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Abstract— Existing literature in the field of transitive relations
focuses mainly on dense, Boolean, undirected relations. With the
emergence of a new area of intelligent retrieval, where sparse
transitive fuzzy ordering relations are utilized, existing theory
and methodologies need to be extended, as to cover the new needs.
This paper discusses the incremental update of such fuzzy binary
relations, while focusing on both storage and computational
complexity issues. Moreover, it proposes a novel transitive closure
algorithm that has a remarkably low computational complexity
(below O(n2)) for the average sparse relation; such are the
relations encountered in intelligent retrieval.

I. I NTRODUCTION

Transitivity of binary relations is a property that has been
closely related to the study of graphs. In that framework,
transitive closure of a relation is equivalent to detecting the
pairs of vertices that are either directly connected or connected
via some path. The majority of existing literature on transitive
closure is quite old and has focused mainly on the cases of
unweighted [1][2][3][4][5] and usually undirected graphs [6],
while paying little attention to sparse matrix representation is-
sues. Works that focus on the I/O complexity of the algorithms
also refer to the Boolean case [7]. As less attention has been
given to the closure of sparse, directed and weighted graphs,
there is a theoretical gap when it comes to the computationally
efficient transitive closure of such relations.

Quite recently, in parallel with the developments of onto-
logical representation and storage of knowledge [8], the EU
funded FAETHON project has investigated the utilization of
fuzzy binary relations towards more intelligent and seman-
tics based information and multimedia retrieval [9]. In this
work, sparse partial ordering fuzzy binary relations have been
found to be the most efficient in describing an application
domain. More information on the properties of these relations
and the algorithms that utilize them can be acquired from
[10][11][12][13][14].

Within the framework of the FAETHON project, in the
transition from basic research results to actual prototype
implementation, the handling of the relations was proven to be
the most challenging task. Specifically, the memory required
for the storage of ann×n is prohibitive, asn is the count of
concepts / semantic entities that are known to the system and
is close ton ' 70000.

We have managed to overcome this problem with the
utilization of a more compact representation format, since
utilized relations were found to be very sparse; this has had
a small expense of computational time required to access a
specific element. Still, the two following issues, related to
the theory and practice of transitive closure of fuzzy ordering
binary relations have to be tackled:

• Most developed retrieval and document analysis algo-
rithms assume that the fuzzy binary relation they accept
as input is transitive in some form. Thus, before the
system is made operable for the first time, a transitive
closure of then× n relation has to be computed.

• The relation is constructed using a trial and error strategy,
which means that small adjustments are often made, thus
locally disturbing the transitivity of the relation. A new
time consuming transitive closure after each adjustment
would make the application of the trial and error strategy
impossible, thus calling for a method for incremental
adjustment of the property of transitivity.

Both of these issues are tackled using the methodologies
presented in this paper. Specifically, in section II we start
by discussing the compact representation model chosen for
the relations, as the properties of this data model directly
affect the properties of the algorithms to follow. In the same
section we also discuss the properties of the classical approach
to transitive closure. Continuing, in section III we present
our approach for incremental update of a binary relation and
discuss its storage and computational merits. In the same
section we extend our discussion to explain how this can be
utilized to simplify the complete transitive closure of a relation
as well. Section IV lists a few indicative experimental results
and section V lists our concluding remarks.

II. PRELIMINARIES

A. Data Model

A fuzzy binary relation defined on a setS containingn
distinct elements is equivalent to a square matrix of dimension
n. The representation of such an array requires the repre-
sentation ofn2 different values, which for large numbers of
n is prohibitive for practical implementation. On the other



hand, in such a representation access time has a computational
complexity of O(1), as the position of the element directly
specifies its position in memory as well, with the utilization
of a formula of the form

M = (i− 1) ∗ n + j (1)

where(i, j) is the position of the element in the matrix and
M is its actual position in memory.

As explained in section I, the utilization of such a rep-
resentation is not always possible. In the cases that the
relation is known to be sparse, i.e. only a small subset of the
elements of the corresponding array are non zero, then a sparse
array implementation can be used. A classical sparse array
implementation utilizes linked lists to represent elements, thus
raising the computational complexity of accessing a specific
element toO(n). In this case, although the storage require-
ments are much smaller, the representation model remains
inapplicable for algorithms such as the ones in the FAETHON
project, where numerous operations utilizing a binary relation
have to be performed for a query to be processed processed,
and numbern is large.

The representation model proposed in order to overcome
these limitations is as follows: a binary relation is represented
using two sorted vectors. The first vector is sorted according to
indexi, and in case of identical row positions, column position
j is utilized, and vice versa for the second vector.


(1, 2) (1, 5) (1, 6)

(2, 1) (2, 4) (2, 5)
(3, 2)

(4, 4) (4, 6)
(5, 1) (5, 4)


For example, the above array would be represented using

the following vectors:
[(1,2)(1,5)(1,6)(2,1)(2,4)(2,5)(3,2)(4,4)(4,6)(5,1)(5,4)]T

[(2,1)(5,1)(1,2)(3,2)(2,4)(4,4)(5,4)(1,5)(2,5)(1,6)(4,6)]T

This representation model preserves the storage merits of
the classical sparse matrix implementation. Moreover, access
time for a specific element, row or column has a computa-
tional complexity ofO(log n), utilizing a divide and conquer
approach.

B. Classical Transitive Closure

A complete transitive closure of a fuzzy binary relation is
performed utilizing one of the following methodologies [15]:

In the general case, the transitive closureTrt(r) of relation
r, given somet-norm, can be calculated as

Trt(r) =
∞⋃

f=1

rf (2)

rf+1 = rf ◦t r (3)

r1 = r (4)

In (2), as well as in all subsequent equations in this paper, the
classical fuzzy co-normmax is assumed. Given that the set is
finite (|S| = n), (2) can be rewritten as :

Trt(r) =
n−1⋃
f=1

rf (5)

Moreover, in order to avoid some steps and lower the
computational complexity, (3) can be rewritten as [15]:

r2f = rf ◦t rf (6)

Finally, in order to avoid performing the costly operation of
relation composition more times than needed, the process may
stop before reachingf ≥ n− 1, if it is found thatr2f = rf ,
as it is then easily proven thatTrt(r) = rf .

As a special case, when relationr is reflective, it is proven
that the transitive closure is given by

Trt(r) = rn−1 (7)

In the case of complete representation, the calculation of
the composition of two relations has a complexity ofO(n3)1.

Proof: An elementr2
ij of the composition is calculated

as

r2
ij =

n⋃
c=1

ric ∩t rcj (8)

This is anO(n) operation. As the output of the composition
has a dimension ofn × n, n2 such operations need to be
performed, thus concluding in an overall complexity ofO(n3).

Thus, the transitive closure has a computational complexity
of O(n3 log n), for both reflective and non reflective binary
relations.

Proof: In the reflective case, (7) can be used to calculate
the transitive closure of the relation. Utilizing (6) we can
calculatern−1 in O(log n) compositions. Each one of them,
as proven above, has a complexity ofO(n3), thus summing
up to O(n3 log n)

In the non reflective case, combining (5) and (6) we can
see that we needO(log n) additions and compositions. An
addition has a complexity ofO(n2) and a composition, as
shown aboveO(n3). Thus, the overall complexity is again

O(log n)× (O(n3) + O(n2)) = O(n3 log n) (9)

In the case of the proposed compact representation, with the
utilization of the sorted vectors, the computational complexity
is better in the best case and the average case and equal to the
one of the complete representation in the worst case.

Proof: In the compact representation case, if rowi and
column j exist in the relation, they are retrieved. As already
explained, retrieving a row or column has a complexity of

1Relation composition can be considered as a generalized matrix multiplica-
tion operation. Having that in mind, enhanced matrix multiplication algorithms
may be utilized, resulting in a computational complexity ofO(n2.376)



O(log n). Continuing, the corresponding elementr2
ij is calcu-

lated as

r2
ij =

⋃
ric∈row∨rcj∈col

ric ∩t rcj (10)

As the row and column are both available in a sorted by
index form, this is anO(max(krow

i , kcol
j )) operation, where

krow
i is the count of elements in rowi andkcol

j is the count of
elements in columnj. a×b such operations will be performed,
wherea is the count of non zero rows andb is the count of
non zero columns of the relation. Overall, the complexity for
a single composition is

2 ·O(log n) + O(ab) ·O(max(krow
i , kcol

j ))

In the best case the relation is empty. Thusa = b = 0.
Moreover, in the compact representation,n is the count of
elements that actually participate in the relation, and thus
n = 0 also holds. Thus, the closure operation terminates in
a single operation. In the average case for sparse relations a
small percentage of the rows and columns will be non zero.
Of course, although this affects greatly the execution time
required, it does not alter the complexity, as

O(ab) = O((pan)(pbn)) = O(n2) (11)

where pa and pb is the percentage of non zero rows and
columns respectively. As far as the count of elements contained
in a non zero row or column is concerned, this is proportional
to the logarithm of the count of all the elements in the relation.
Thus O(max(krow

i , kcol
j )) is replaced byO(log n). Overall,

this leads to a complexity of

2 ·O(log n) + O(n2) ·O(log n) = O(n2 log n) (12)

for the composition. In the worst case, all the elements of the
relation exist. In that case,a = b = krow

i = kcol
j = n, and

thus the complexity of the composition becomes

2 ·O(log n) + O(n2) ·O(n) = O(n3) (13)

Considering theO(log n) compositions are required for the
transitive closure, it is easy to calculate that in the best case we
need justO(1) operations, in the average caseO(n2 log2 n)
operations and in the worst caseO(n3 log n). Proving that
the complexity in the average case is better using a compact
representation, i.e. proving thatO(n2 log2 n) < O(n3 log n),
is trivial and can be achieved, for example, by showing that

lim
x→+∞

x3 log x

x2 log2 x
= +∞ (14)

As far as the storage requirements are concerned, the
existence of two copies of the relation during the execution
of the algorithm is required, for both compact and complete
representations; the effect of this is of course much more
intense in the complete representation case, as much more
space is required.

Fig. 1. Graphical representation of the incremental update of the transitive
relation.

III. I NCREMENTAL CLOSURE OFFUZZY BINARY

RELATIONS

A. Incremental Update

A major disadvantage of the utilization of the classical
transitive closure methodologies is that when for some reason
an element of the relation is updated, or when a new element is
inserted to the global setS, thus locally disturbing transitivity,
anO(n3) operation has to be performed in order to assure that
the relation is still transitive.

Proof: Let r be a transitive relation. In Fig. 1r is
represented using lines of type 0. Let us suppose thatrij is
inserted in the relation, or that its value is augmented. In Fig.
1 the update is represented using lines of type 1. Then, we can
no longer assume that relationr is transitive. After one self-
composition, the ancestora of i is linked toj and i is linked
to the descendantd of j. In Fig. 1 this is represented using
lines of type 2. Finally, after one more self-composition,a is
linked to b. In Fig. 1 this is represented using lines of type 3.
We always need exactly two operations of complexityO(n3),
so the overall operation has a complexity ofO(n3).

Having observed in Fig. 1 the way transitivity is achieved
after a single element has been altered, we can design an
algorithm for incremental update of transitive relations that has
a considerably smaller computational complexity. Specifically,
we need to design an algorithm that will only focus on the
changes that the complete transitive closure brings upon the
relation after the update of the single element.

For any relationr this can be achieved with the following
steps:

1) Identify the fuzzy setA of ancestors ofi. Degrees inA
are determined as

A(s) = r(s, i), s ∈ S (15)

2) Identify the fuzzy setD of descendants ofj. Degrees
in A are determined as

A(s) = r(j, s), s ∈ S (16)

3) For each elements appearing inA assign

r(s, j) = r(s, j) ∪ (r(s, i) ∩t r(i, j)) (17)

4) For each elements appearing inD assign

r(i, s) = r(i, s) ∪ (r(i, j) ∩t r(j, s)) (18)



5) For each elements1 appearing inA and s2 appearing
in D assign

r(s1, s2) = r(s1, s2) ∪ (r(s1, j) ∩t r(i, j) ∩t r(j, s2))
(19)

If relation r is reflective, thenA(i) = 1 and D(j) = 1.
Thus, the above process can be simplified by omitting steps 3
and 4.

The computational complexity of the proposed algorithm is
smaller than that of performing a complete transitive closure.
Specifically, the complexity isO(n2), while in the average
case a complexity ofO(log2 n) is expected and in the best
case the algorithm terminates inO(log n) operations, for both
reflective and other relations.

Proof: As already explained, the complexity of steps 1
and 2 isO(log n). The complexity of steps 3 and 4 isO(krow

i )
and O(kcol

j ), respectively, and the complexity of step 5 is
O(krow

i · kcol
j ).

In the average casekcol
j = O(log n), and thus the overall

complexity is

4 ·O(log n) + O(log2 n) = O(log2 n) (20)

In the worst casekcol
j = n, and thus the overall complexity

is
2 ·O(log n) + 2 ·O(n) + O(n2) = O(n2) (21)

In the base case,krow
i = kcol

j = 1, (or krow
i = kcol

j = 0,
depending on whether the relation is reflective or not). Either
way, the overall complexity is

2 ·O(log n) + 3 ·O(1) = O(log n) (22)

Ignoring the influence of steps 3 and 4 in the above
calculations does not alter the overall complexity, as in all
cases some other step contributes more to it. Thus, the same
complexity holds for the reflective case as well.

B. Application to Complete Closure

The above algorithm for incremental update of transitive
fuzzy binary relations easily leads to the design of an algorithm
for a complete transitive closure of a relation as well. The steps
of the algorithm follow:

1) Create an empty binary relationr′.
2) For each elementrij in the initial relationr

a) Assignr′(i, j) = r′(i, j) ∪ r(i, j)
b) Run the incremental update algorithm on relation

r′ with parametersi and j.

When the algorithm terminates we haveTrt(r) = r′.
The computational complexity of this algorithm is

O(n log3 n) in the average case andO(n4) in the worst case.
Proof: Step 1 is completed in anO(1) operation. Step 2a

is executed in anO(1) operation, while the complexity of step
2b is as described in the previous section. Step 2 is executed
as many times, as is the count of elements in relationr.

In the worst case, the count of elements inr is n2, and step
2b has a complexity ofO(n2), thus resulting in

2 ·O(1) + O(n2) · (O(1) + O(n2)) = O(n4) (23)

In the average case, there areO(n) rows in r, each one
containing O(log n) elements, thus resulting inO(n log n)
elements inr, and the complexity of step 2b isO(log2 n).
Thus, the overall complexity is

2·O(1)+O(n log n)·(O(1)+O(log2 n)) = O(n log3 n) (24)

C. Comparisons

Comparing the traditional and the incremental approaches
to assuring transitivity, in the case of a relation that is already
transitive and is undergoing a small change is easy. In all cases
the incremental approach presented herein is superior; it has a
complexity ofO(log2 n) in the average case andO(n2) in the
worst case, compared to a complexity ofO(n3) in all cases
for the traditional approach. Moreover, the proposed approach
is more efficient in means of storage requirements as well, as
no copy of the relation needs to be created in memory.

When it comes to a complete transitive closure, the com-
parison is a little more complicated. It is clear that in the
dense/worst case, the traditional approach is better, having
a complexity ofO(n3 log n), compared to a complexity of
O(n4) for the proposed approach. In the average case, on the
other hand, the proposed approach is greatly superior, having
a complexity ofO(n log3 n); proving that

O(n3 log n) > O(n2) > O(n log3 n)

is again trivial and can be achieved by proving that

lim
x→+∞

x2

x log3 x
= +∞ (25)

Thus, comparison of the two approaches depends on the
validity of the assumptions made concerning the average case.
The main assumption made is that considerably less non zero
elements exist in the average case;O(n log n) instead of
O(n2). This assumption is valid, not just because it is verified
through the practical experience of the FAETHON project,
but also because it is not feasible for it to be invalid: If the
relation had proportionally less elements, or, in other words, if
O(n2) non zero elements existed in relationr, then it would
not be possible to store the relation in main memory in real
life applications, wheren is very large.

On top of the enhanced computational complexity, the
proposed approach to complete transitive closure of fuzzy
binary relations also has the following merits:
• In the traditional approach, a composition of the relation,

so an operation of complexityO(n2 log n) in the average
case, has to be performed before the decision to stop the
algorithm is taken. This is true even when the relation
is initially transitive, thus requiring no adjustment. In the
proposed approach, in the same situation the algorithm
would terminate inO(n log3 n).



• In the traditional approach, the relation is not transitive
until the operation terminates. Thus, in the case of a very
large numbern, a very long time has to be spent before
the relation becomes usable by algorithms that assume
transitivity. On the contrary, relationr′ is transitive after
each step when utilizing the proposed approach, and thus
algorithms that assume it to be transitive can be applied
to it before the whole operation is completed.

• Due to the recursive form of the traditional approach,
the termination point greatly depends on the “depth” of
the relation, i.e. on the count of vertices of the longest
path. On the contrary, the proposed approach assures
transitivity in one – pass and the count of required steps
is known beforehand. Thus, the progress of the process
can be monitored on-line.

• The traditional approach requires that two copies of the
relation exist in the memory at the same time, thus
doubling the storage requirements of the algorithm. On
the other hand, space for a single relation is enough for
the execution of the proposed approach; two relations
exist, but as elements are added in one, they are removed
from the other.

• The proposed approach is not affected by cycles in the
relation, i.e. it does not require the relation to be ordering.
This is is not a property shared by all transitive closure
algorithms [7].

IV. EXPERIMENTAL RESULTS

The proposed methodology for transitive closure, as well as
the traditional approach, have been implemented using the Java
programming language in the framework of the FAETHON
project. Moreover, a fuzzy binary relation representing all
concepts and semantic entities in the English language has
been prepared, utilizing WordNet as a source. This relation
has a dimension ofn ' 70000 and contains approximately
90000 non zero elements.

The complete (not compact) representation of the relation
was not been possible, as it would require storing approx-
imately 5 billion double precision numbers; with 8 bytes
allocated for each double precision number in Java, this means
that 40Gb of RAM would be required just for the storage of
one copy of the relation.

Utilizing the proposed compact representation form, a tran-
sitive closure of the relation has been attempted, using both
the proposed and the traditional approach; thet-norm used
for the transitive closure was themin. The execution time
for the proposed approach was6.45 seconds. It took the
traditional approach a little over 5 days to complete the same
operation. Execution of both algorithms was performed in
identical environments; the same computer was utilized in both
cases (PIII 900 running W2K as operating system), and the
computer was in both cases dedicated to the execution of the
transitive closure algorithm.

V. CONCLUSIONS

In this paper, after proposing a compact representation
format for sparse binary relations that allows for logarithmic
access a row, a column or an element, we presented a method
for incremental update of transitive binary relations; we proved
that this method outperforms the traditional approach of per-
forming a complete transitive closure in both the worst and
the average case.

Continuing, we have described a method for transitive
closure of any binary relation that relies on the above in-
cremental methodology. We have proven that this method
greatly outperforms the classical approach for the average
sparse relation, achieving a computational complexity that is
below O(n2). Finally, we have implemented the traditional
and proposed methodologies and we have tested then on a real
life fuzzy binary relation. The difference in execution time was
immense, proving the efficiency of the proposed algorithm.
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