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Clustering of unlabelled data is a difficult problem with numerous applica-
tions in various fields. When input space dimensions are many, the number
of distinct patterns in the data is not known a priori, and feature scales are
different, then the problem becomes much harder. In this paper we deal with
such a problem. Our approach is based on an extension to hierarchical cluster-
ing that makes it suitable for data sets with numerous independent features.
The results of this initial clustering are refined via a reclassification step. The
issue of evaluation of hierarchical clustering methods is also discussed. The
performance of the proposed methodology is demonstrated through the ap-
plication to a synthetic data set and verified through application to a variety
of well known machine learning data sets.

1 Introduction

Clustering of data is an problem that is related to numerous scientific and
applied fields [6]. Although researchers in the field of data mining have worked
in this direction for long, and numerous related texts exist in the literature, it
is still considered an open issue, as it is difficult to handle in the cases that the
data is characterized by numerous measurable features. This is often referred
to as the dimensionality curse.

Works in the field of classification focus in the usage of labelled (charac-
terized) data, also known as training data, for the automatic generation of
systems that are able to classify (characterize) future data. This classification
relies on the similarity of incoming data to the training data. The main aim is
? Corresponding author
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to automatically generate systems that are able to correctly classify incoming
data [6].

Typically, in order to pursue such a task, one first needs to detect the
patterns that underly in the data, and then study the way these patterns
relate to meaningful classes. Even when using self - training systems, such
as resource allocating neural networks, that are able to adapt themselves to
the training data, good results may only be achieved when the patterns are
known before hand, so that they may be used for proper initialization [5].

Although the tasks of classification and clustering are closely related, an
important difference exists among them. While in the task of classification
the most important part is the distinction between classes, i.e. the detection
of class boundaries, in the task of clustering the most important part is the
identification of cluster characteristics. The latter is usually tackled via the
selection of cluster representatives and cluster centroids, or via the extraction
of (fuzzy) rules [6].

Efficient solutions have been proposed in the literature for both tasks,
for the case in which a unique similarity or dissimilarity measure is defined
among input data elements [11]. When, on the other hand, multiple indepen-
dent features characterize data, and thus more than one meaningful similarity
or dissimilarity measures can be defined, both tasks become more difficult to
handle. A common approach to the problem is the lowering of input dimen-
sions. This may be accomplished by ignoring some of the available features
(feature selection) [7], or by applying some space transformation [3].

In the case when input features are not independent from each other, a
decrease of dimensions is very helpful. On the other hand, when input features
are independent, or when the relation among them is not known a priori,
which is often the case with real data, a decrease of space dimensions cannot
be accomplished without loss of information. Therefore, if the relation among
features is not known before hand, and the aim is to detect the patterns that
exist in the data, the decrease of dimensions is not possible. Moreover, the
differences in measurement scale among different features also tend to disrupt
the process of clustering. The difficult problem of initial analysis of data as
to properly re-scale features and select which ones to use in the process of
clustering is known as data pre-processing.

In this work we attempt to tackle detection of patterns in multi – di-
mensional data that have not been pre-processed, when the count of distinct
patterns in the data and the relation among input features are unknown. The
proposed algorithm is an extension of agglomerative clustering and is based
on a soft selection of features to consider when comparing data. The results of
this initial clustering are refined via a reclassification step; this step, although
unsupervised, is based on the principles of the Bayes classifier. This step also
contributes to the experimental evaluation of the method’s efficiency.

The structure of the paper is as follows: in section 2, after a short intro-
duction to agglomerative clustering, we present the main problems that are
related to our task. In section 3, we present the proposed method for initial
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clustering and in section 4 we explain how a Bayes – based classifier can be
used to refine, as well as to experimentally verify the efficiency of the algo-
rithm. Finally, in section 5, we present experimental results for the proposed
algorithm and in section 6, we present our concluding remarks.

2 Agglomerative Clustering and Related Problems

Most clustering methods belong to either of two general methods, partitioning
and hierarchical. Partitioning methods create a crisp or fuzzy clustering of a
given data set, but require the number of clusters as input. When the count
of patterns that exist in a data set is not known beforehand, partitioning
methods are inapplicable; an hierarchical clustering algorithm needs to be
applied.

Hierarchical methods are divided into agglomerative and divisive. Of those,
the first are the most widely studied and applied, as well as the most robust.
Their general structure is as follows [9]:

1. Turn each input element into a singleton, i.e. into a cluster of a single
element.

2. For each pair of clusters c1, c2 calculate a compatibility indicator CI(c1, c2).
The CI is also referred to as cluster similarity, or dissimilarity, measure.

3. Merge the pair of clusters that have the best CI. Depending on whether
this is a similarity or a dissimilarity measure, the best indicator could be
the maximum or the minimum operator, respectively.

4. Continue at step 2, until the termination criterion is satisfied. The termi-
nation criterion most commonly used is the definition of a threshold for
the value of the best compatibility indicator.

The two key points that differentiate agglomerative methods from one
another, and determine their efficiency, are the compatibility indicator and
the termination criterion used. Major drawbacks of agglomerative methods
are their high complexity and their susceptibility to errors in the initial steps,
that propagate all the way to their final output.

The core of the above generic algorithm is the ability to define a unique
compatibility indicator among any pair of clusters. Therefore, when the input
space has more than one dimensions, an aggregating distance function, such
as Euclidean distance, is typically used as the CI [14]. This, of course, is
not always meaningful. Cases exist, in which the “context” can change the
similarity or dissimilarity measure to be used [13]. For example, two films
may be compared based on their topic, or on their directors.

In such cases, a selection of meaningful features needs to be performed,
prior to calculating a CI. In the example of films, although two films may
be similar to one another as far as their content is concerned, two other films
may be similar as far as their cast is concerned. In other words, it may not be
possible to select a single distance metric, which will apply in all cases, for a
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given data set. Moreover, one feature might be more important than others,
while all of the features are useful, each one to its own degree. In other words,
hard (crisp) feature selection is not always possible, either.

3 Soft Feature Selection and Clustering in Multi –
Dimensional Spaces

Elements are usually grouped together based on their similarity in a single or
a few features. When the total number of features is high, small distances in a
small subset of them barely affect the overall distance, when an aggregation of
distances in all features is used. Thus, only when the correct subset of features
is considered, can elements be compared correctly [10],[4].

In this paper we tackle feature selection based on the following principle:
while we expect elements of a given meaningful set to have random distances
from one another according to most features, we expect them to have small
distances according to the features that relate them. We rely on this difference
in distribution of distance values in order to identify the context of a set of
elements, i.e. the subspace in which the set is best defined.

More formally, let c1 and c2 be two clusters of elements. Let also ri, i ∈ NF

be the metric that compares the i-th feature, and F the overall count of
features (the dimension of the input space). A distance (dissimilarity) measure
between the two clusters, when considering just the i-th feature, is given by

fi(c1, c2) = κ

√∑
a∈c1,b∈c2

ri(ai, bi)κ

|c1||c2|
(1)

where ei is the i-th feature of element e, |c| is the cardinality of cluster c and
κ ∈ R is a constant.

The context is a soft selection of features to consider when calculating an
overall distance value. We can define it as a fuzzy set x defined on NF , with
a scalar cardinality of one. Then, the overall distance between c1 and c2 is
calculated as

d(c1, c2) =
∑

i∈NF

xi(c1, c2)λ · fi(c1, c2) (2)

where xi is the degree to which i, and therefore fi, is included in the context,
i ∈ NF and λ ∈ R is a constant.

According to the principle presented in the beginning of this paragraph,
the features that relate c1 and c2 are the ones that produce the smallest
distances fi. Therefore, the “correct” context can be calculated through the
solution of an optimization problem, as the context that produces the smallest
overall distance.

When λ = 1 the solution is trivial: the feature that produces the smallest
distance is the only one selected. The degree to which it is selected is 1. If more
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than one features produce the best distance, then they are equally selected,
as there is no information as to which should be favored.

When λ 6= 1 and ∃i ∈ NF : fi(c1, c2) = 0, then the features for which
fi(c1, c2) = 0 are the ones the are (equally) selected.

When λ 6= 1 and fi(c1, c2) 6= 0∀i ∈ NF , then the optimization problem
is not trivial and has to be solved. According to the following lemma it can
be solved analytically, which means that the optimization problem does not
affect the algorithmic complexity of the process:

Lemma 1. When λ 6= 1 and fi(c1, c2) 6= 0∀i ∈ NF , then the best context x,
and equivalently the best compatibility indicator CI, is given by:

xF (c1, c2) =
1∑

i∈NF
[ fF (c1,c2)

fi(c1,c2)
]

1
λ−1

(3)

xi(c1, c2) = xF (c1, c2) · [
fF (c1, c2)
fi(c1, c2)

]
1

λ−1 (4)

Proof. We have demanded that the scalar cardinality of the context is one; the
optimization problem we have to tackle is constrained. |x| = 1 is equivalent to∑

i∈NF
xi = 1. Thus, replacing

xF = 1 −
∑

i∈NF−1

xi (5)

the minimization of

d(c1, c2) = xF (c1, c2)λ · fF (c1, c2) +
∑

i∈NF−1

xi(c1, c2)λ · fi(c1, c2)

is reduced to an unconstrained optimization problem. From 5 we have

∂xF (c1, c2)
∂xi(c1, c2

= −1∀i ∈ NF−1

and thus

∂{xF (c1, c2)λ · fF (c1, c2)}
∂xi(c1, c2)

= −λ · xF (c1, c2)λ−1∀i ∈ NF−1

Easily now, demanding that

∂d(c1, c2)
∂xi(c1, c2)

= 0∀i ∈ NF

we have

xi(c1, c2) = xF (c1, c2) · [
fN (c1, c2)
fi(c1, c2)

]1−λ∀i ∈ NF−1 (6)



6 Manolis Wallace, Phivos Mylonas, and Stefanos Kollias

Combining 6 with 5 we also have

xF (c1, c2) =
1∑

i∈NF
[ fF (c1,c2)

fi(c1,c2)
]

1
λ−1

QED

As λ increases, pairs of clusters that are related by fewer features, and thus
have greater values in their contexts, are obviously assigned smaller distances.
In order for distances to be usable as compatibility indicators, they need to be
unaffected by cluster direction in comparison to the axes. Thus, it is imperative
that they are transformed, as to become directly comparable to each other.
The following, adjusted, compatibility indicator is used:

CI(c1, c2) =
d(c1, c2)
xλ(c1, c2)

(7)

xλ(c1, c2) =
∑

i∈NF

[xi(c1, c2)]λ (8)

When features are quantized to a small set of levels, as is often the case
with digital data, cases for which fi(c1, c2) = 0 are not rare. Especially in
the first steps of agglomerative clustering, when clusters are of small size, the
best CIs are almost always zero. Since, as we have already mentioned, errors
in the initial steps of agglomerative clustering propagate all the way to the
final output, it is important to always make the best selection possible for the
pair of clusters to merge. Therefore, especially for the case of CIs that are
equal to zero, we introduce one more criterion: out of all the pairs for which
CI = 0, the one that has zero distances for the most features will be selected.
In other words, out of all the pairs of similar clusters, the ones that are similar
according to the greatest number of features are selected.

As far as the termination criterion is concerned, a threshold on the value
of CI can be used, as Lemma 2 guarantees that this is meaningful.

Lemma 2. The above mentioned CI is non decreasing as we move from one
step to the next.

Proof. Proof is trivial and is omitted for the sake of space.

This way, the algorithm gradually groups elements together, based on their
similarities; for each cluster, a different fuzzy subset of features may be con-
sidered for the calculation of similarities. This soft feature selection may also
be perceived of as a re-scaling of features, thus making up for the skipped step
of data pre-processing.

The average values of features for each cluster form the centroid, i.e. a
“virtual” element that is located at the center of the cluster, when all of its
elements are placed in the F -dimensional space. Its position may be consid-
ered as a description of the feature values of the pattern that this cluster
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corresponds to. The variances of the values for each feature indicate the im-
portance of each feature for the definition of the cluster; this may be perceived
of as an estimation of the radius of the cluster in the direction of each feature.

Assuming that the clustering has produced meaningful groups of elements,
the latter may be used for the initialization of an adaptive neural classifier;
the fact that clusters are described through center and variance combinations
makes the output ideal for the initialization of RBF based networks [12].

4 Refinement and Verification through Bayesian
Classification

As stated in section 1, the primary aim of clustering algorithms is not to
correctly classify data, but rather to identify the patterns that underly in it.
Therefore, ’wrong’ elements in clusters may be acceptable, as long as the over-
all cluster correctly describes an existing and meaningful pattern. This implies
that feeding labelled data to the algorithm and measuring the classification
rate may not be enough to evaluate the actual efficiency of the algorithm.

In order for a clustering algorithm to be truly evaluated, the patterns that
are described by the detected clusters need to be extracted and examined. In
this work we examine whether detected patterns are meaningful by evaluating
a classifier that is created by using them. Out of the numerous classification
schemes that exist in the literature we have chosen to work with the Bayesian
classifier, although others could have been chosen as well [8].

Specifically, each cluster is considered to describe a distinct class. Further-
more, we assume that all features of members of a class follow a gaussian
distribution. Thus, using the centroid and standard deviations of each clus-
ter, we may design the mixture of Gaussians that describe the class. The
Bayes classification scheme calculates for each input element a the probabili-
ties P (pi/a), i ∈ NT , where T is the count of detected patterns, and classifies
a to the pattern for which it has the greatest probability. Probabilities are
easily computed by applying the transformation:

P (pi/a) = P (a/pi)P (pi)

where P (pi) is equal to the relative cardinality of cluster ci, i.e.

P (pi) =
|ci|∑

j∈NP
|cj |

and P (a/pi) is given as the value of a in the mixture of Gaussians that describe
pattern i, i.e.

P (a/pi) =
∏

j∈NF

1√
2πsij

e
−(

aj−mij
2sij

)2
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Table 1. The parameters for the generation of the synthetic data set

class m1 s1 m2 s2 elements

A 2 0.5 1 0.1 100
B 1 0.9 3 0.1 100
C 1 0.1 2 0.7 100

where mij and sij are the centroid value and standard deviation for the j-th
feature of pattern i and aj is the j-th feature of element a.

Using this scheme, we may reclassify all data that were used for clustering.
If the clustering was successful, i.e. if the detected patterns are meaningful,
then this process will refine the classification rate by removing some of the
clusters’ members that were a result of errors in the initial steps. Thus, this
process offers an indication of the clustering’s true performance. Moreover, it
makes the overall algorithm more robust, as opposed to simple hierarchical
clustering, as it is more resilient to errors in the initial steps.

5 Experimental Results

In this section we list some indicative experimental results of the proposed
methodology. In subsection 5.1 we provide an example of application to a
simple synthetic data set, which facilitates the visualization of the algorithm’s
performance. Continuing, in subsection 5.2 we list results from application to
real data sets from the machine learning databases.

5.1 Synthetic Data

In order for the visualization of the synthetic data set to be feasible, we
have limited it to two dimensions. Three classes of data were created, using
a gaussian random generator. The parameters of the gaussian distributions
used for the generation of the data set are presented in Table 1.

The synthetic data set.

-

6
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As can be seen from the Table, as well as from the diagram, the three
classes are not clearly distinguished from each other, and the subspaces that
best characterize each class differ to a great extent. This makes distance ag-
gregation – based approaches inefficient; this is verified in Table 3. The initial
classification step produces a classification rate of 91% (assigning each cluster
to the class that dominates it), and the reclassification refines this to 95.7%,
indicating that the initial step, although has a smaller rate, has correctly
identified the underlying patterns.

Table 2. The clusters produced, for the synthetic data set. Format: (class 1, class
2, class 3)

Method cluster 1 cluster 2 cluster 3 Classification rate

Euclidian clus. (0,0,13) (28,0,87) (72,100,0) 66.7%
Initial clus. (4,0,86) (92,5,8) (4,95,6) 91%

Bayesian reclass. (6,0,98) (94,5,2) (0,95,0) 95.7%

5.2 Real Data

Iris data

The iris data set contains 150 elements, characterized by 4 features, that
belong to three classes; two of these classes are not linearly separable from
each other. This is a relatively easy data set, as the number of clusters in
the data is equal to the number of classes. The labels of the elements were
not used during clustering and reclassification; there were used, though, for
evaluation purposes. Results are shown in Table 3.

The considerable refinement that a single step of Bayesian reclassification
offers is indicative of the validity of the detected clusters. This observation is
supported even more by the fact that recursive application of the reclassifica-
tion step refines even more the results, even though this step is unsupervised
(it does not use element labels).

Wisconsin Breast Cancer Database

The Wisconsin breast cancer database contains 699 elements, which are char-
acterized by the following attributes: clump thickness, uniformity of cell size,

Table 3. Classification rates for iris data (κ = λ = 2)

Method cluster 1 cluster 2 cluster 3 Classification rate

Initial clus. (36,4,12) (13,0,38) (1,46,0) 80%
Bayesian reclass. 1 (33,0,2) (17,0,48) (0,50,0) 87.3%
Bayesian reclass. 2 (35,0,0) (15,0,48) (0,50,0) 90%
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Table 4. Classification rates for Wisconsin data (κ = λ = 2)

Method cluster 1 cluster 2 cluster 3 Classification rate

Initial clus. (31,42) (3,136) (410,61) 86.1%
Bayesian reclass. (5,18) (2,177) (437,44) 92.5%

Table 5. Classification rates for Wisconsin data (κ = λ = 5)

Method cluster 1 cluster 2 cluster 3 Classification rate

Initial clus. (192,56) (3,154) (249,29) 87.1%
Bayesian reclass. (0,0) (10,218) (434,21) 95.5%

uniformity of cell shape, marginal adhesion, single epithelial cell size, bare
nuclei, bland chromatin, normal nucleoli, mitoses. All these attributes assume
integer values in [1, 10]. Elements are also accompanied by an id, and class
information; possible classes are benign and malignant. 65.5% of the elements
belong to the benign class and 34.5% to the malignant class. 16 elements are
incomplete (an attribute is missing) and have been excluded from the database
for the application of our algorithm.

This data set, having a greater number of features, is considered to be more
difficult than the iris data set. Detailed results acquired using the proposed
methodology are available in Tables 4 and 5. It is worth noting that, although
the classification rate of the initial clustering procedure are not extremely
high, the reclassification step refines it considerably. Furthermore, for the case
where κ = λ = 5, the reclassification step classifies every element to one of
exactly two clusters, each one almost totally dominated by one class.

This performance is not far from that of trained classification systems that
utilize the same dataset; a classification rate of 97% is reported in [2]. This is
indicative of the method’s efficiency, considering that we are referring to the
comparison of an unsupervised method to a supervised one.

Ionosphere Database

This radar data was collected by a system in Goose Bay, Labrador. The targets
were free electrons in the ionosphere. “Good” radar returns are those showing
evidence of some type of structure in the ionosphere. “Bad” returns are those
that do not. Elements of the data set are characterized by 34 features and
classified as either good or bad. Results from the application of the proposed
methodology appear in Table 6.

Considering that supervised classification algorithms report a classifica-
tion rate of around 90%, it is easy to conclude that the initial clustering is
extremely efficient. If we also consider that unsupervised clustering methods
do not exceed a classification rate of 80% for 10 clusters [1], then we might
conclude that the detection of two clusters with a classification rate of 87.2%
is extremely successful.
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Table 6. Classification rates for Ionosphere database (κ = λ = 2)

Number of clusters Initial clust. Bayesian reclass.

2 87.2% 80%
3 87.2% 80.1%
10 87.2% 84.9%
15 87.2% 87.2%
20 87.2% 87.7%
25 87.2% 91.2%

The step of Bayesian reclassification, in addition to refining the clustering,
as to reach a classification rate of 91.2% for 25 clusters, also discriminates
meaningful from random output. Thus, it is easy to see that although the
same classification rate is reported, a partitioning with less than 10 clusters is
not able to provide efficient classifier initialization, as it does not adequately
describe the underlying patterns, while a partitioning of 25 clusters would be
much more effective.

6 Conclusions

In this paper we developed an algorithm for the detection of patterns in unla-
belled data. The first step of the algorithm consists of an hierarchical cluster-
ing process. This process performs a soft feature selection in order to determine
the subspace within which a set of elements is best defined. Thus, it is suitable
for data sets that are characterized by high dimensionality. The second part of
the algorithm is a Bayesian classification. This process considers initial clus-
ters to be labels and uses this information to build a classifier, through which
to reclassify all data. Thus, errors from the hierarchical algorithms initial steps
are corrected. In addition to making the overall algorithm more efficient and
resilient to errors, it also serves as a means for its evaluation.

The efficiency of the proposed algorithm as a whole, as well as of its dis-
tinct steps independently, has been demonstrated through application s to a
variety of synthetic and real data sets. Within them was the Wisconsin breast
cancer database which is a multi – dimensional data set; the algorithm per-
forms remarkably well for it. The ionosphere database was also considered,
through which it was made obvious that the evaluation of the performance of
a clustering method is imperative, before its output is further used for other
tasks of data processing.

The fact that the proposed methodology performs a soft feature selection
makes it able to handle input data with features of different scales. Thus, it
may be used to substitute the phase of data pre-processing. Moreover, the
representation of clusters using a mixture of Gaussians is compatible with the
internal representation of RBF nodes, which makes our method ideal for the
initialization of RBF based neural networks.
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