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Invariant Image Classification Using
Triple-Correlation-Based Neural Networks
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Abstract—Triple-correlation-based neural networks are intro-
duced and used in this paper for invariant classification of
two-dimensional gray scale images. Third-order correlations of
an image are appropriately clustered, in spatial or spectral
domain, to generate an equivalent image representation that
is invariant with respect to translation, rotation, and dilation.
An efficient implementation scheme is also proposed, which is
robust to distortions, insensitive to additive noise, and classifies
the original image using adequate neural network architectures
applied directly to 2-D image representations. Third-order neural
networks are shown to be a specific category of triple-correlation-
based networks, applied either to binary or gray-scale images.
A simulation study is given, which illustrates the theoretical
developments, using synthetic and real image data.

I. INTRODUCTION

NVARIANT pattern recognition is one of the hardest fami-

lies of problems in the theory of perception and in computer
vision. The problem of invariant recognition is to understand
how our perception of an object remains unaffected in spite
of the considerable changes that the retinal image of an object
may undergo [7]. Among the most important of these changes
are translation, scale, and rotation, as well as distortion and
addition of noise [25].

The use of neural networks for invariant image recognition
has been recently a topic of extensive research. Various types
of approaches have been proposed in the literature for this
purpose. The most common approach to the problem of
invariant recognition consists of two steps; in the first a feature
extraction or transformation method provides an invariant
image representation, or a set of features of reduced dimen-
sionality, while a neural network is used in the second step to
classify the unknown images, based on the extracted features
[17], [33]. Other techniques, such as the neocognitron [8].
[9], or the labeled graph matching approach [1], [22}], derived
from biological concepts, attempt to implement physiological
mechanisms in artificial neural systems. These techniques,
which generally are of high complexity, are not considered
in this paper.

The need for invariant recognition translates, therefore, to
the requirement for extraction of features which are invariant
with respect to transformations of the input image. The loss of
information, caused by the transformation of the input image
space to the feature or equivalent image representation space,
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as well as the robustness of image classification in the presence
of small distortions or of additive noise, are the most crucial
factors in the design of such a recognition scheme.

Multilayer perceptrons have been widely examined in the
neural network field, as a tool for signal classification, based
on the extraction of appropriate features from signals. Error-
feedback supervised learning algorithms, such as backpropa-
gation, are generally used to train a multilayer feed-forward
network. A crucial aspect concerning the network performance
is generalization, i.e., the ability of the network to classify
correctly input data, which were not included in its training
set. Good generalization is a result of appropriate network
design; a small number of interconnection weights (i.e., free
parameters during training) should be generally used for this
purpose, and any a priori knowledge about the problem
should be included in the network architecture. Consequently,
structured networks of small size are likely to have a better
generalization.

As far as invariant classification is concerned, use of mul-
tilayer perceptrons would require exhaustive training over the
patterns and all possible transformations of them, since it has
not been evident whether hidden units in first-order neural net-
works can efficiently represent invariant feature sets [29]. For
this reason, it has been proposed to use higher-order networks
[12], [13], which take advantage of information about expected
relationships between the input nodes of the network {27]. An
important category of higher-order networks are the third-order
ones, because they can provide simultaneous invariance with
respect to translation, scale, and rotation,

The ith unit in a third-order neural network, shown in Fig.
1, computes its output y;, as follows

vi=f Zzzﬂwkzﬂymwl s (1)
J k1

where x; denotes the ith element of the input pattern, or
equivalently the ith input unit, w; i is the weight connecting
the product of j, k, and [ input units to the ith output unit,
and f is the sigmoid function. The summations extend over
the whole input space, so that the limits are defined by the
problem.

The use of third-order networks for invariant recognition
of binary images has been examined in [27], [28], [19]. Let
us consider an object, represented in two dimensions and in
binary form. Then, three points within it, say j, k. [, define a
triangle with included angles (a,b,c), as shown in Fig. 2. Any
translation, dilation and/or rotation of the object transforms
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Fig. 1. Third-order neuron model.
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Fig. 2. An input triplet and scaled/rotated version of it.

(jkl) to another set of points (j'k’l’) preserving (a,b,c).
If a third-order neural network is employed for invariant
recognition of this object, then it should treat the inputs at
points j', k', !’ in the same way with those at j, k,I, i.e., the
network weights w;;; associated with triplets of input points
forming similar triangles should be equal to each other. This
can be written as follows,

Wikl = Wiabe = Wicab = Wibcas (2)

where the weight is expressed as a function of the angles
a,b,c. In general, though, wispe # Wipae, unless recognition
is reflection insensitive. Equation (2) yields constraints on the
network interconnection weights and thus imply a particular
structure of the network, providing it with the ability to per-
form invariant recognition of the object under consideration.
However, the ability of such a network to provide solutions to
complex real-life problems is still an open problem, mainly due
to the excessive number of interconnections that is required in
cases of a large input image size.

In this paper it is shown that image-recognition using third-
order neural networks is a specific case of a more general
image recognition scheme using triple-correlation-based neural
networks.

Third-order signal correlations are higher-order signal sta-
tistics [23] with two important properties:

1) In contrast to second-order correlations, and apart from
some special cases (including transient signals and 2-D
co-sinusoids), in which third-order-correlations vanish,
triple-correlations of deterministic signals have an one-
to-one correspondence with the original signal (except
of a shift ambiguity).

2) Third-order-correlations of zero-mean non-skewed noise
(such as Gaussian or linear and symmetrically dis-
tributed) are zero in the mean and furthermore, they tend
to zero w.p.1 as the size of the available data record
tends to infinity.

The first property generally yields a complete description of
the signal based on its triple-correlation. On the other hand,
the second property can be used, under certain conditions,
to improve the SNR in applications where the signal un-
der consideration is corrupted by non-skewed additive noise.
Based on their properties, third order correlations can be
very advantageous for image recognition, if invariance is
included in them. Various invariant classification techniques
based on third-order-correlation and/or bispectrum, i.e., the
frequency domain counterpart of third-order-correlation, of
2-D signals have been recently reported. In [30], [31], and
[32], the triple-correlation of the signal is first computed
and transformed to log-polar grid; then, the amplitude of the
Fourier transform of the resulting 4-D signal is used as a
shift, rotation, and dilation invariant feature. To overcome
the high computational load of the derived algorithm, it is
also proposed to use only the Oth “slice” of the 4-D triple
correlation domain as feature, sacrifying the uniqueness of
the representation. In [2] feature sets generated by integrat-
ing the bispectrum of 1-D signals along straight lines in
the bifrequency plain are used for translation, dc level, and
amplification invariant 1-D pattern classification. In [3] the
above features, computed over a discrete set of projections of
an image, are proposed for invariant 2-D object recognition.
Uniqueness of the representation is claimed due to the one-to-
one correspondence between the image and the collection of
all projections of it (Radon transform). Triple-correlations and
bispectra are also considered as features for the classification
of random 2-D patterns (textures) in {10], [11], [31], and
[32].

In the present paper we use an appropriate clustering of the
4-D triple-correlation domain of 2-D images, in order to obtain
translation/dilation/rotation invariant representations and then
propose appropriately structured neural network architectures
to classify these representations. We describe a systematic
procedure which gradually departs from uniqueness, reducing
the size of the representations as well as the corresponding
computational load. This reduction, which is equivalent to
local averaging in the triple-correlation domain, is shown to
generate a representation that is robust with respect to small
object distortions and additive noise. Furthermore, we show
that the previously mentioned third-order neural networks are
a specific category of the proposed neural network architec-
tures, when fed with a reduced version of the novel feature
set.

The structure of the paper is as follows: Section II introduces
the novel invariant object representation, after quoting some
definitions and properties of the triple-correlation of an image.
Section III describes an efficient implementation scheme for
obtaining such a representation, that can be used in practical
applications and simultaneously suppress the effect of non-
skewed noise. Appropriate neural network architectures, ap-
plied directly to triple-correlation-based image representations,
are presented in Section IV for invariant classification of
the images. Simulation results are given in Section V which
illustrate all theoretical developments, including comparisons
with other classification techniques and application to synthetic
and real image data.
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II. INVARIANT REPRESENTATION OF GRAY-SCALE IMAGES

A new representation of zero-mean gray-scale images is
defined in this section, that has the following properties:

1) shift-rotation-scale invariance (SRS).

2) unique correspondence between the class of original im-
ages that are mutually related with rotation- translation-
scaling transformation and the new representation do-
main, provided that their triple-correlation does not
vanish.

3) noise insensitivity.

As mentioned in the Introduction, the use of triple correla-
tion for SRS invariant recognition is also proposed in [32]. In
the same reference a presentation of other invariant recognition
schemes is made. What we propose here is a systematic
extraction of a novel type of features/images that are functions
of the triple correlation lags, in a way that allows:

1) Computationally efficient implementation of the classi-

fication using an artificial neural network.

2) Reduction in the size of the problem by gradually
abolishing the uniqueness of the representation in favor
of the computational simplicity.

Before proceeding to define the new representation, we

quote some fundamental properties of the triple correlation
of a 2-D signal.

A. Definition and Properties of Third-Order Correlations

Let z(t) be a real 2-D signal with support S = (0,T) x
(0,T). Its triple correlation is defined as,

1
z3(T1,72) E ﬁ/:1:(t);c(t+rl):r(t+T2)dt. (3
s
where 71, T2 are also 2-D vectors in S’ = [T ---T] x

[=T---T)]. In the discrete case, respectively, i.c., when ¢ €
S=[0---N-1]x[0---N— 1],

A 1
z3(T1,7T2) 2 e Zm(t):zr(t+71)af(t+Tz). (4)
5
with 71, 72 defined in §" = [-(N -1).--- (N =-1)] x

[~(N = 1), (N = 1),
1) Symmetries: Triple-correlations of 2-D signals have the
following symmetries:

Ig(Tl,Tz) =.’L‘3(T1 —’I'Q.*Tg) :.’IT;;(TQ *Tl.—Tl)

w3(T2,71) = x3(—T1, 72 — T1)
= x3(—T2,T1 — T2). (5)
2) Noise Insensitivity:
a) Let e(t) be a zero-mean additive Gaussian or linear

and symmetrically distributed noise.
Then,

E{€3(71.T2)} = 0. (6)
and also under common mixing conditions,

es(11.72) = 0as T — oc. (7)
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Moreover, if x(t) is a deterministic object and y(¢) = x(t) +
e(t), then

E{ys(r1.72)} = za(71.72)(V711, T2. ®)

Expectation in (8) is w.r.t. the random component e(t). Un-
der certain conditions, about the existence of the limit of
x3(T1.72) as T — oc, and provided that e(t) is of “fast”
decaying memory, then also y3(71.72) — x3(71,72) in the
mean-square-sense (MSS) as T — oc (see [5]). Unfortunately,
the conditions in [5] are not generally met in situations of 2-D
object recognition. Hence, noise insensitivity can be obtained
using (8), only if, say L, independent noisy records are
available, in which case the expectation in (8) is approximated
(in view of the Law of Large Numbers) by,

L

1 i

=3 ). ©
=1

b) Despite the result of part a), one can improve the
SNR of the triple-correlation domain, performing appropriate
averaging of the triple-correlation lags computed from a single
data record. Indeed in [5] it has been proved that, under
relaxed mixing conditions on e(t), the lags of y3(71,T2) are
assympotically normal and in pairs independent; this assertion
has been proved for 1-D signals and it is straightforward to
extend it to 2-D signals as well. Consequently and provided
that the object region of extent is sufficiently large, one can
claim using Kinchin’s theorem (see e.g., [26], p. 193) that,

1 Z ya(T1-T2)H% Z

(T1.T2)eAa (T1.T2)€A
in Probability as L — oc,

l‘;s(Tl-,T‘z)

(10)

where A is a set of lags and L is its cardinal number. In
addition, according to [5], var{ys(r1.72)} = O(1/T?), if
L/T2 — 0 as T" — oc; thus, Tshebycheff’s condition (see
e.g., [26], p. 193) is satisfied and hence (10) holds in the mean-
square-sense. The practical meaning of (10) is that averaging
of triple-correlation lags suppresses the effects of non-skewed
noise at the cost of losing some information contained in
a3(T1.7T2). This result is used in Section III in order to
show that the proposed invariant representation is also noise
resistant.

3) One-to-One Relation: Provided that x3(71.72) is not
identically zero, there is an one-to-one correspondence be-
tween a 2-D signal z(¢) and its triple correlation, i.e.,

(1D

This property implies that, in general, we can move indis-
tinguishably from the signal domain to the triple correlation
domain without loss of information or, in other words, we can
distinguish two signals by comparing their triple correlations.

4) Shift-Rotation-and-Scaling Properties: Let  y(t) =
x(Tq 6t + Lo), where

., cost
7 a0 = (\/l:

sinf

3(11.72) = y3(11.72) <=> x(t) = y(¢).

—sim’)} (12)

cost
is a scaling and rotation matrix and %, a shifting vector.
Provided that the application of these transforms is possible
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within the limits of integration in (3) and (4), i.e., within the
region of support S, it can be easily checked out that,

y3(71,72) = 23(Ta 671, Ta pT2). (13)
The above statement implies that when the signal plane shifts,
the triple correlation is unaffected, and when the signal plane
rotates and/or is rescaled by T, the same happens in the triple
correlation domain for both lag indices 7. 73. A formal proof
of (13) based on bifrequency domain arguments can be found
in [32]. In the following, we shall consider the continuous
case and only reaching the end of Section II we shall return to
the discrete definition, which is convenient for implementation
purposes.

B. The Proposed Representation

The triple correlation of a 2-D signal z(t) is a function of
two 2-D vector indices, 71, T2, each of them spanning the sub-
set " of R?. Let us start clustering the 4-D triple-correlation
domain; by definition, x3(71,72) is the accumulation of all
triple products formed by the values of x(t) that lie on the
corners of those equal triangles that are shifts of a prototype
triangle defined by arbitrary vectors 71, 7o. Hereafter we shall
call W (T, 12) the set of all these triangles. Define, next, the
set K(71,72) of all triangles that are similar to the members
of W(T17T2), i.e.,

K(ty,12) = TU W(Tos11.Tap72). (14)
where
cosfl  —sinf
P a[sin@ cosd ]a > 0,60 € [—7.7]. (15)

For any set K(r,,72), we define a corresponding class
C(71,72) of triple correlation lags; according to our notation,
class C(T1,72) contains all lags that are associated with a
subset W(71,72) of K(71.72). In other words C(71.73) is
the set of all triple-correlation lags whose indices form, on the
R? plane, triangles similar to the triangle defined by the vectors
71, 7T2. In view of (2) and the related discussion, this clustering
will be proved to be useful in the handling of rotations and
dilations of the object. Two comments should be made at this
point:

1) Let 71,72 span the entire S’; then identical classes
will be generated for different indices (7,.72), (17.75),
if these indices form similar triangles, or, if they are
related through symmetries of the triple correlation.
This redundancy will be removed later, imposing certain
restrictions on 71, T2 (see Proposition 4).

2) Since 7,79 are allowed to take values on R? (not
necessarily on a discrete grid) there will be uncountable
distinct classes C(71,72) and moreover each of these
classes will include an uncountable set of distinct lags.
Notice that this happens even for finite signal support
T x T. In Section III, where the discrete implementa-
tion is discussed, appropriate quantization is introduced
which yields representations of finite dimensions.

The main contribution of the following Propositions 1-3
is to state that C(71,72) are appropriately defined such that
rotation and/or dilation does not cause inter-class interference,
while resulting in an internal circular shift of the content of
each class.

Proposition 1: Any rotation f andfor scaling a of the
original 2-D plane, z(¢), results in an internal rearrangement
of the elements of C(11,73), (V11,79 € S'.

Proof: 1t is a consequence of (13) and the definition of
C(71,72), since any such transformation will translate the
specific W (7, 72) subset to another subset in K (71,73). It is
interesting to notice that no inter-class interference is caused
by any rotation, shift or scaling.

We next define the following arrangement between the
members of each class C(71,72):

E3(p. i 71.72) 2 23(Ts.o71, Ta0T2), (16)
where,
_ ,|cos¢ —sing _
Tso=0 {sin(ﬁ cosg } -andp = log 3

Variables p and ¢ are introduced to represent any scaled
(in log form) and rotated triangle W (T's 471, T3,472) When
compared to a prototype triangle of class C'(71,72).
Proposition 2: Let y(t) = z(Tapt+1ty) where Ty is
defined as in (12). Then, in the interior of each class C(71,7T2)

;l};;(p,qﬁ;'rl,rz):jg(p+10g(y,¢+€;7‘1772). (17)

Proof: Applying (16), for each class C(71,72), we have
that g3(p, ¢:71,72) = y3(T571.T3,472). Using (13) and
multiplying matrices T ¢ and T'3 , we get,

73(p, 0,71, 72) = #3(Ta,6T3.6T1, Ta,9T5,67T2)

= 23(Tag,0+67T1-Tap o+672)
2 Z3(p+loga, ¢+ 0;71,72).

Proposition 2 establishes the equivalence of the rotation
and/or scaling of the original 2-D signal with a two-
dimensional shift in the Z3(p. ¢;71,72) domain with respect
to p and ¢. The following proposition establishes the inverse
relation.

Proposition 3: If (17) holds for all classes C(71,72) with
the same values of « and 6, then, y(t) can be generated from
z(t) by rotation (6), rescaling («) and any arbitrary translation.

Proof: Analogous to the proof of Proposition 2.

The following Proposition 4 defines the non-redundant
region of support for 71, T2, such that C(7;, 72) are (mutually)
distinct.

Proposition 4: All essentially distinct classes C(7,73),
i.e., classes that are not rearrangements of each other can be
generated, fixing 7; to the unit vector of the horizontal axis of
R?, 7o = [1,0], and varying 7+ in the zone Sg 2 [1,0]%[0, oc).

Proof: See Appendix A.

Propositions 2.2 and 2.3 suggest that any shift-invariant
transformation of the classes C(71.72) w.r.t. pand ¢ that takes
care of the alignment between the shifting of different classes is
a representation of 2-D signals that has properties [P1], [P2].
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In the sequel we introduce such a transform, which is not
the only one that satisfies the aforementioned requirements,
but it is very convenient for implementation purposes.

Let

Xs(P-‘I’;TLTz

)
A oc ™ - l
= / / Z3(p.d:71,T2) exp (—/)P - ‘—(ﬁ@) dpdde.
0 - 2
(18)

be the 2-D Fourier transform of the field z3(p. ¢:71,72) with
respect to the “space” variables p and ¢. We define next the
following collection of 2-D signals/features as a transformed
representation of the original signal x(¢) with the properties
[P1], [P2].

Definition:
A > 02/\[ 82AI
FI:{SI|X3(P,@;T].TQ)LH(P.(I)ZTLTQ).dTap‘aT(‘)@}.
(19)
with,
$2(T1,72) A {Sgll(X3(0,OZT1.T2)) P=0.9=0
elsewhere

where s, retains information about the sign of the real number
X3(0,0;71,T2),

A, (P.®:71.79) 2 arng(P. B:71.719).

and,
HP biryr) 2 | B
o%or 8%’
is the Hessian matrix of A, (P, ®:71.72) w.r.t. P and ® and
T = [Tﬁ,rg]t parametrizes the set of all possible classes

C(71,72). In (19) and elsewhere the indices (P, ®.71.72) of
A, have been omitted for notational simplicity. The following
theorem states that F. possesses properties [P1-P2].
Theorem 1: F, = F, iff thereisT g : y(t) = x(Tt + ty).
Proof:
1) Let y(t) = (Tt + o) where

cosfl  —sinf
T=c Lin@ cost }

according to  Proposition 2
Z3(p + log a, ¢ + 0:71,72). Hence,

Y3(P.®;71.73)

= X3(P,®:7,.70) exp {) (P log v + 2i<1>9> }
T

Us3(py $:T1.T2) =

due to the shift property of the Fourier transform w.r.t.
variables p and ¢. Consequently, s,(71.72) = sy(71.72) and

50| Ya(P, ®:71,72)| = 5, | X3(P, ®:71.72)|(faP. . 7,. 7.
(20)

2 AyP. @71y, 712) -

On the other hand, if AA(P, ®:71.75)
A (P, ®;71,72) we get,
IOAA IAA 1

28 og "
P og cand 7% 27r9

@n
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Equation (21) shows that the Jacobian of A, is not equal to
the Jacobian of A,, but their difference depends on the values
of « and 6. For this reason we use the Hessian matrix H,
defined in (19), to obtain equality of the two measures. It can
be easily verified that,

OPAA  O°AA  H2AA

apz ~ 9ap ~ arop ~ and

(22)

G2AA . 9’AA _ 3’AA _
082 ~ 9PO®  019P
which completes the proof of the necessity part.
2) Let, now, F, = F,. Clearly (22) and (23) hold. Since
the Hessian,

0, (23)

af AA QZAA
an= | B | -0 e
oPad 932

we infer that there exist pr, r,, ¢7, 7,, Ar, 7, which are
constant for a specific class 71, 72 such that

AA(P. ®:71,72) = pr, 7, P+ 07, @+ Ar 1. (25)

Employing the last equalities of (22) and (23) we conclude
that p7, 7, and ¢, 7, are independent of 71, T3, i.e., there
exist pg and ¢p such that:

AAP, ®;71,72) = poP + ¢o® + Ay 7, (26)
Equation (26) for P = 0, ® = 0 takes the form,
AA(0.0;7T1.T2) = A1\ 1, 27)

Since however, X3(0.0;71.72) and Y3(0,0;71,72) are real
numbers,

A, 1, = O(modr). (28)
Taking into account that also
sy|§~’3(P,(I>:T1.'r2)| = Sm‘Xg(P,(I);Tl,TQ)‘ 29)

we infer first that Ay, 7, = 0. (since s, will be equal to Sy
for all (71, 72)) and we conclude next that

[V3(P, ®;71,72)| = | X3(P. ®; 71, 72)|. (30)

As a consequence, ¥3(p.¢:71.72) is simply a shift of
&3(p.d:11.72) by (po. do), ie.,

Us(p. ¢;T1,T2) = T3(p + po. b + do;T1,72). (1)

Equation (31) in view of Proposition 3 completes the proof of
the sufficiency part.

The above theorem proves that indeed the proposed repre-
sentation F, fulfills the desired requirements ([P1-P2]).

If multiple independent records of x(t) are available, noise
insensitivity can be achieved by performing ensemble av-
eraging of the third-order correlation domain (c.f. (8) and
related discussion). F), will then be resistant to any type
of non-skewed additive noise (e.g., Gaussian, even spatially
correlated). Under this condition, property [P3] is also satis-
fied. Multiple independent records are also used for the same
purpose in [2], [3], [31] and [32]. In Section II it is further
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shown that improvement of the signal-to-noise ratio can be
obtained even in the single record case using appropriate local
averaging of the triple-correlation representation.

It should be emphasized that F,. is a stand-alone represen-
tation which can be used as a direct input to a neural network
classifier, as will be described in Section IV; this is in contrast
to other SRS representations that require a matching procedure
of the pattern to be classified with all available prototypes.

[II. REDUCING THE SIZE OF THE
REPRESENTATION-DISCRETIZATIONS

A. From Uniqueness to Sufficiency

When comparing two 2-D signals, x(t) and y(t), using
either a neural network or a conventional classifier, the
matching of the first two components of F, and F,
namely s.|X3(P, ®;7,,72)| with s,|Y3(P,®;71,72)| and
H,(P,®;11,72) with H,(P,®:71,72), checks whether in
the interior of each class C(71,7T2) the field z3(p, ¢;71,7T2)
is a shift of g3(p, ¢; 71, 72). If this is true, the matching of the
last two components of F,, F,, guarantees that the shifting is
the same for all classes. If both requirements are met, Theorem
1 states that y(¢) coincides with ©(¢) within a shift-rotation
and rescaling.

Although one can implement the matching procedure in a
straightforward way, using standard techniques for discretizing
the components of F,;(F,) and approximating the derivatives
in a digital manner by differences, the resulting computational
load would be extremely high. For this reason, the following
three representations of reduced size are considered in the rest
of the paper.

1) As a first reduction of the problem’s size, we propose to
drop out the last two components of F,, F, considering
that it is highly unlikely to face a situation where all
classes C(71,7T2) of y(t) are shifts of the correspond-
ing classes of x(t) and still F, # F,. Especially in
applications where the recognition algorithm attempts
to classify a given pattern in a set of finitely many
prototypes, the above situation becomes even more
improbable.

2) As a second reduction step, we propose to keep only
the first component of F, (F)), ie., keep only the
amplitude information of the Fourier transform in (18).
An additional evidence, for dropping out matrix H from
our represengation, is that, under certain conditions, the
amplitude |X3(P,®;7;,72)| of the Fourier transform
X3(P,®;71,79) includes all the necessary information
for re-synthesizing Z3(p, ¢;71,72), (see [15], [24] and
[34D).

3) Finally, further reduction can be achieved if the Oth
frequency coefficient X3(0.0:71,72) of each class is
used as a “sufficient” feature. A similar size reduction
can also be found in [31], [32].

In any case, when the pattern space under consideration
is predetermined, one can always check up to which point
the size reduction of F, does not ruin the uniqueness of the
representation.

p=log — 2 T

Fig. 3. Input space parametrization using ¢;. 62 angles.

B. Parametrization

Due to Proposition 4, the indices 71,79 in the definition of
F, can take the form,

(11.72) = (70, [k. ()0 < k < 1,0 < I, (32)

An alternative scheme is to parametrize (71.72) via the
angles 61,0, included between the plane vectors (71, 72) and
(11,72 — 71) respectively, fixing again 71 to 7o (see Fig. 3),
ie.,

(T1.72) = (70, 72) — (01.62)61.6; € [07 g} (33)
It is interesting to mention that either of the above schemes
lead to considerable reduction of the invariant representation
input space. In particular, the four dimensional space spanned
by (71,72) is reduced, without any loss of information, to a
2-D space that is the Sy = [1,0] x [0,00) region, in the first
scheme, and the [0, 7 /2] x [0,7/2] in the second scheme.

C. Discrete Implementation

In real-life applications, the original 2-D signal z() is avail-
able in discrete form; i.e., t € [0,---, N — 1] x[0,---, N = 1].
In that case the triple-correlation can be computed via (4), giv-
ing rise to a 4-D representation z3(7y,72). Computationally,
it is more preferable to obtain z3(71.72) as the inverse FFT of
the bispectrum X3(u,v), (the Fourier transform of 3(7y,72))
(see e.g., [23] for details). This is so, because

X3(u,w) = X(u) X (v)X(—u — v). 34)

where X (u) is the 2-D Fourier transform of wx(t). As a
consequence, X3(u,v) can be computed as the triple product
of a 2-D FFT using fast software or hardware implementations.

The next step is to use one of the parametrization schemes
of the previous subsection, in order to specify a discrete 2-D
grid of (k,1) in (32) or (#;,602) in (33), that will determine the
number of distinct classes C(71.72). The number of possible
values that (k,[), or (6;,6,), take, is specified solely by
the dimension N of the input signal. In general, however,
these values should be quantized to a rather small number
of levels, defining the effectively distinct classes. Clearly, the
quantization of (k,!l), or (#;.62), on a discrete grid results in
a possible loss of information; the coarser the quantization is
chosen, the greater the resulting loss of information is.

After deciding which distinct classes are to be used, another
discretization should be applied in the interior of each class.
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The field Z3(p.¢;7T1.72) should be computed on a discrete
grid of the parameters p and ¢. The sampling rate in this do-
main is conceptually related to the number of triple-correlation
lags that are assigned to each class; in general for an N x N
input signal, the total number of possible correlation lags is
O(N*). Consequently, there is a trade-off between the number
of effectively distinct classes and the sampling rate of this
phase. As a rule of thumb, the resulting grid should be able
to accommodate, in separate positions, a significant portion
of lags w3(71,72) assigned to C/(71.72) and simultaneously
be parsimonious enough, to avoid generation of sparse fields
T3(p, ¢ 71, 72)

Having available £3(p. ¢:7,.72) for each class C(71.72),
in the form of a 2-D matrix, an FFT algorithm can be used
to compute X3(P,®;71.75). Since there is no interrelation
between different classes, a parallel implementation of these
computations is possible.

In this discrete framework, the representation F, of z(t)
can be easily computed from X5(P. &:7;. T3 ), by considering
the amplitude of this signal |X3(P.®:7,.75)], for all P,
not equal to zero and Xg(o.():’fl.’fg), for P = ¢ =0, and
by approximating the included derivatives with differences of
adjacent terms of arng(P, D7y, 79).

D. Effects of Quantization

Although quantization of (f;.63) for the determination of
distinct classes as well as quantization of (p, ¢) in the interior
of each class, has the drawback of losing some information, it
has two interesting side-effects. Namely, enhances the robust-
ness of the proposed representation against local distortions
and also provides noise insensitivity, even if the representation
is computed based on a single data record.

a) Small local distortions of an object cause shift of the
triple-correlation lags that are included in each class de-
fined by, say, (6,.62) to the neighboring classes defined by
(01 £ €,02 +¢€), for a number of small values of ¢. As a
consequence, quantization that is equivalent to local averaging
of the image representation, using windows of size (¢ x ¢) on
the (61, 62) space, can alleviate this undesired effect.

b) In the quantized version of the representation,

1
Ea(p. ¢ 01.65) = szg(n.rz). (35)
A

where A contains all indices (7;.72) which form a triangle
with angles (6, £ ¢, 0, & €), with |71{ = |ro|(p £ Ap/2) and
T1T2 = ¢ £ A¢/2 where Ap and A¢ are the quantization
steps in the p, ¢ domain. The cardinal number of A increases
when quantization is chosen to get coarser and coarser and
when the object size T — oc. In view of (10), (35) results in
the suppression of non-skewed additive noise, at the cost of
degraded resolution.

F. Special Cases

In the spirit of the first part of this section, the three reduced
formulations of F, can be easily implemented as follows.
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The first representation has the form,

F, = {s XS(P,@;TI.TQ)LH,C(P.q»n,n)}
P=0---R-1
) ®=0 K1
= {.91|X3(P.<I>;91,02)|AHI(P.@:E)L()Q)}()I =0.--L;~1,
92 = 0L2 -1
(36)

where sx|X'3(P, ®;71,72)| and each of the four elements of
the matrix H, (P, ®;71,72) consists of a 2-D (R x K) signal
for each of the L; x Ly classes; or equivalently of a 2-D
signal of size (RL; x KLs), where R,K, L, and L, denote
the number of levels used for quantizing variables P,®.,0;
and 8, respectively, the latter variables being assumed to be
normalized w.r.t. the corresponding quantization steps.
The second representation is defined as,

F, = {31|X3(P.(I>ZT1.TQ)1}
P=0---R-1
~ ®=0--K—1
- {s$|X3(P,<I>:91.H2)|}61 =0 L1,
62 :Oszl

(37)

where only one 2-D signal of size (RL, x K L) is considered.
The third representation is

F, = {81-,|X3(0=0:Tl'72)|}

fy=0---L—1

:{Xg(().o;al.()Q)}ez:omL—l, (38)

where only a 2-D (L; x L) signal is considered.

In summary, given a zero-mean input 2-D image, its triple-
correlation is first efficiently calculated through the bispec-
trum computation; straightforward clustering of the triple-
correlation lags in invariant classes is then performed, using
a look-up table for a given image size. Using a 2-D FFT, in
parallel, for each class, all elements in F), are computed, so
that the resulting input representation can be used for SRS
invariant classification.

IV. NEURAL NETWORK ARCHITECTURES
FOR INVARIANT CLASSIFICATION

Based on the invariant third-order correlation representa-
tions, derived in the previous section, neural network architec-
tures are proposed in the following, as an efficient, invariant
classification scheme.

A. Efficient Implementation of Third-Order Networks

Let us consider a single-layer third-order neural network,
shown in Fig. 1, the input of which is a two dimensional
image. Let us also assume that backpropagation is used to
train the network, by minimizing the sum of squared error
between the desired and actual outputs of neurons in the output
layer. Following the discussion given in the Introduction of the
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Fig. 4. Input space representation in #;. ¢, plane with #; < 6.

paper, the updating of the weights w;;x;, connecting triplet
input products to output neurons, should be performed under
the constraint given in (2). Introducing this constraint in the
computation of y; in (1), the following expression is obtained

vi=f Z WiabeTabe (39)
ab,c
Tape = Z Tjpr- (40)
R

where variables j’, &', I refer to all input triplets, forming
triangles with angles a,b,c. Equation (39) can be viewed as
describing the operation of a first-order neuron, the inputs of
which correspond to classes (abc) of triangles that are similar
to each other.

Proposition 5: Third-order neural networks are a specific
category of triple-correlation-based neural networks, in the
sense that the input to the former networks is equivalent to
the special-case representation given in (38) of Section III.

Proof: It is a consequence of (40), (38) and definitions
(16) and (4); the property that the zeroth sample of the Fourier
transform of a signal is equal to the sum of the signal samples
should be used for this purpose, with angles 6y, 62 in (33)
corresponding to angles a,b of the triangles in (40). Due to
(33), angle a should be chosen as an acute angle of the triangle
in (40), which has in its right-hand-side, in the anti-clockwise
direction, another acute angle, i.e., angle b.

Equation (40) can be viewed as transforming the original
input image space to a 2-D (a, b) image space. For simplicity,
let us regard angles a, b, ¢ in the following order of magnitude

a<b<e (41

and select angles a and b to define the 2-D invariant image
representation. Adopting notation (41), the order of scanning
the triangles is ignored, resulting in ignoring reflection of
the image plane as one of possible input transformations. In
this case, the (a,b) input space further reduces to (0, 7/3) x
(0,7/2) as shown in Fig. 4.

The number of inputs z,;, (or equivalently ,c) in (39) is
equal to the number of possible triangle classes; it, therefore,
depends on the input image size. Table I verifies that the num-
ber of possible classes in (a,b) increases with the size of the
input image; an excessive number of inputs can be therefore
generated in a real-life application. As a consequence, the
third-order neural network or equivalently the first-order neural
network described in (39) may be of impractical size. For this
reason, quantization or local averaging of the (a. b) input grid,

TABLE 1
NUMBER OF CLASSES FOR (N X N') IMAGES N = 2,---.23.
Image size Number of classes
2x2 1
3x3 7
4 x4 21
5x5 56
6 X6 120
7x7 230
8 x 8 403
9x9 668
10 x 10 1020
11 x 11 1537
12 x 12 2217
16 x 16 7204
17 x 17 9297
18 x 18 11756
23 x 23 31959

as was described in the previous section, can effectively reduce
the problem size, providing also insensitivity to distortions of
the input image and enhancing insensitivity to additive noise.

B. Triple-Correlation-Based Neural Network Classifiers

All invariant representations given by (36)—(38) in Section
111, consist of 2-D images of various sizes. The last one, which
has been used above to derive an efficient implementation of
third-order neural networks, is a 2-D (L; x L) image, where
L, and L, are the numbers of quantization levels for angles 6
and 6, respectively. For small sizes of L; and Lo, it is possible
to apply a multilayer fully-connected neural network classifier
as shown in Fig. 5, which is trained by some efficient back-
propagation variant. For larger sizes however, the number of
free-parameters (i.e., the number of interconnection weights)
increases rapidly, imposing problems on the generalization
ability of the network. Weight decay [4], [14] during training,
is a technique, which can adapt the network size, so as to
avoid problems like over-fitting. Various studies can be found
in the literature comparing the performance of neural net-
work classifiers to conventional statistical ones. Recent studies
concerning the problem of image classification/recognition,
either in the case of handwritten image data [20], [6], or in
generic and real image data cases [35], indicate that structured
neural network classifiers are especially useful when applied
directly to image pixel values, and not to a set of features
extracted from images. It is in this case that neural networks,
with their massive parallelism and distributed processing, can
outperform any type of conventional statistical classifiers,
such as the Bayes, K -nearest neighbor and minimum-measure
distance ones. The need for structured networks, trained by
appropriate learning algorithms, is more evident in the next
case, where representation (37) of the previous section is used
for classification.
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Fig. 5. A neural network classifier based on invariant representation (38).
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Fig. 6 A neural network classifier based on invariant representation (37).

In the representation described by (37), a 2-D image of
size (R, M), o, corresponds to each class defined by (6;,6,).
Let us, for simplicity, consider that all these 2-D images are
of the same size, say (R x M). Then, the resulting invariant
representation is a 2-D image of size (L; X R, Lo x M), in
which neighboring classes correspond to neighboring sub-
images of size (R x M) . A neural network architecture, that
can be used for classification of this input representation, is a
receptive-field multilayered network. A minimal configuration
of such a network is shown in Fig. 6. The first hidden layer
of this network is in the form of a 2-D (L x L) image,
each pixel (neuron) of which has a corresponding receptive
field on a sub-image of size (R x M) of the invariant image
representation. In general, the neurons of this hidden layer
correspond to the different classes of the input representation.
The following hidden layers of the network can have, either
a receptive field or a fully-connected structure, depending on
the size of the first hidden layer image.

In the invariant representation described by (36), which
includes not only amplitude, but also phase information, the
input to the network consists of five such (L; X R, Ly x M)
images; one corresponding to the previous case, where am-
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plitude information was considered, and four containing the
Hessian of the phase information. Efficient variants of back-
propagation [16], [18], [21], combined with weight decay,
can be used to train the different receptive field network
architectures, resulting in a scheme for invariant classification
of the input images that is also insensitive to additive noise
and to the existence of small distortions.

V. SIMULATION RESULTS

The performance of the neural network classifiers described
in the previous section has been examined for invariant clas-
sification of synthetic and real image data. The third-order
correlation representation, derived in Sections II and IIT were
used for this purpose.

Test Case 1: (i) The invariant representation described by
(38) of Section III, which can also be used for an effi-
cient implementation of third-order neural network classifiers,
was investigated first, using a characteristic example; this is
handwritten data recognition, which has been a subject of
extensive research in the field of image recognition using
neural networks (see for example [6], [9], [20]). For the
purposes of this paper, a set of data was created, composed
of examples of numerals represented as binary images of size
(10 x 10) pixels. Figure 7(a) shows a characteristic sequence
of such examples. The representation of these numerals in
the (6,.62) space, with 0 < #; < 60 degrees and 0 <
2 < 90 degrees, using a quantization step of one degree was
obtained first, resulting in 2-D gray-scale invariant numeral
representations of size (60 x 90) pixels. A coarser quantization
was obtained using local averaging, in windows of (6 x 6)
pixels, reducing the size of the derived images to (10 x 15)
pixels; due to the triangle form of the input space, shown in
Fig. 4, the effective number of pixels has been reduced from
2791 in the (60 x 90) image to 91 in the (10 x 15) image.
This number can be compared to the much greater number
(1.e., 1020) of possible distinct classes - inputs to a third-
order neural network, given in Table I for a size (10 x 10)
of the input image. Moreover, this input size is comparable
to the size (10 x 10) of the original binary images shown in
Fig. 7(a). The invariant representations corresponding to the
numerals of Fig. 7(a) are shown in Fig. 8. It is easily seen that
these representations are visually different.

(ii) We then examined the ability of a single-hidden-layer
fully-connected network with 14 hidden and 10 output units,
trained by backpropagation, to learn a training set of two
hundred such images. For comparison purposes, identical
networks were used to learn the set of binary images, as the
ones shown in Fig. 7(a), and the set of corresponding invariant
representations. Figure 7(b) compares the learning speed of the
networks in the two cases, measured in terms of the logarithm
of the minimized error function, with respect to the number of
iterations (passes through the data set). It can be easily seen
that convergence was similar in both cases. This indicates that
the proposed representation, although invariant with respect to
input image transformations, does not require a more complex
network classifier than the one needed for the case of original
images.
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Fig. 7. (a) A set of hand-written numerals (0-9). (b) Convergence of
the learning algorithm when using original image data (continuous line) or
invariant representations (dashed line).

In order to further illustrate the robustness of the derived
representations with respect to distortions of the input image,
we included in Fig 9(a)—(h) four (16 x 16) gray scale images
showing digits “4” and “9” and their corresponding invariant
representations. It can be easily seen, that the representations
of digit “9” are very similar, despite the small differences in
the original images; the representations of digit “4” are also
similar, despite the differences in the original images, being
also easily discerned from the representations of digit “9.”

Test Case 2: Having used this synthetic example to il-
lustrate the invariant image representations obtained in the
case of a well known problem, we have chosen a real-life
application to examine the performance and the generaliza-
tion of the proposed triple-correlation-based neural network
classifiers. Inspection of solder joints in printed circuit board
manufacturing was chosen as such an application in which
conventional pattern recognition techniques have not shown

(b

()

H

Invariant representations (a)-(j) corresponding to numerals (0-9).

Fig. 8.

sufficient reliability. 2-D gray-scale images, showing either
the height or the intensity as functions of the position across
solder joints, were obtained by an optical laser scanner and
used as signals to be classified in two categories; namely,
good or poor solder joints, the latter containing insufficient
amount of solder. An example of each category is shown
in Fig. 10. Invariance of classification, with respect to input
image transformations, as well as insensitivity to additive
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Fig. 8. Continued.

noise and distortions are important aspects of this problem.
We next examined the performance of both types of neural
network classifiers shown in Figs. 5 and 6 of the previous
section, which are based on the corresponding invariant image
representations.

Test Case 2a: (i) Figure 11 shows the invariant repre-
sentations of the images of Fig. 10, derived using formula
(38) in the (71,72) domain. The values of (7q,72) were
quantized, as in the previous simulations, to a discrete grid
of (60x90) pixels. These representations are quite different
from each other; they can, therefore, be used as inputs to the
network classifier. To illustrate the noise insensitivity of the
derived representations, a noisy version of the “good” solder
joint image shown in Fig. 10, was generated next, by adding
zero-mean white Gaussian noise to the signal, at a signal-
to-noise-ratio of 10 dB; the resulting image, as well as the
corresponding invariant representation are shown in Fig. 12(a)
and 12(b). It can be easily seen that the derived representation
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Fig. 9. Gray-scale images of digits “4” and “9” and the corresponding
invariant representations (a)—(h).

does not differ from the one shown in Fig. 11(a). Moreover,
to illustrate invariance with respect to input transformations,
such as rotation, a solder joint image and a version of it rotated
by 45 degrees are shown, together with the corresponding
representations in the (71,72) domain, in Fig. 13(a)-(d).

(ii) Local averaging, using windows of various sizes, was
used to reduce the size of the grid to (10 x 10) or (10 x 15)
pixels. This size can also be compared to the number of
possible classes, given in Table I, for an image of (23 x 23)
pixels; an excessive number of around 32 000 inputs would be
required in a standard third-order neural network for invariant
classification of the images.

100 input images, 50 of each category, were transformed in
this domain and used for training the neural network shown
in Fig. 5. A two hidden layer network was used, varying the
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Fig. 9. Continued.

number of neurons in the first hidden layer (i.e., V; in Fig.
5) between 3 and 5 and setting the number N, of neurons in
the second hidden layer to 1 or 2. In all cases the network
was able to learn to classify correctly all training data, using
backpropagation. A set of 100 different input images, 50 of
each category, was used to test the generalization ability of
the network; the percentage of correct classifications in the
test set was very high, around 94%. A characteristic example
is presented next, where the use of a network with Ny = 5
and N; = 1 hidden neurons is examined and compared in two
cases. In the first, the invariant representation of (10 x 10)
pixels was used as the network input; the original image
was used in the second case, its size being also reduced to
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Fig. 10. (a) An image of a “good” solder joint. (b) An image of a “poor”
solder joint.

(b)

Fig. 11. Invariant representations corresponding to Fig. 10.

Fig. 12.
representation.

(a) A noisy version of the image in Fig. 10(a). (b) Its invariant

(10 x 10) pixels through local averaging. Figure 14 shows the
percentage of correct classifications in the test data set, using
the network interconnection weights computed in each training
cycle of the networks. It is easily seen that generalization of the
triple-correlation-based network was much better than that of
the network based on the original input images (96% compared
to 84%).

Test Case 2b. (i) Formula (37) was then used to provide
invariant representations of the images shown in Fig. 10,
quantizing the range (—x, w ) of each of the (6;.62) possible
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Fig. 13.  (a) A good solder joint. (b) A version rotated by 45°. (¢) Invariant
representation of (a). (d) Invariant representation of (b).

values to L1 = Ly = 10 levels (giving rise to 100 distinct
classes); each of variables P and ® was uniformly quantized
within each class to eight levels. The resulting representations,
in the form of 2-D images of size {{8 x 10) x (8 x 10)}, are
shown in Fig. 15(a)—(b). Visual differences are easily discerned
between these two representations. Insensitivity to noise and
rotation invariance is illustrated, by comparing Fig. 15(a)
with Fig. 15(c) and 15(d), which show the representations
corresponding to a noisy (SNR = 10dB) and a rotated
(by 45 degrees) version of the original image respectively.
Figure 16(a)—(d) verifies the above results, by showing the
corresponding representations of class (3,1) of the above
images in Fig. 15, in the form of 2-D images of size (8 x 8).

(ii) We then used the same image data sets as above,
to train and test the performance of the network classifier

IEEE TRANSACTIONS ON NEURAL NETWORKS. VOL. 5, NO. 3. MAY 1994
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Fig. 14. Generalization ability of the neural network classifier based on (a)
original image data (continuous line). (b) Invariant representation (dashed
line).
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Fig. 15. [Invariant representations of the images shown in Fig. 10(a), (a);
10(b), (b); 12(a), (c), a version of 10(a) rotated by 45°; derived using (37).

shown in Fig. 6, with R = M = 8 L; = L, = 10, and
selecting N; = 5 and N, = 1, based on the results of the
previous experiment. A second-order backpropagation variant
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[18], [21], combined with weight decay was used to train the
receptive-field architecture shown in Fig. 6. After training,
the generalization ability of the network was raised to 98%,
showing that triple-correlation-based networks can be a very
effective invariant classification scheme.

Test Case 3: In the last part of our simulations we exam-
ined the performance of the proposed scheme to other types
of conventional or neural network classifiers.

(i) In the first experiment of this category we compared
the performance of conventional classifiers to that of the
invariant classifiers used in Test Case 2a(ii), which were
derived according to formula (38). The Mahalanobis minimum
distance criterion [7] was used to classify the test set of
images, by comparing them to two patterns, computed as the
mean values of all “good” and “poor” representations of the
training set of 100 input images respectively. The classification
results were rather poor; only 64% correct classifications were
achieved. Moreover, to illustrate the difficulty of the problem
and the efficiency of the neural-network-based classification
scheme, we also performed an “exhaustive™ classification of
the test image representations; to do this, we computed the
minimum distance of these representations from each one
of the 100 training image representations, the latter being
considered as known patterns. Even in this case, correct
classifications were 92%; i.e., less than the ones provided
by the much more computationally efficient neural network
classifiers. It should be mentioned that all errors were due
to the “poor” solder joint category, which generally includes
images that are quite different from each other.

(ii) In the second experiment of this category, we used, as
invariant feature, the amplitude of the Fourier transform of the
solder joint images after re-sampling them in log-polar form.
For each image the cartesian grid was first aligned w.r.t. the
corresponding centroid in order to take care of possible shifts.
Figures 17(a) and 17(c) depict the representations correspond-
ing to the images of Fig. 10, while the representation of image
10(a) rotated by 45 degrees is given for illustration purposes
in Fig. 17(b).

The obtained representations were then presented to the
neural network classifiers, used in Test Case 2a. Classification
of the same test data set, after training the network with the
same training set of images, was only around 82% successful.
This verifies the fact that there is much loss of information in
the derived representations. In addition, it should be mentioned
that this approach gives much deterior performance if the
images are contaminated by additive noise; first because the
estimation of the centroid is noise sensitive and second,
because the Fourier amplitude is affected by even non-skewed
type of noise (see also [32]). The registration procedure
could be obviated by first computing the amplitude of the
2-D Fourier transform of the images, in order to gain shift
insensitivity, and then applying the log-polar transformation to
them. In this case there is a further loss of (phase) information,
when keeping only the amplitude of the Fourier transform
and the resulting representation would still be sensitive to the
above types of noise.

(iii) A final test was performed to compare the performance
of the proposed triple-correlation-based neural network clas-

=

(a)

b

©)

=

(d)

Fig. 16. Content of class (3°, 1°) in each of the representations shown in
Fig. 15.

sifiers to another type of neural network classifiers, based on
moment-invariants [17]. The latter technique was applied to
the original solder-joint images, deriving a set of invariant
features that are based on geometrical moments of the images.
Fully connected neural networks of various sizes and number
of hidden layers were considered, using the same set of image
data, as above, for invariant classification of the computed
feature set. However, the learning and generalization ability of
the networks was rather poor, being able to classify correctly
less than 80 percent of the image data.

VI. CONCLUSIONS

A new technique for invariant image classification has been
introduced in this paper. Triple-correlation-based neural net-
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Fig. 17. Invariant representations using the Fourier amplitude and log-polar
image transformation, (a) of the image in Fig. 10(a); (b) of the same image,
rotated by 45°; (c) of the image in Fig. 10(b).

works were defined and proposed for this purpose. Appropriate
clustering of third-order correlations of an image have been
used to provide a representation that is invariant with respect
to translation, rotation, scale and insensitive to additive noise.
An efficient implementation scheme has been then proposed,
derived on a two-angle (f;.6,) image plane, that reduces the
problem size, providing also robustness to distortions of the
input image.

A set of representations, of gradually reducing complexity,
has been derived in the form of 2-D images and used as a direct
input to appropriately selected neural network architectures. It
has also been shown that third-order neural networks are a
specific category of triple-correlation-based neural networks,
being, therefore, amenable to the efficient implementation
proposed in this paper.

Synthetic and real image data were used to illustrate various
aspects of the proposed invariant classification scheme. Based
on these results it can be concluded that triple-correlation-
based neural network classifiers are an effective and powerful
classification scheme. Further study of the implementation of
the proposed technique, both in software and hardware, is
currently under investigation.
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APPENDIX A

Proof of Proposition 4

Let us first observe that classes C(71,72) and
C(T4,671.To 972) are equivalent for any T, of the
form (15), in the sense that the latter is a circularly shifted
by (log«,#) version of the first. Hence, fixing 71 to 1o and
letting 72 span S’ generates all essentially distinct classes.
We next use triple-correlation symmetries [c.f. (5)] to restrict
79. Due to (5) and in view of (14) and the definition of
C(11.72) it can be easily checked that,

C(Tl.TQ) EC(T] _TZ.TQ) EC(TQ—T].—TQ) =

C(re.11) =C(—T1.72 —71) = C(—72,11 — T2). (42)

in the sense that they contain the same triple-correlation lags
at the same locations. For example,

23(T3.671.Tg.s72) = 23(T3.6(T1 — 72), T3,6(—T2)),
(43)
i.e., at location (10g ﬁ ¢), C(Tl.TQ) and C(Tl — T2, —T2)
have identical values for any 4 > 0 and ¢ € [—=, 7]. Based on
(43) we use simple matrix multiplication arguments to show
that for 7, = 7y and 72 in the fourth quadrant, there exists
some 75 in the first quadrant such that

C(T().TQ) :C(T().T-Iz), (44)

within a shift transformation. Indeed, for 7o in the fourth
quadrant, there exists 6 with 0 < < 7/2 such that T, 47, =
79, because,

C(T().TQ) = C(TQ‘(;T().T,,‘@TQ)
= C(Ta912.Ta0)

= Clry.1%). 45)

with 75, = T', 470 in the first quadrant. In the second equality
in (45) we interchanged the indices of C(.,.) using the first
and fourth terms of (42).

In the same manner and using other symmetries in (42) we
can prove that the second and third quadrants are also mapped
into the first one.

We proceed now to prove that any 75 in the first quadrant
out of the zone Sy, = [1.0] x [0.0c), generates a class
C(19.72) equivalent to some C(79.75) in Sp. Notice first that
7y = T p70 and 75 — 79 = T, .79, Where,

0<f<w< -,

SIE

a > land

p < . (46)

Also =72 = T, 94770 and 79 —72 = T}, 1= 7o. Consequently,
using (42),

C(19.12) = C(—72,70 — T2)

C(T 047T0-TpotnT0)
C(TO.T%M,,HTO)
C(79.75).

(47)
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where 75, = Te

¢To due to (46) lies in the zone Sy. This

N

completes the Eroof of Proposition 4.
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