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Abstract: Hierarchical approaches, which are dominated by the generic agglomerative clustering algorithm, are 
suitable for cases in which the count of distinct clusters in the data is not known a priori; this is not a rare 
case in real data. On the other hand, important problems are related to their application, such as 
susceptibility to errors in the initial steps that propagate all the way to the final output and high complexity. 
Finally, similarly to all other clustering techniques, their efficiency decreases as the dimensionality of their 
input increases. In this paper we propose a robust, generalized, quick and efficient extension to the generic 
agglomerative clustering process. Robust refers to the proposed approach’s ability to overcome the classic 
algorithm’s susceptibility to errors in the initial steps, generalized to its ability to simultaneously consider 
multiple distance metrics, quick to its suitability for application to larger datasets via the application of the 
computationally expensive components to only a subset of the available data samples and efficient to its 
ability to produce results that are comparable to those of trained classifiers, largely outperforming the 
generic agglomerative process. 

.

1. INTRODUCTION 

The essence of clustering data is to identify 
homogeneous groups of objects based on the values 
of their attributes. It is a problem that is related to 
various scientific and applied fields and has been 
used in science and in the field of data mining for a 
long time, with applications ranging from artificial 
intelligence and pattern recognition to database 
analysis and statistics (Hirota and Pedrycz, 1999). 
Although numerous related texts exist in the 
literature, clustering of data is still considered an 
open issue, basically because it is difficult to handle 
in the cases that the data is characterized by 
numerous measurable features; This is often referred 
to as the dimensionality curse. 

Works in the field of classification, on the other 
hand, focus in the usage of labeled (characterized) 
data, also known as training data, for the automatic 
generation of systems that are able to classify (label) 

future data; this classification relies on the similarity 
of incoming data to the training data.  In these 
works, the metric that may assess its efficiency is the 
classification rate on incoming data. 

Typically, in order to pursue such a task, one 
first needs to detect the patterns that underlie in the 
data via data clustering, and then study the way 
these patterns relate to meaningful classes. Even 
when using self - training systems, such as resource 
allocating neural networks, that are able to adapt 
themselves to the training data, good results, i.e. 
efficient classifier structures, may only be achieved 
when the patterns are known before hand, so that 
they may be used for proper initialization (Haykin, 
1999). Extraction of actionable information from 
detected clusters is typically tackled via the selection 
of cluster representatives and cluster centroids, or 
via the extraction of (fuzzy) rules (Hirota and 
Pedrycz, 1999).  

Although the tasks of classification and 
clustering are closely related, an important 
difference exists among them.  While in the task of 

mailto:wallace@image.ntua.gr
mailto:stefanos@cs.ntua.gr


 

classification the main goal is the distinction 
between classes, i.e.  the detection of class 
boundaries, in the task of clustering the main goal  is 
the identification of data patterns.  Thus, the 
classification rate is not a suitable metric for the 
evaluation of the efficiency of the clustering process; 
the efficiency of a resulting classifier is. 

Various types of clustering techniques exist, 
each one displaying a distinct set of advantages and 
drawbacks; a common distinction is between 
hierarchical and partitioning clustering algorithms. 
Hierarchical approaches, which are dominated by 
the generic agglomerative clustering algorithm, are 
suitable for cases in which the count of distinct 
clusters in the data is not known a priori; this is not a 
rare case in real data. On the other hand, important 
problems are related to their application, such as 
susceptibility to errors in the initial steps that 
propagate all the way to the final output and high 
complexity. Finally, similarly to all other clustering 
techniques, their efficiency decreases as the 
dimensionality of their input increases. 

In this paper we propose a robust, generalized, 
quick and efficient extension to the generic 
agglomerative clustering process. Robust refers to 
the proposed approach’s ability to overcome the 
classic algorithm’s susceptibility to errors in the 
initial steps, generalized to its ability to 
simultaneously consider multiple distance metrics, 
quick to its suitability for application to larger 
datasets via the application of the computationally 
expensive components to only a subset of the 
available data samples and efficient to its ability to 
produce results that are comparable to those of 
trained classifiers, largely outperforming the generic 
agglomerative process. 

The structure of the paper is as follows:  in 
section 2., we present the extension to the generic 
agglomerative process that allows for the 
simultaneous consideration of multiple metrics. This 
step is based on an integration of the generic process 
with a feature selection technique and may be 
applied to a subset of the available data set. In 
section 3 we present a classification step that 
extends the results of the clustering step to the whole 
data set, while at the same time correcting errors in 
its output. This step, due to its linear complexity, 
may be applied iteratively until equilibrium is 
reached, thus providing excellent classification rate. 
Finally, section 4 presents experimental proof of the 
proposed methodology’s efficiency through a 
comparative study and section 5 lists our concluding 
remarks. 

2. GENERALIZED 
AGGLOMERATIVE CLUSTERING 

Hierarchical methods are divided into 
agglomerative and divisive. Of those, the first are 
the most widely studied and applied, as well as the 
most robust. Their general structure is as follows 
(Miyamoto, 1990):  
1. Turn each input element into a singleton, i.e. into 

a cluster of a single element. 
2. For each pair of clusters ,  calculate their 

distance . Merge the pair of clusters 
that have the smallest distance. Continue at step 
2, until the termination criterion is satisfied.  

1c 2c
( 1 2,d c c )

The termination criterion most commonly used 
is the definition of a threshold for the value of the 
distance. The two key points that differentiate 
agglomerative methods from one another, and 
determine their efficiency, are the distance and the 
termination criterion used. Major drawbacks of 
agglomerative methods are their high complexity 
and their susceptibility to errors in the initial steps, 
that propagate all the way to their final output.  

The core of the above generic algorithm is the 
ability to define a unique distance among any pair of 
clusters. Therefore, when the input space has more 
than one dimensions, an aggregating distance 
function, such as Euclidean distance, is typically 
used (Yager, 2000). This, of course, is not always 
meaningful and there are cases where a selection of 
meaningful features needs to be performed, prior to 
calculating a distance (Wallace and Stamou, 2002). 
In other words, it may not be possible to select a 
single distance metric, which will apply in all cases, 
for a given data set. Moreover, one feature might be 
more important than others, while all of the features 
are useful, each one to its own degree. 

In this paper we tackle feature weighting based 
on the following principle: while we expect elements 
of a given meaningful set to have random distances 
from one another according to most features, we 
expect them to have small distances according to the 
features that relate them. We rely on this difference 
in distribution of distance values in order to identify 
the context of a set of elements, i.e. the subspace in 
which the set is best defined.  

More formally, let  and  be two clusters of 

elements. Let also , .be the metric that 
compares the -th feature, and F the overall count of 
features (the dimension of the input space). A 
distance measure between the two clusters, when 
considering just the i -th feature, is given by: 
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where  is the i -th feature of element , ie e c  is the 
cardinality of cluster  and κ  is a constant. The 
overall distance between  and  is calculated as: 

c
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where ix  is the degree to which i , and therefore 

if , is included in the soft selection of features, 

and  is a constant. Based on the principle 
presented above, values of vector 

Fi N∈ λ
x  as selected 

through the minimization of distance 
(Wallace and Kollias, 2003). ( 1 2,d x x )

The operation of algorithm presented herein is 
defined by two manually set parameters, namely λ  
and . The former may be used to adjust the 
softness of the algorithm, i.e.  the degree to which 
the inclusion of multiple features in the overall 
distance is favored.  As the selection of 

κ

1λ→ x  
approaches the crisp case, in which the best feature 
is selected to a degree of one and all other features 
are ignored.  As λ  the minimization of the 
overall distance leads to the selection of all features 
to the same degree. Consequently, lowering the 
values of λ  is equivalent to hardening the feature 
selection process; increasing λ  lets more features 
participate in the determination of the overall 
distance. As far as  is concerned, its influence on 
distances 

→∞

κ
if  is similar to the one reported in (Yager, 

2000) for the generalized mean operators.  As 
 distance κ→−∞ if  approaches the min operator 

while as κ distance →+∞ if  approaches the max 
operator; these correspond to the minimum and 
maximum linkage hierarchical clustering approaches 
(Miyamoto, 1990). Other special values are , 
which yields the mean value (average linkage 
clustering), and , which yields the Euclidian 
distance. Generally, as κ  increases small clusters 
are favored as wining clusters, leading to the 
creation of equally sized clusters, while smaller 
values of k favor the merging of larger clusters, 
leading to the creation of few large clusters with 
“neglected” singletons. 

1κ=

2κ=

As we have already mentioned, agglomerative 
clustering algorithms suffer from high computational 
complexity. Thus, researchers are generally reluctant 
to propose any modifications that may further 
deteriorate their execution time.  In the proposed 
approach, the overall distance is calculated directly, 
without any computational overhead. Specifically, 
although typically, a task that includes some sort of 
optimization is tackled via repetitive techniques 
whose computational needs largely exceed linearity,  
in this work optimization has been achieved 
analytically, thus guaranteeing that the overall 
complexity of the clustering algorithm remains 
unaltered. 

3. REFINEMENT VIA BAYESIAN 
CLASSIFICATION 

In order make the proposed methodology 
applicable in real life situations, its complexity 
needs to be seriously taken into consideration. 
Specifically, having the high computational needs of 
the generic agglomerative process, the procedure 
described in the previous section cannot be applied 
to larger data set. Thus, we choose to apply it to a 
smaller random subset of the available data, and then 
extend its results to the remaining data. 

This can be accomplished via classifying the 
remaining data to one of the clusters using some 
classification scheme. Of course, numerous 
classification schemes have been proposed and 
could be applied for our task (Lim et al., 2000). In 
this work we choose to work with the Bayesian 
classifier; other classifiers have been tested as well, 
but with inferior results.  

Specifically, each cluster is considered to 
describe a distinct and meaningful pattern; works 
exist in which detected clusters are filtered as to 
remove those that are most probably not related to 
meaningful patterns, before any other analysis takes 
place (Wallace et al., 2003). Furthermore, we 
assume that all features of members of a class follow 
a gaussian distribution.  Thus, using the centroid and 
standard deviations of each cluster, we may design 
the mixture of Gaussians that describe it. 

Let  be one of the data samples to classify.  
For simplicity, we will also use  to denote the 
event where the features of an input data sample are 
equal to those of . Similarly, we will use 

a
a

a ip  to 
denote both the pattern that corresponds to cluster  
and the event of a data sample belonging to that 
cluster.  The Bayes classification scheme calculates 

i



 

the probabilities ( )/iP p a , , where  is 
the count of detected patterns, and classifies  to 
the pattern 

Ti N∈ T
a

ip  for which it has the greatest 

probability; ( )/iP p a  is the a posteriori probability 
of the event that the input data sample is an instance 
of pattern ip , under the condition that the features 
of the input data samples are those of . We 
compute these probabilities as  

a
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as  when we attempt to classify data 
sample . We calculate the a priori probability 

 as the relative cardinality of the 

corresponding cluster , while the conditional 

probability 
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( )/ iP a p  is calculated based on the 

assumption of gaussian distributions; it is calculated 
as the value of the F -dimensional point  in the 
mixture of Gaussians that describes pattern 
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where  and ijm ijs  are the mean value and standard 

deviation for the -th feature of cluster   and  
is the -th feature of data sample . 

j ic ja
j a

Using this scheme, we may classify the whole 
data set, including the subset on which the step of 
generalized agglomerative clustering was applied.  
This, simultaneously to clustering the remaining data 
samples, refines the initial result by removing 
misclustered data samples that are a result of errors 
in the first step of the process, thus making the 
overall technique more robust. 

If the original clustering is efficient, i.e. it has 
correctly detected the underlying patterns, regardless 

of any mis-assignments, the classification rate of this 
classification step shall be high. Thus, we may use 
the classification rate with respect to the one of the 
original clustering step, or to that of other 
techniques, in order to evaluate the performance of 
the algorithm. 

A partitioning of the set of data samples, such as 
the output of the initial agglomerative clustering 
step, is closed under the operation of reclassification, 
i.e.  the output is again a partitioning of the set of 
data samples.  Moreover, it is easy to show that the 
computational complexity of the reclassification 
process is linear, with respect to the count of data 
samples in the data set.  Thus, it is both theoretically 
possible and computationally inexpensive to apply 
the step of reclassification recursively until 
equilibrium is reached (partitioning does not alter), 
or until the differences between successive 
partitionings become negligible 

4. EXPERIMENTAL RESULTS 

In this section we list experimental results of the 
proposed methodology.  In subsection 4.1 we 
provide an example of application to a simple 
synthetic data set, which facilitates the visualization 
of the algorithm’s operation. Continuing, in 
subsection 5.2 we list results from application to real 
data sets from the machine learning databases. 

 

4.1 Synthetic Data 

To make the visualization of the synthetic data 
set feasible, we have limited it to two dimensions.  
Three classes of data were created, using a Gaussian 
random generator.  The mean values  and  
standard deviations s1 and s2 of the Gaussian 
distributions used for the generation of the data set 
are presented in Table 1, while the feature values of 
the generated data samples are presented in Figure 1 
in the form of a two dimensional plot. 

1m 2m

 
Table 1.The parameters for the generation of the synthetic 
data set.�
 

Class m1 s1 m2 s2 Samples 
A 2 0.5 1 0.1 100 
B 1 0.9 3 0.1 100 
C 1 0.1 2 0.7 100 

 



 

As can be seen from the figure, the three classes 
are not clearly distinguished from each other; this 
greatly complicates the problem of pattern 
extraction.  Moreover, it is obvious that the 
subspaces that best characterize each class differ to a 
great extent, as the directions of the clusters in the 
two dimensional space are quite different from each 
other; this renders classical mean – based 
approaches inefficient; this can be seen in Table 2, 
where we can see that the utilization of a Euclidian 
distance – based metric leads to poor performance, 
as this is indicated by both the low classification rate 
of the initial clustering and the failure of the 
reclassification process to enhance this rate 
(Classification rates are calculated by assigning each 
cluster to the class that dominates it). In the table, 
the triplet (a,b,c) indicates the counts a,b,c of 
elements that belong to class A,B,C respectively. 

 
Figure 1. The synthetic data set.  Data samples of the three 
classes are represented by circles, squares and triangles 

 
Table 2. Results from application on the synthetic data set. 
( κ=2, λ =2) 

Method Cluster 1 Cluster 2 Cluster 3 Classific. 
rate 

Euclidian 
clustering 0,0,13 28,0,87 72,100,0 66.7% 

Euclidian 
clustering 

and 
Bayesian 
classific. 

0,0,9 29,0,91 71,100,0 65.3% 

Proposed 
clustering 4,0,86 92,5,8 4,95,6 91% 

Proposed 
clustering 

and 
Bayesian 
classific. 

6,0,98 94,5,2 0,95,0 95.7% 

 

On the contrary, the initial clustering step, using 
the method presented herein, produces a 
classification rate of 91%, and the reclassification 
refines this to 95.7%; this indicates that the initial 
step, although having a smaller classification rate, 
has correctly identified the underlying patterns.  The 
patterns detected by the two approaches are 
presented in Table 3 (Results of the Euclidian 
distance based approach are presented first and the 
results of the proposed approach follow). It is 
obvious that:   
– The Euclidian distance – based approach fails to 

detect the patterns that were used to generate the 
synthetic data set.  

– The patterns detected by the proposed approach 
barely differ from the ones that were used to 
generate the synthetic data set.  
 

Table 3:  The patterns detected in the synthetic data set. 
 

Dominating 
class 

m1 s1 m2 s2 samples

C 2.59 0.40 3.05 0.07 9 
B 1.56 0.61 1.23 0.44 171 
C 0.75 0.74 2.96 0.19 120 
A 2.03 0.41 1.00 0.11 95 
B 0.86 0.95 3.01 0.11 104 
C 0.98 0.10 1.84 0.74 101 

4.2 Real Data 

In this subsection we provide results from the 
application of the proposed algorithm to a number of 
machine learning databases, namely the iris data, the 
Wisconsin breast cancer database and the ionosphere 
database. All these data sets are available from the 
UCI Repository of Machine Learning Databases. 
With these results we aim to demonstrate the 
efficiency of the proposed algorithm and contrast its 
results to those of other works in the literature. 

4.2.1 Iris data 

The iris data set contains 150 samples, 
characterized by 4 features, that belong to three 
classes; two of these classes are not linearly 
separable from each other. For the initial step of 
agglomerative clustering we have used 30 randomly 
selected data samples. Results are shown in Table 4 
and in Figure 2. 

The classification rate reported after the initial 
clustering is very poor.  Still, the considerable 
refinement that a single step of Bayesian 



 

reclassification offers is indicative of the validity of 
the detected patterns.  This observation is supported 
even more by the fact that recursive application of 
the reclassification step refines even more the 
results, even though these steps are unsupervised, 
i.e.  they do not use data sample labels as an input. 
After 13 applications of the reclassification step the 
equilibrium is reached. 

 
Table 3. Classification rates for iris data. (λ=1.2 κ=2) 
 

Reclass. 
step 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Classific. 
rate 

Clustering 1,0,4 5,0,5 4,10,1 63.3% 
1st reclass. 4,0,21 43,0,29 3,50,0 76% 
2nd reclass. 2,0,24 48,0,26 0,50,0 81.3% 
3rd reclass.  2,0,28 48,0,22 0,50,0 84% 
7th reclass. 2,0,39 48,0,11 0,50,0 91.3% 
9th reclass. 2,0,43 48,0,7 0,50,0 94% 

13th reclass. 4,0,48 46,0,2 0,50,0 96% 
 

 
Figure 2.Classification rates for iris data, as a function of 
reclassification iterations  
  

As we have already explained, the 
reclassification process is not computationally 
expensive, and thus the increased number of 
iterations required does not constitute a drawback. 
The final classification rate of 96% is superior to 
those of classic unsupervised partitioning 
techniques; most works report a classification rate 
that does not exceed 90%. k-means and fuzzy c-
means, for example both have a classification rate of 
89.3% on the iris data set.  An extension of the 
latter, alternative fuzzy c-means (AFCM) (Wu and 
Yang, 2002), reaches a classification rate of 91.3%, 
which is the best reported by unsupervised 
algorithms for the iris data set.  As far as other 
existing hierarchical approaches are concerned, they 
typically have much lower classification rates on the 

iris data set; the Euclidian distance – based approach 
that was applied in the synthetic data set, for 
example, produces a classification rate of 74.7% 
when applied on the whole dataset, which 
deteriorates slightly and stabilizes at 74% after 
reclassification. 

4.2.2 Wisconsin Breast Cancer Database 

The Wisconsin breast cancer database contains 
699 samples, which are characterized by the 
following attributes:  clump thickness, uniformity of 
cell size, uniformity of cell shape, marginal 
adhesion, single epithelial cell size, bare nuclei, 
bland chromatin, normal nucleoli, mitoses.  All these 
attributes assume integer values in [1,10]. Data 
samples are also accompanied by an id, and class 
information; possible classes are benign and 
malignant.  65.5% of the samples belong to the 
benign class and 34.5% to the malignant class.  16 
samples are incomplete (an attribute is missing) and 
have been excluded from the database for the 
application of our algorithm. The initial clustering 
step is applied on 50 data samples, i.e. to less that 
10% of the data set. 

 Detailed results acquired using the proposed 
methodology are available in Table 4 and Figure 3. 
It is worth noting that, although the classification 
rate of the initial clustering procedure is not 
extremely high, the reclassification steps refine it 
considerably, thus verifying the efficiency of the 
first step. Furthermore, the iterative reclassification 
process classifies every sample to one of exactly two 
clusters, each one almost totally dominated by one 
of the two existent classes.  We can also observe that 
the figure differs from the corresponding one for iris 
data (Figure 2) in that a temporary drop of the 
classification rate is observed after step 4. This does 
not indicate some sort of instability of the algorithm; 
it merely corresponds to the step where two clusters 
are merged into one, as can be seen in Table 4. 

Some of the best classification rates reported for 
this data set by supervised methods in the literature 
are presented in Table 5. The classification rate 
reported by our (unsupervised) method is 
comparable to them, and even exceeds some of 
them.  More importantly, the number of clusters in 
our approach is considerably smaller that the number 
of clusters reported in these works.  Thus, the output 
of the proposed algorithm may be used to initialize a 
superior classifier; small numbers of clusters are 
important in classifier initialization as they 
contribute to computational efficiency, low training 
times and good generalization.  In (Tsapatsoulis et 



 

al. 2003) such a classifier is presented, using a 
resource allocating, RBF neural network; it achieves 
a classification rate of 98% using 3 clusters, thus 
outperforming all aforementioned approaches. 

 
Table 4. Classification rates for Wisconsin data. (λ=1.3 
κ=2) 

 
Reclass. 

step 
Cluster 1 Cluster 2 Cluster 3 Classific. 

rate 
Clustering 30,4 1,7 2,6 86% 
1st reclass. 438,46 0,138 6,55 92.4% 
4th reclass. 414,3 0,116 30,120 95.2% 
5th reclass. 0,0 0,113 444,126 88.4% 
7th reclass. 0,0 0,193 438,46 92.4% 

10th reclass. 0,0 24,234 420,5 96.6% 
 

  
Figure 3.Classification rates for Wisconsin data, as a 
function of reclassification iterations  

 
Table 5. Comparative study on the Wisconsin data. 

 

Method Classific. rate Count of  
patterns 

Proposed approach 96.6% 2 
Nauk and Kruse, 1997 96.7% 7 

Kasabov and Woodford, 
1999 95.3% 17 

Kasabov, 1996 95.3% 9 
Halgamuge and Glesner, 

1994 96% 7 

Bagui et al., 2003 96.17% 200 
samples 

K-NN 96.34% 200 
samples 

4.2.3 Ionosphere Database 

This radar data was collected by a system in 
Goose Bay, Labrador. The targets were free 

electrons in the ionosphere.  Samples of the data set 
are characterized by 34 features and are classified as 
either good or bad.  Good radar returns are those 
showing evidence of some type of structure in the 
ionosphere.  Bad returns are those that do not.  
Results from the application of the proposed 
methodology appear in Table 6. 

This data set is a classical example for the 
demonstration of the results of the dimensionality 
curse. As expected, the hierarchical clustering 
algorithm that equally considers all features fails to 
detect existing patterns. Moreover, any attempt to 
reclassify data renders a classification rate of 
61.10%, which corresponds to the percentage of 
good samples in the data set  all samples are 
assigned to the same pattern . Thus, this approach 
has totally failed to distinguish any patterns in the 
data set. The results of the proposed approach, on 
the other hand, exceed those of other unsupervised 
clustering methods, which typically do not exceed a 
classification rate of 80% for this data set; a 
classification rate of 82% is reported in (Aggarwal 
and Yu, 2002) for 10 clusters.  After the 
classification step for 25 clusters  our algorithm 
outperforms or is comparable to most supervised 
classifiers as well:  linear discriminant analysis  
LDA  (Friedman, 1997) has a rate of 86.3%, 
classification trees  CTREE  (Breiman et al., 1984) 
have a rate of 87% and the combinatory approaches 
of CTREE-bagging (Breiman, 1996) and double-
bagging (Hothorn and Lausen, 2003) have rates of 
90.7% and 93.3%, respectively. 
 
Table 6. Classification rates for ionosphere data. (λ=2 
κ=2) 
. 

No of 
clusters

Euclidian 
clustering

After 
classific. 

Proposed 
clustering 

After 
classific.

2 64.39% 61,10% 87.2% 80% 
10 67.81% 61,10% 87.2% 84.9% 
15 69.80% 61,10% 87.2% 87.2% 
20 71.79% 61,10% 87.2% 87.7% 
25 74.01% 61,10% 87.2% 91.2% 

5. CONCLUSIONS 

In this paper we proposed a robust, generalized, 
quick and efficient extension to the generic 
agglomerative clustering process. Our approach is 
divided in two distinct steps. The first is an 
integration of the generic agglomerative process, 
which makes it possible for the process to consider 



 

multiple distance metrics. This makes the process 
suitable for application on multidimensional data 
sets, as was made obvious via application on the 
ionosphere data set. The second step is a Bayesian 
classification step that uses the initial cluster 
assignments as labels. This step refines the initial 
clustering by removing some errors.  

Since only the first step is computationally 
expensive, applying it only a subset of the data set 
and using the second step to generalize the result to 
the remaining data samples we can make the overall 
approach applicable to larger data sets; this option is 
not available in the generic agglomerative process. 

The efficiency of the proposed algorithm has 
been demonstrated via application to a synthetic data 
set as well as to a variety of real data sets; although 
classical hierarchical approaches fail in these 
examples, the performance of our approach was 
shown to be comparable to those of supervised 
partitioning algorithms and of trained classifiers. 

In the framework of the EU IST-1999-20502 
"FAETHON" project, we are applying this 
methodology for analysis of information retrieval 
usage history aiming at the extracting semantic and 
metadata related user preferences. 
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