holistic approach to emotion modeling and analysis
and their applications in Man-Machine Interaction applications. Beginning
from a symbolic representation of human emotions found in this context,
based on their expression via facial expressions and hand gestures, we
show that it is possible to transform quantitative feature information from
video sequences to an estimation of a user’s emotional state. While these
features can be used for simple representation purposes, in our approach
they are utilized to provide feedback on the users’ emotional state, hoping
to provide next-generation interfaces that are able to recognize the
emotional states of their users.
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Introduction

Current information processing and visualization systems are capable of offering
advanced and intuitive means of receiving input from and communicating output
to their users. As a result, Man-Machine Interaction (MMI) systems that utilize
multimodal information about their users’ current emotional state are presently
at the forefront of interest of the computer vision and artificial intelligence
communities. Such interfaces give the opportunity to less technology-aware
individuals, as well as handicapped people, to use computers more efficiently
and, thus, overcome related fears and preconceptions. Besides this, most
emotion-related facial and body gestures are considered universal, in the sense
that they are recognized among different cultures. Therefore, the introduction of
an “emotional dictionary” that includes descriptions and perceived meanings of
facial expressions and body gestures, so as to help infer the likely emotional state
of a specific user, can enhance the affective nature of MMI applications (Picard,
2000).
Despite the progress in related research, our intuition of what a human
expression or emotion actually represents is still based on trying to mimic the way
the human mind works while making an effort to recognize such an emotion. This
means that even though image or video input are necessary to this task, this
process cannot come to robust results without taking into account features like
speech, hand gestures or body pose. These features provide the means to convey
messages in a much more expressive and definite manner than wording, which
can be misleading or ambiguous. While a lot of effort has been invested in
individually examining these aspects of human expression, recent research
(Cowie et al., 2001) has shown that even this approach can benefit from taking
into account multimodal information. Consider a situation where the user sits in
front of a camera-equipped computer and responds verbally to written or spoken
messages from the computer: speech analysis can indicate periods of silence
from the part of the user, thus informing the visual analysis module that it can use
related data from the mouth region, which is essentially ineffective when the user
speaks. Hand gestures and body pose provide another powerful means of
communication. Sometimes, a simple hand action, such as placing one’s hands
over their ears, can pass on the message that they’ve had enough of what they
are hearing more expressively than any spoken phrase.
In this chapter, we present a systematic approach to analyzing emotional cues
from user facial expressions and hand gestures. In the Section “Affective
analysis in MMI,” we provide an overview of affective analysis of facial
expressions and gestures, supported by psychological studies describing emo-
tions as discrete points or areas of an “emotional space.” The sections “Facial
expression analysis” and “Gesture analysis” provide algorithms and experimen-
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tal results from the analysis of facial expressions and hand gestures in video
sequences. In the case of facial expressions, the motion of tracked feature points
is translated to MPEG-4 FAPs, which describe their observed motion in a high-
level manner. Regarding hand gestures, hand segments are located in a video
sequence via color segmentation and motion estimation algorithms. The position
of these segments is tracked to provide the hand’s position over time and fed into
a HMM architecture to provide affective gesture estimation.
In most cases, a single expression or gesture cannot help the system deduce a
positive decision about the users’ observed emotion. As a result, a fuzzy
architecture is employed that uses the symbolic representation of the tracked
features as input. This concept is described in the section “Multimodal affective
analysis.” The decision of the fuzzy system is based on rules obtained from the
extracted features of actual video sequences showing emotional human dis-
course, as well as feature-based description of common knowledge of what
everyday expressions and gestures mean. Results of the multimodal affective
analysis system are provided here, while conclusions and future work concepts
are included in the final section “Conclusions – Future work.”

Effective Analysis in MMI

Representation of Emotion

The obvious goal for emotion analysis applications is to assign category labels
that identify emotional states. However, labels as such are very poor descrip-
tions, especially since humans use a daunting number of labels to describe
emotion. Therefore, we need to incorporate a more transparent, as well as
continuous, representation that more closely matches our conception of what
emotions are or, at least, how they are expressed and perceived.
Activation-emotion space (Whissel, 1989) is a representation that is both simple
and capable of capturing a wide range of significant issues in emotion (Cowie et
al., 2001). Perceived full-blown emotions are not evenly distributed in this space;
instead, they tend to form a roughly circular pattern. From that and related
evidence, Plutchik (1980) shows that there is a circular structure inherent in
emotionality. In this framework, emotional strength can be measured as the
distance from the origin to a given point in activation-evaluation space. The
concept of a full-blown emotion can then be translated roughly as a state where
emotional strength has passed a certain limit. A related extension is to think of
primary or basic emotions as cardinal points on the periphery of an emotion
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circle. Plutchik has offered a useful formulation of that idea, the “emotion wheel”
(see Figure 1).
Activation-evaluation space is a surprisingly powerful device, which is increas-
ingly being used in computationally oriented research. However, it has to be
noted that such representations depend on collapsing the structured, high-
dimensional space of possible emotional states into a homogeneous space of two
dimensions. There is inevitably loss of information. Worse still, there are
different ways of making the collapse lead to substantially different results. That
is well illustrated in the fact that fear and anger are at opposite extremes in
Plutchik’s emotion wheel, but close together in Whissell’s activation/emotion
space. Thus, extreme care is needed to ensure that collapsed representations are
used consistently.

MPEG-4 Based Representation

In the framework of MPEG-4 standard, parameters have been specified for
Face and Body Animation (FBA) by defining specific Face and Body nodes in
the scene graph. MPEG-4 specifies 84 feature points on the neutral face, which
provide spatial reference for FAPs definition. The FAP set contains two high-
level parameters, visemes and expressions. Most of the techniques for facial
animation are based on a well-known system for describing “all visually

Figure 1. The Activation-emotion space
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distinguishable facial movements” called the Facial Action Coding System
(FACS) (Ekman & Friesen, 1978). FACS is an anatomically oriented coding
system, based on the definition of “Action Units” (AU) of a face that cause facial
movements. An Action Unit could combine the movement of two muscles or
work in the reverse way, i.e., split into several muscle movements. The FACS
model has inspired the derivation of facial animation and definition parameters
in the framework of MPEG-4 (Tekalp & Ostermann, 2000). In particular, the
Facial Definition Parameter (FDP) and the Facial Animation Parameter (FAP)
set were designed to allow the definition of a facial shape and texture. These sets
eliminate the need for specifying the topology of the underlying geometry,
through FDPs, and the animation of faces reproducing expressions, emotions and
speech pronunciation, through FAPs.

Effective Facial Expression Analysis

There is a long history of interest in the problem of recognizing emotion from
facial expressions (Ekman & Friesen, 1978), and extensive studies on face
perception during the last 20 years (Davis & College, 1975). The salient issues
in emotion recognition from faces are parallel in some respects to the issues
associated with voices, but divergent in others.
In the context of faces, the task has almost always been to classify examples of
archetypal emotions. That may well reflect the influence of Ekman and his
colleagues, who have argued robustly that the facial expression of emotion is
inherently categorical. More recently, morphing techniques have been used to
probe states that are intermediate between archetypal expressions. They do
reveal effects that are consistent with a degree of categorical structure in the
domain of facial expression, but they are not particularly large, and there may be
alternative ways of explaining them – notably by considering how category terms
and facial parameters map onto activation-evaluation space (Karpouzis,
Tsapatsoulis & Kollias, 2000).
Analysis of the emotional expression of a human face requires a number of pre-
processing steps which attempt to detect or track the face, to locate character-
istic facial regions such as eyes, mouth and nose, to extract and follow the
movement of facial features, such as characteristic points in these regions or
model facial gestures using anatomic information about the face.
Facial features can be viewed (Ekman & Friesen, 1975) as static (such as skin
color), slowly varying (such as permanent wrinkles), or rapidly varying (such as
raising the eyebrows) with respect to time evolution. Detection of the position
and shape of the mouth, eyes and eyelids and extraction of related features are
the targets of techniques applied to still images of humans. It has, however, been
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shown (Bassili, 1979) that facial expressions can be more accurately recognized
from image sequences, than from single still images. Bassili’s experiments used
point-light conditions, i.e., subjects viewed image sequences in which only white
dots on a darkened surface of the face were visible. Expressions were
recognized at above chance levels when based on image sequences, whereas
only happiness and sadness were recognized when based on still images.

Effective Gesture Analysis

The detection and interpretation of hand gestures has become an important part
of human computer interaction (MMI) in recent years (Wu & Huang, 2001).
Sometimes, a simple hand action, such as placing a person’s hands over his ears,
can pass on the message that he has had enough of what he is hearing. This is
conveyed more expressively than with any other spoken phrase.

Gesture tracking and recognition

In general, human hand motion consists of the global hand motion and local finger
motion. Hand motion capturing deals with finding the global and local motion of
hand movements. Two types of cues are often used in the localization process:
color cues (Kjeldsen & Kender, 1996) and motion cues (Freeman & Weissman,
1995). Alternatively, the fusion of color, motion and other cues, like speech or
gaze, is used (Sharma, Huang & Pavlovic, 1996).
Hand localization is locating hand regions in image sequences. Skin color offers
an effective and efficient way to fulfill this goal. According to the representation
of color distribution in certain color spaces, current techniques of skin detection
can be classified into two general approaches: nonparametric (Kjeldsen &
Kender, 1996) and parametric (Wren, Azarbayejani, Darrel & Pentland, 1997).
To capture articulate hand motion in full degree of freedom, both global hand
motion and local finger motion should be determined from video sequences.
Different methods have been taken to approach this problem. One possible
method is the appearance-based approach, in which 2-D deformable hand-shape
templates are used to track a moving hand in 2-D (Darrell, Essa & Pentland,
1996). Another possible way is the 3-D model-based approach, which takes the
advantages of a priori knowledge built in the 3-D models.
Meaningful gestures could be represented by both temporal hand movements
and static hand postures. Hand postures express certain concepts through hand
configurations, while temporal hand gestures represent certain actions by hand
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movements. Sometimes, hand postures act as special transition states in tempo-
ral gestures and supply a cue to segment and recognize temporal hand gestures.
In certain applications, continuous gesture recognition is required and, as a result,
the temporal aspect of gestures must be investigated. Some temporal gestures
are specific or simple and could be captured by low-detail dynamic models.
However, many high detail activities have to be represented by more complex
gesture semantics, so modeling the low-level dynamics is insufficient. The HMM
(Hidden Markov Model) technique (Bregler, 1997) and its variations (Darrell &
Pentland, 1996) are often employed in modeling, learning, and recognition of
temporal signals. Because many temporal gestures involve motion trajectories
and hand postures, they are more complex than speech signals. Finding a suitable
approach to model hand gestures is still an open research problem.

Facial Expression Analysis

Facial Features Relevant to Expression Analysis

Facial analysis includes a number of processing steps that attempt to detect or
track the face, to locate characteristic facial regions such as eyes, mouth and
nose, to extract and follow the movement of facial features, such as character-
istic points in these regions or model facial gestures using anatomic information
about the face.
Although FAPs provide all the necessary elements for MPEG-4 compatible
animation, they cannot be directly used for the analysis of expressions from video
sequences, due to the absence of a clear quantitative definition framework. In
order to measure FAPs in real image sequences, we have to define a mapping
between them and the movement of specific FDP feature points (FPs), which
correspond to salient points on the human face.
Table 1 provides the quantitative modeling of FAPs that we have implemented
using the features labeled as fi (i=1..15) (Karpouzis, Tsapatsoulis & Kollias,
2000). This feature set employs feature points that lie in the facial area and can
be automatically detected and tracked. It consists of distances, noted as s(x,y),
between protuberant points, x and y, corresponding to the Feature Points shown
in Figure 2. Some of these points are constant during expressions and can be used
as reference points. Distances between these points are used for normalization
purposes (Raouzaiou, Tsapatsoulis, Karpouzis & Kollias, 2002).
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Figure 2. FDP feature points (adapted from (Tekalp & Ostermann, 2000))

Table 1: Quantitative FAP modeling: (1) s(x,y) is the Euclidean distance
between the FPs; (2) Di-NEUTRAL refers to the distance Di when the face is in
its neutral position.

FAP name Feature for the description Utilized feature 
Squeeze_l_eyebrow (F37) D1=s(4.5,3.11) f1= D1-NEUTRAL –D1 

Squeeze_r_eyebrow (F38) D2=s(4.6,3.8) f2= D2-NEUTRAL –D2 
Lower_t_midlip (F4) D3=s(9.3,8.1) f3= D3 -D3-NEUTRAL 
Raise_b_midlip (F5) D4=s(9.3,8.2) f4= D4-NEUTRAL –D4 

Raise_l_I_eyebrow (F31) D5=s(4.1,3.11) f5= D5 –D5-NEUTRAL 
Raise_r_I_eyebrow (F32) D6=s(4.2,3.8) f6= D6 –D6-NEUTRAL 
Raise_l_o_eyebrow (F35) D7=s(4.5,3.7) f7= D7 –D7-NEUTRAL 
Raise_r_o_eyebrow (F36) D8=s(4.6,3.12) f8= D8 –D8-NEUTRAL 
Raise_l_m_eyebrow (F33) D9=s(4.3,3.7) f9= D9 –D9-NEUTRAL 

Raise_r_m_eyebrow (F34) D10=s(4.4,3.12) f10= D10 –D10-NEUTRAL 
Open_jaw (F3) D11=s(8.1,8.2) f11= D11 –D11-NEUTRAL 

close_t_l_eyelid (F19) – 
close_b_l_eyelid (F21) 

D12=s(3.1,3.3) f12= D12 –D12-NEUTRAL 

close_t_r_eyelid (F20) – 
close_b_r_eyelid (F22) 

D13=s(3.2,3.4) f13= D13 –D13-NEUTRAL 

stretch_l_cornerlip (F6) 
(stretch_l_cornerlip_o)(F53) – 

stretch_r_cornerlip (F7) 
(stretch_r_cornerlip_o)(F54) 

D14=s(8.4,8.3) f14= D14 –D14-NEUTRAL 

squeeze_l_eyebrow (F37) AND 
squeeze_r_eyebrow (F38) 

D15=s(4.6,4.5) f15= D15-NEUTRAL - D15
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Facial Feature Extraction

The facial feature extraction scheme used in the system proposed in this chapter
is based on a hierarchical, robust scheme, coping with large variations in the
appearance of diverse subjects, as well as the same subject in various instances
within real video sequences (Votsis, Drosopoulos & Kollias, 2003). Soft a priori
assumptions are made on the pose of the face or the general location of the
features in it. Gradual revelation of information concerning the face is supported
under the scope of optimization in each step of the hierarchical scheme,
producing a posteriori knowledge about it and leading to a step-by-step
visualization of the features in search.
Face detection is performed first through detection of skin segments or blobs,
merging them based on the probability of their belonging to a facial area, and
identification of the most salient skin color blob or segment. Following this,
primary facial features, such as eyes, mouth and nose, are dealt with as major
discontinuities on the segmented, arbitrarily rotated face. In the first step of the
method, the system performs an optimized segmentation procedure. The initial
estimates of the segments, also called seeds, are approximated through min-max
analysis and refined through the maximization of a conditional likelihood func-
tion. Enhancement is needed so that closed objects will occur and part of the
artifacts will be removed. Seed growing is achieved through expansion, utilizing
chromatic and value information of the input image. The enhanced seeds form
an object set, which reveals the in-plane facial rotation through the use of active
contours applied on all objects of the set, which is restricted to a finer set, where
the features and feature points are finally labeled according to an error
minimization criterion.

Experimental Results

Figure 3 below shows a characteristic frame from the “hands over the head”
sequence. After skin detection and segmentation, the primary facial features are
shown in Figure 4. Figure 5 shows the initial detected blobs, which include face
and mouth. Figure 6 shows the estimates of the eyebrow and nose positions.
Figure 7 shows the initial neutral image used to calculate the FP distances. In
Figure 8 the horizontal axis indicates the FAP number, while the vertical axis
shows the corresponding FAP values estimated through the features stated in the
second column of Table 1.
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Figure 3. A frame from
the original sequence

Figure 4. Detected
primary facial features

Figure 5. The apex of
anexpression

Figure 6. Detected
facial features

Figure 7. A neutral
expression

Figure 8. Estimated FAP values for Figure 6
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Gesture Analysis

Hand Detection and Tracking

In order to extract emotion-related features through hand movement, we
implemented a hand-tracking system. Emphasis was on implementing a near
real-time, yet robust enough system for our purposes. The general process
involves the creation of moving skin masks, namely skin color areas that are
tracked between subsequent frames. By tracking the centroid of those skin
masks, we produce an estimate of the user’s movements.
In order to implement a computationally light system, our architecture (Figure 9)
takes into account a priori knowledge related to the expected characteristics of
the input image. Since the context is MMI applications, we expect to locate the
head in the middle area of the upper half of the frame and the hand segments near
the respective lower corners. In addition to this, we concentrate on the motion
of hand segments, given that they are the end effectors of the hand and arm chain
and, thus, the most expressive object in tactile operations.
For each frame, as in the face detection process, a skin color probability matrix
is computed by calculating the joint probability of the Cr/Cb image values (Figure
10). The skin color mask is then obtained from the skin probability matrix using
thresholding (Figure 11). Possible moving areas are found by thresholding the
difference pixels between the current frame and the next, resulting in the
possible-motion mask (Figure 18). This mask does not contain information about
the direction or the magnitude of the movement, but is only indicative of the
motion and is used to accelerate the algorithm by concentrating tracking only in
moving image areas. Both color (Figure 11) and motion (Figure 18) masks

Figure 9. Abstract architecture of the hand tracking module
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contain a large number of small objects due to the presence of noise and objects
with color similar to the skin. To overcome this, morphological filtering is
employed on both masks to remove small objects. All described morphological
operations are carried out with a disk-structuring element with a radius of 1% of
the image width. The distance transform of the color mask is first calculated
(Figure 12) and only objects above the desired size are retained (Figure 13).
These objects are used as markers for the morphological reconstruction of the
initial color mask. The color mask is then closed to provide better centroid
calculation.
The moving skin mask (msm) is then created by fusing the processed skin and
motion masks (sm, mm), through the morphological reconstruction of the color
mask using the motion mask as marker. The result of this process, after excluding
the head object, is shown in Figure 19. The moving skin mask consists of many
large connected areas. For the next frame, a new moving skin mask is created,
and a one-to-one object correspondence is performed. Object correspondence

Figure 10. Skin
Probability

Figure 11.
Thresholded skin
probability (p> 0.8)

Figure 12. Distance
transform of Figure
11

Figure 13. Markers
extracted from
Figure 12 (area
smaller than 2% of
the image)

Figure 14.
Reconstruction of
Figure 11 using
Figure 13

Figure 15. Closing of
Figure 14, final color
mask
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between two frames is performed on the color mask and is based on object
centroid distance for objects of similar (at least 50%) area (Figure 20). In these
figures, red markers (crosses) represent the position of the centroid of the
detected right hand of the user, while green markers (circles) correspond to the
left hand. In the case of hand object merging and splitting, e.g., in the case of
clapping, we establish a new matching of the left-most candidate object to the
user’s right hand and the right-most object to the left hand (Figure 21).
Following object matching in the subsequent moving skin masks, the mask flow
is computed, i.e., a vector for each frame depicting the motion direction and
magnitude of the frame’s objects. The described algorithm is lightweight,
allowing a rate of around 12 fps on a usual PC during our experiments, which is
enough for continuous gesture tracking. The object correspondence heuristic
makes it possible to individually track the hand segments correctly, at least during
usual meaningful gesture sequences. In addition, the fusion of color and motion

Figure 16. Skin
color probability
for the input image

Figure 17. Initial
color mask created
with skin detection

Figure 18: Initial
motion mask (after
pixel difference
thresholded to 10% of
max.)

Figure 19. Moving
hand segments after
morphological
reconstruction

Figure 20. Tracking
of one hand object
in the “lift of the
hand” sequence

Figure 21. Tracking
of both hand objects
in the “clapping”
sequence
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information eliminates any background noise or artifacts, thus reinforcing the
robustness of the proposed approach.

Gesture Classification Using HMMs

Figure 22 shows the architecture of the gesture classification subsystem. Head
and hand segmentation and tracking have been described in previous sections,
while the remaining blocks of this architecture are described in the following
paragraphs.

Figure 22. A general framework for gesture classification through HMMs
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HMM Classifier Feature Vector
Formation
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The HMM Classifier

In Table 2 we present the utilized features that feed (as sequences of vectors)
the HMM classifier, as well as the output classes of the HMM classifier.

Table 2: a) Features (inputs to HMM) and b) Gesture Classes (outputs of
HMM)

Features 

Xlh - Xrh, Xf -Xrh, Xf -Xlh, Ylh - Yrh, Yf -Yrh, Yf -Ylh 

where Cf=(Xf, Yf) are the coordinates of the head centroid, 

Crh=(Xrh, Yrh) and Clh=(Xlh, Ylh) are the coordinates of the right 

and left hand centroids respectively 

Gesture 
Classes 

hand clapping – high frequency, hand clapping – low frequency 

lift of the hand – low speed, lift of the hand – high speed 

hands over the head – gesture, hands over the head – posture 

italianate gestures 
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A general diagram of the HMM classifier is shown in Figure 23. The recognizer
consists of M different HMMs corresponding to the modeled gesture classes. In
our case, M=7 as it can be seen in Table 2. We use first order left-to-right models
consisting of a varying number (for each one of the HMMs) of internal states

jkG ,  that have been identified through the learning process. For example, the
third HMM, which recognizes low speed on hand lift, consists of only three
states 1,3G , 2,3G  and 3,3G . More complex gesture classes, like the hand
clapping, require as much as eight states to be efficiently modeled by the
corresponding HMM. Some characteristics of our HMM implementation are
presented below.
• The output probability for any state jkG ,  (k corresponds to the id of the

HMM while j refers to the id of the state within a particular HMM) is
obtained by a continuous probability density function (pdf). This choice has
been made in order to decrease the amount of training data. In the discrete
case, the size of the code book should be large enough to reduce quantiza-
tion error and, therefore, a large amount of training data is needed to
estimate the output probability. One problem with the continuous pdf is the
proper selection of the initial values of density’s parameters so as to avoid
convergence in a local minimum.

• The output pdf of state jkG ,  is approximated using a multivariate normal
distibution model, i.e.,

2
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,
2

,
1

,,

,

)2(

)}()(
2
1exp{
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K

jkijk
T

jki

ijkb

C

µOCµO
O
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where iO  is i-th observation (input feature vector), jk ,µ  is the mean vector
of state jkG , , jk ,C  is the respective covariance matrix and K is the number
of components in iO (in our case K=6). Initial values for jk ,µ and jk ,C were
obtained off-line by using statistical means. Re-estimation is executed using
a variant of the Baum-Welch procedure to account for vectors (such as

jk ,µ ) and matrices (such as jk ,C ).
• Transition probabilities mnka , between states mkG ,  and nkG ,  are computed by

using the cumulative probability of )(, imkb O gives the estimation of the
transition probability, i.e., 1,mnka )(, imk O . Note that, since the HMM
is assumed to operate in a left-to-right mode, mnka , =0, n<m, mmka , =1- mnka ,
at all times.
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• The match score of feature vector sequence TOOOO ...21  given the model
),,( mmmm πBA  (m=1,2,…,M) is calculated as follows:

o We compute the best state sequence *Q given the observation se-
quence O , using Viterbi’s algorithm, i.e.,

)},/({maxarg*
mP OQQ

Q (2)

o The match score of observation sequence O given the state sequence
*Q is the following quantity:

),/( **
mPP QO (3)

It should be mentioned here that the final block of the architecture corresponds
to a hard decision system, i.e., it selects the best-matched gesture class.
However, when gesture classification is used to support the facial expression
analysis process, the probabilities of the distinct HMMs should be used instead
(soft decision system). In this case, since the HMMs work independently, their
outputs do not sum up to one.

Figure 23. Block diagram of the HMM Classifier
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Experimental Results

In the first part of our experiments, the efficiency of the features used to
discriminate the various gesture classes is illustrated (Figure 24 to Figure 27).
The first column shows a characteristic frame of each sequence and the tracked
centroids of the head and left and right hand, while the remaining two columns
show the evolution of the features described in the first row of Table 2, i.e., the
difference of the horizontal and vertical coordinates of the head and hand
segments. In the case of the first sequence, the gesture is easily discriminated
since the vertical position of the hand segments almost matches that of the head,
while in the closing frame of the sequence the three objects overlap. Overlapping
is crucial to indicate that two objects are in contact during some point of the
gesture, in order to separate this sequence from, e.g., the “lift of the hand”
gesture. Likewise, during clapping, the distance between the two hand segments
is zeroed periodically, with the length of the in-between time segments providing
a measure of frequency, while during the “italianate” gesture the horizontal
distance of the two hands follows a repetitive, sinusoidal pattern.

Figure 24. Hands over the head

      (a)           (b)    (c)

Figure 25. Italianate gesture

     (a) (b)    (c)
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Experiments for testing the recognizing performance of the proposed algorithm
were also carried out. Gesture sequences of three male subjects, with maximum
duration of three seconds, were captured by a typical web-camera at a rate of
10 frames per second. For each one of the gesture classes, 15 sequences were
acquired: three were used for the initialization of the HMM parameters, seven
for training and parameter re-estimation and five for testing. Each one of the
training sequences consisted of approximately 15 frames. The selection of these
frames was performed off-line so as to create characteristic examples of the
gesture classes. Testing sequences were sub-sampled at a rate of five frames
per second so as to enable substantial motion to occur. An overall recognition

Figure 27. Lift of the hand

Figure 26. Hand clapping

    (a)           (b)    (c)

    (a)           (b)    (c)

Object centroids
crosses: left hand,
circles: right hand,

points: head

Vertical object distances
dashes: Xlh - Xrh,points:

Xf - Xrh, line: Xf -
XlhHorizontal axis:

framesVertical axis:
pixels

Horizontal object
distances dashes: Ylh-
Yrh,points: Yf -Yrh, line:
Yf -YlhHorizontal axis:
framesVertical axis:

pixels
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rate of 94.3% was achieved. The experimental results are shown in the
confusion matrix (Table 3).
From the results summarized in Table 3, we observe a mutual misclassification
between “Italianate Gestures” (IG) and “Hand Clapping – High Frequency”
(HC - HF). This is mainly due to the variations on “Italianate Gestures” across
different individuals. Thus, training the HMM classifier on a personalized basis
is anticipated to improve the discrimination between these two classes.

Multimodal Effective Analysis

Facial Expression Analysis Subsystem

The facial expression analysis subsystem is the main part of the presented
system. Gestures are utilized to support the outcome of this subsystem.

Table 3. Gesture classification results

Gesture Class HC-
LF 

HC-
HF 

LH-
LS 

LH-
HS 

HoH-
G 

HoH-
P IG 

Hand Clapping- Low 
Frequency (HC-LF) 5 0 0 0 0 0 0 

Hand Clapping- High 
Frequency (HC-HF) 0 4 0 0 0 0 1 

Lift of the Hand-Low 
Speed (LH-LS) 0 0 5 0 0 0 0 

Lift of the Hand- High 
Speed (LH-HS) 0 0 0 5 0 0 0 

Hands over the Head –
Gesture (HoH-G) 0 0 0 0 5 0 0 

Hands over the Head –
Posture (HoH-P) 0 0 0 0 0 5 0 

Italianate Gestures (IG) 0 1 0 0 0 0 4 

Classification Rate 
(%) 100 80 100 100 100 100 80 
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Let us consider as input to the emotion analysis sub-system a 15-element length
feature vector f  that corresponds to the 15 features fi shown in Table 1. The
particular values of f  can be rendered to FAP values as shown in the same table
resulting in an input vector G . The elements of G  express the observed values
of the correspondingly involved FAPs.
Expression profiles are also used to capture variations of FAPs (Raouzaiou,
Tsapatsoulis, Karpouzis & Kollias, 2002). For example, the range of variations
of FAPs for the expression “surprise” is shown in Table 4.

Let )(
,
k
jiX  be the range of variation of FAP Fj involved in the k-th profile )(k

iP  of
emotion i. If )(

,
k
jic  and )(

,
k
jis  are the middle point and length of interval )(

,
k
jiX respec-

tively, then we describe a fuzzy class )(
,
k
jiA  for Fj, using the membership function

)(
,
k
ji  shown in Figure 28. Let also )(

,
k

ji  be the set of classes )(
,
k
jiA that correspond

to profile )(k
iP ; the beliefs )(k

ip  and bi that an observed, through the vector G ,
facial state corresponds to profile )(k

iP and emotion i respectively, are computed
through the following equations:

)(
,

)(
,

,

)()(

k
ji

k
ji

ji
A

kk
i rp

  and )(max )(k
iki pb , (4)

Table 4. Profiles for the archetypal emotion surprise

Surprise 
( )0(

SuP ) 

F3∈[569,1201], F5∈[340,746], F6∈[-121,-43], F7∈[-121,-43], F19∈[170,337], 
F20∈[171,333], F21∈[170,337], F22∈[171,333], F31∈[121,327], F32∈[114,308], 
F33∈[80,208], F34∈[80,204], F35∈[23,85], F36∈[23,85], F53∈[-121,-43], 
F54∈[-121,-43] 

)1(
SuP  

F3∈[1150,1252], F5∈[-792,-700], F6∈[-141,-101], F7∈[-141,-101], F10∈[-
530,-470], F11∈[-530,-470], F19∈[-350,-324], F20∈[-346,-320], F21∈[-350,-
324], F22∈[-346,-320], F31∈[314,340], F32∈[295,321], F33∈[195,221], 
F34∈[191,217], F35∈[72,98], F36∈[73,99], F53∈[-141,-101], F54∈[-141,-101] 

)2(
SuP  

F3∈[834,936], F5∈[-589,-497], F6∈[-102,-62], F7∈[-102,-62], F10∈[-380,-
320], F11∈[-380,-320], F19∈[-267,-241], F20∈[-265,-239], F21∈[-267,-241], 
F22∈[-265,-239], F31∈[211,237], F32∈[198,224], F33∈[131,157], 
F34∈[129,155], F35∈[41,67], F36∈[42,68] 

)3(
SuP  

F3∈[523,615], F5∈[-386,-294], F6∈[-63,-23], F7∈[-63,-23], F10∈[-230,-170], 
F11∈[-230,-170], F19∈[-158,-184], F20∈[-158,-184], F21∈[-158,-184], F22∈[-
158,-184], F31∈[108,134], F32∈[101,127], F33∈[67,93], F34∈[67,93], 
F35∈[10,36], F36∈[11,37] 
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where }max{ )(
,

)(
,

k
jii

k
ji Agr expresses the relevance )(

,
k
jir  of the i-th element of

the input feature vector with respect to class )(
,
k
jiA . Actually ,...},{)(' 21 ggGAg

is the fuzzified input vector resulting from a singleton fuzzification procedure
(Klir & Yuan, 1995).
The various emotion profiles correspond to the fuzzy intersection of several sets
and are implemented through a t-norm of the form t(a,b)=a·b. Similarly the
belief that an observed feature vector corresponds to a particular emotion results
from a fuzzy union of several sets through an s-norm which is implemented as
u(a,b)=max(a,b).

Figure 28. The form of membership functions

)(
,
k
jiµ

)(
,
k
jic

1

0

)(
,
k
jis

)(
,
k
jis )(

,
k
jis

Figure 29. Facial expression analysis interface
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An efficient implementation of the emotion analysis system has been developed
in the framework of the IST ERMIS project (www.image.ntua.gr/ermis). In the
system interface shown in Figure 29, one can observe an example of the
calculated FP distances, the profiles selected by the facial expression analysis
subsystem and the recognized emotion (“surprise”).

Effective Gesture Analysis Subsystem

Gestures are utilized to support the outcome of the facial expression analysis
subsystem, since in most cases they are too ambiguous to indicate a particular
emotion. However, in a given context of interaction, some gestures are obviously
associated with a particular expression — e.g., hand clapping of high fre-
quency expresses joy, satisfaction — while others can provide indications for
the kind of the emotion expressed by the user. In particular, quantitative features
derived from hand tracking, like speed and amplitude of motion, fortify the
position of an observed emotion; for example, satisfaction turns to joy or even
to exhilaration, as the speed and amplitude of clapping increases.
As was mentioned in the section “Gesture analysis,” the position of the centroids
of the head and the hands over time forms the feature vector sequence that feeds
an HMM classifier whose outputs corresponds to a particular gesture class.
Table 5 below shows the correlation between some detectable gestures with the
six archetypal expressions.
Given a particular context of interaction, gesture classes corresponding to the
same emotional are combined in a “logical OR” form. Table 5 shows that a
particular gesture may correspond to more than one gesture class carrying

Table 5. Correlation between gestures and emotional states

Emotion Gesture Class 

Joy Hand clapping-high frequency 

Sadness Hands over the head-posture 

Anger Lift of the hand- high speed, italianate gestures 

Fear Hands over the head-gesture, italianate gestures 

Disgust Lift of the hand- low speed, hand clapping-low frequency 

Surprise Hands over the head-gesture 
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different affective meaning. For example, if the examined gesture is clapping,
detection of high frequency indicates joy, but a clapping of low frequency may
express irony and can reinforce a possible detection of the facial expression
disgust.
In practice, the gesture class probabilities derived by the HMM classifier are
transformed to emotional state indicators by using the information of Table 5. Let
EIk be the emotional indicator of emotional state k (k {1,2,3,4,5,6} corresponds
to one of the emotional states presented in Table 5 in the order of appearance,
i.e., 1->Joy, 6->Surprise), GCS= {gc1, gc2, …, gcN} be the set of gesture classes
recognized by the HMM Classifier (N=7), GCSk GCS be the set of gesture
classes related with the emotional state k, and p(gci) be the probability of gesture
class gci obtained from the HMM Classifier. The EI(k) is computed using the
following equation:

}{max i
GCgc

k gcEI
K

i
(5)

The Overall Decision System

In the final step of the proposed system, the facial expression analysis subsystem
and the affective gesture analysis subsystem are integrated, as shown in Figure
30, into a system which provides as a result the possible emotions of the user,
each accompanied by a degree of belief.

Figure 30. Block diagram of the proposed scheme
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Although face is considered the main “demonstrator” of user’s emotion (Ekman
& Friesen, 1975), the recognition of the accompanying gesture increases the
confidence of the result of the facial expression subsystem. In the current
implementation, the two subsystems are combined as a weighted sum: Let bk be
the degree of belief that the observed sequence presents the k-th emotional
state, obtained from the facial expression analysis subsystem, and EIk be the
corresponding emotional state indicator, obtained from the affective gesture
analysis subsystem, then the overall degree of belief dk is given by:

kkk EIwbwd 21 (6)

where the weights w1 and w2 are used to account for the reliability of the two
subsystems as far as the emotional state estimation is concerned. In this
implementation we use w1 =0.75 and w2 =0.25. These values enable the affective
gesture analysis subsystem to be important in cases where the facial expression
analysis subsystem produces ambiguous results, while at the same time leave the
latter subsystem to be the main contributing part in the overall decision system.
For the input sequence shown in Figure 3, the affective gesture analysis
subsystem consistently provided a “surprise” selection. This was used to fortify
the output of the facial analysis subsystem, which was around 85%.

Conclusions – Future Work

In this chapter, we described a holistic approach to emotion modeling and
analysis and their applications in MMI applications. Beginning from a symbolic
representation of human emotions found in this context, based on their expres-
sion via facial expressions and hand gestures, we show that it is possible to
transform quantitative feature information from video sequences to an estima-
tion of a user’s emotional state. This transformation is based on a fuzzy rules
architecture that takes into account knowledge of emotion representation and the
intrinsic characteristics of human expression. Input to these rules consists of
features extracted and tracked from the input data, i.e., facial features and hand
movement. While these features can be used for simple representation purposes,
e.g., animation or task-based interfacing, our approach is closer to the target of
affective computing. Thus, they are utilized to provide feedback on the user’s
emotional state while in front of a computer.
Future work in the affective modeling area includes the enrichment of the
gesture vocabulary with more affective gestures and feature-based descrip-
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tions. With respect to the recognition part, more sophisticated methods of
combination of detected expressions and gestures, mainly through a rule-based
system, are currently under investigation, along with algorithms that take into
account general body posture information.
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