1092

general, for every other Toeplitz network, the diameter is the
ceiling of w/2+1.

To show that there exists at least such a path between any two
points i and j, consider the set of points i — w/2 to i + w/2. One
of these points has to be adjacent to j. This is so because the
width of the Toeplitz network is w (meaning that there are
exactly w—1 zeros between any two ones in the adjacency
matrix). Hence, the next theorem follows:

Theorem 4: The diameter of the Toeplitz network is the ceiling
of w/2+1.

Because of the symmetric nature of the construction of the
Toeplitz network, the network is reliable in case of point and
edge failures. Fault diameter is yet another useful indicator of the
reliability of a network. Fault diameter is the length of the
longest path when k —1 points fail, & being the point connectiv-
ity of a network.

Theorem 5: The fault diameter of th2 network is w.

Proof: From Lemma 3, we see that each of the s +1 paths is
at most of length w. Hence, if any of the s points fail, the length
of the longest path is w. The length of the longest path is a ceiling
of w/2+1, even when s /2 points fail. This implies that we could
still apply the lemma and there will be 2 points adjacent to every
point.

As stated in the earlier section, graph theorists are often
interested in obtaining Moore graphs. The Toeplitz network has
less number of points than the Moore graphs for the same regular
degree and diameter. However, the Toeplitz network satisfies
some additional useful properties, such as bipartiteness. As
against group graphs, the diameter and the fault diameter calcu-
lations are explicit, and hence, the routing is simpler.

IV. CONCLUSION

In this paper, a new class of interconnection networks are
presented and the spectral properties of these networks are
studied. It is shown that these networks possess many desirable
properties, such as small diameter, high connectivity, and high
reliability. It would be interesting to derive algorithms which
exploit the Toeplitz network interconnection scheme.

ACKNOWLEDGMENT

The authors wish to thank both the referees for their sugges-
tions and Joyce Brock for editing.

REFERENCES

S. B. Akers and B. Krishnamurthy, “Group graphs as interconnection

networks,” in Proc. 14th Fault Tolerance Computing Symp., pp. 422-427,

1984.

B. W. Arden and H. Lee, “A multi-tree structure network,” in Proc.

Compcon. 78 Fall, pp. 201-210, Sept. 1978.

J.-C. Bermond, N. Homobono, and C. Peyrat, “Large fault-tolerant

interconnection networks,” in Proc. Japan Conf. Graph Theory and its

Applications, Hakone, June 1986.

F. Boesch and R. Tindell, “Circulants and their connectivities,” J.

Graph Theory, vol. 8, pp. 487-499, 1984,

F. Boesch and J. F. Wang, “Reliable circulant networks with minimum

transmission delay,” JEEE Trans. Circuits Syst., vol. 32, pp. 12861291,

1985.

[6} ___, “Super line connectivity properties of circulant graphs,” Siam J.
Algebraic Discrete Methods, vol. 7, pp. 89-98, 1986.

{71 S. H. Bokhari and A. D. Raza, “Augmenting computer networks,”

84-33, ICASE Rep. No. NASA Langley Research Center, Hampton, VA,

1984.

J. A. Bondy and U. S. R. Murty, Graph Theory with Applications.

York: American Elsevier, 1976.

F. R. K. Chung, “Diameters of graphs: Old problems and new results,”

]

f2]
3]

(4]
[51

{8]
[91

New

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

in Proc. 18th South n Conf. Combi
puting, Boca Raton, LA, 1987.

N. Deo and M. J. Quinn, “Pascal graphs and their properties,” The
Fibonacci Quarterly, vol. 21, pp. 203-214, Aug. 1983.

F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1969, pp.
94-96.

D. K. Pradhan and S. M. Reddy, “A fault-tolerant communication
architecture for distributed systems,” IEEE Trans. Comput., vol. C-31,
pp. 863-870, Sept. 1982.

ics, Graph Theory and Com-
(10]
(11]

(12]

[13] F. P. Preparata and J. K. Vuillemin, “The cube-connected cycles: A
versatile network for parallel computation,” Commun. Ass. Comput.
Math. pp. 300-309, 1981.

{14] H. Sullivan and T. R. Bashkow. “A large scale, homogeneous, fully
distributed, parallel machine: 1" in Proc. Fourth Symp. Computer Archi-
tecture, pp. 105-117, 1977,

(15] L. Uhr, Algorithm-Structured Computer Arrays and Networks. Orlando,
FL: Academic, 1984, pp. 113-127.

[16] R. S. Wilkov, “Analysis and design on reliable computer networks,”

IEEE Trans. Commun., vol. COM-20, pp. 660-678, June 1972.

An Adaptive Least Squares Algorithm for the Efficient
Training of Artificial Neural Networks

STEFANOS KOLLIAS anp DIMITRIS ANASTASSIOU

Abstract —A novel learning algorithm is developed for the training of
multilayer feedforward neural networks, based on a modification of the
Marquardt—Levenberg least squares optimization method. The algorithm
updates the input weights of each neuron in the network in an effective
parallel way. An adaptive distributed selection of the convergence rate
parameter is presented, using suitable strategies of optimization tech-
niques. The algorithm has better convergence properties than the conven-
tional backpropagation learning technique. Its performance is illustrated,
using examples from digital image halftoning and logical operations such
as the XOR function.

I. INTRODUCTION

An important class of neural networks is feedforward multi-
layer perceptrons. These networks consist of layers of neurons,
which are connected in a feedforward way. In the simplest case
each neuron produces its output by computing the inner product
of its input signal and weight vectors and by passing the result
through a nonlinear function, as is shown in Fig. 1. One com-
monly used nonlinear monotonic function is the sigmoidal one,
which can be defined as follows:

1+e '

(1.1)

A three-layer network is shown in Fig. 2. The intermediate
layers between the output layer and the network’s input are
usually called hidden layers. A crucial property of these networks
is their ability to improve their performance by learning new
information. This is accomplished by modifying the interconnec-
tion strengths among neurons, ie., the weights of the network,
according to some prespecified rules. The “knowledge” of the
network lies therefore in its inter-neuron connections and their

g(x) =

Manuscript received February 10, 1988; revised August 29, 1988 and March
2, 1989. This paper was recommended by Associate Editor H. Gharavi.

S. Kollias was with Department of Electrical Engineering and the Center
for Telecommunications Research, Columbia University, New York, NY
10027-6699, on leave from the Electrical Engineering Department, National
Technical University of Athens, Greece.

D. Anastassiou is with the Department of Electrical Engineering and the
Center for Telecommunications Research, Columbia University, New York,
NY 10027-6699.

1IEEE Log Number 8928270.

0098-4094 /89 /0800-1092301.00 ©1989 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

Fig. 1. The diagram of a single neuron.

M Output Units

N Inputs Units

Fig. 2. A three-layer neural network. Circles are used to represent the neu-

rons of the network.

weights, in contrast to rule-based artificial intelligence applica-
tions. Furthermore, the network architecture permits high com-
putational rates to be obtained through the massively parallel
distributed processing which is performed. It is also due to this
kind of processing that such networks have a great degree of
robustness or fault tolerance to local damages. In this paper we
are concerned with the problem of supervised learning of multi-
layer networks. Various learning algorithms have been recently
introduced, the most famous being the backpropagation algo-
rithm [1]-[3]. Many successful applications of this method have
been developed in areas such as speech and image recognition
and modeling of human learning [4], [5].

This paper presents a neural network learning algorithm,
which is based on an efficient modification of the Marquardt—
Levenberg least squares optimization method [6]-[8] and has
better convergence properties than the conventional backpropa-
gation method. The paper is organized as follows. Section II
formulates the nonlinear least squares minimization problem and
discusses various unconstrained optimization techniques for its
solution. The proposed algorithm is developed in Section III,
while an adaptive selection of the convergence rate parameter is
presented in Section IV. Section V presents various applications
of the proposed learning technique in digital image halftoning
and in performing logical operations such as the XOR function.
Some conclusions and suggestions for further research are given
in Section VI

1093

II. THE NONLINEAR LEAST SQUARES MINIMIZATION PROBLEM

The error criterion which is generally used in the training of
neural networks is the minimization of a sum of squares error
function. For a network with M outputs and after the presenta-
tion of K pairs of input and desired output patterns, this
function is

M >

1 M 3
Ee=y L L Ldm-y(mll)

r

where the symbols 4 and y denote the desired and actual outputs
of the network, and the subscript r shows their dependence on
the rth input presentation.

When an input pattern is presented, it propagates forward
through the network and each neuron computes its output value
using the prespecified set of its input weights. Let us consider the
case of a network consisting of L layers, the /th of which
contains N, neurons. Then each neuron computes its output
according to the following equations for /=1,---,L and i=
1,-+, Ny

(2.2)

Ny
ﬁ=g{z<wﬂzw+w}

n=1

where x! denotes the output of the ith neuron belonging to the
Ith layer and w}, is the weight of the connection between the nth
neuron of the (/—1) layer and the ith neuron of the /th layer.
The Lth layer is the output layer, while layer zero is the input
layer. Thus N, and N, are equal to M and N, respectively, while
x and x? denote the output y(i) and input x(i) sequences. The
function g is usually the sigmoid defined in (1.1) and 6! is the
threshold of the ith neuron of the /th layer, which controls
the neuron’s output when there are no signals to its input. In the
following, we treat the thresholds as weights that connect an
input, which is always on, ie., its value is always one, to the
neuron.

Let us define the vector w/ of all input weights to the ith
neuron of layer /, including the threshold 6/

(S O R nr
“’,_[Wu WN,_i 0‘]

i

(23)

and let the vector x' contain the outputs of all neurons in layer /
and one more element equal to one

T
x’=[x{---x§V, 1] .

(2.4)

Then (2.2) can be written using the above symbol notations as
follows:

x=g{(w) (& 1)}, (2.5)

Let us also define a vector w, consisting of all the weights w/ in
the network. A necessary condition at a minimum, global or
local, of (2.1) is that the derivatives of this function with respect
to w be zero. Forming these derivatives we get the following
system of nonlinear equations for /=1,---,L and i=1,---, N;:

dy(m)
aw/

K M
=X X [d(m)—y(m)],r[—

r=1m=1

] =0 (26)

where the dimension of vector f/ is (N,_; +1). Let us also form
a global vector F, consisting of all the vectors f.

1094

A simple technique for the solution of such a system is steepest
descent [9], [10]. This method, which is the basis for the deriva-
tion of the backpropagation algorithm or the momentum version
of it, is suitable for parallel updating of all the weights of the
network, or at least of those in the same layer, during each
iteration of it. Thus its computational complexity is O(N,_;)
operations per iteration and neuron, or O(n,) operations per
iteration in total, where,

L
n,= 2 N(N_;+1). (2.7)
1=1
However, this method has many drawbacks. It converges linearly
and may be inefficient, particularly as the minimum is ap-
proached. Another well known iterative technique for the solu-

IXC 0
o o fi(A)
Q= : : :
0 0
0 0

tion of the system of nonlinear equations (2.6) based on a
linearization procedure, is Newton’s method [9}, [10]. This method
is attractive, because it converges quadratically, provided that a
good, sufficiently close to a minimum of the error function,
initial estimate of the unknown weight vector is available. Com-
putation of the increments Aw, which bring the initial estimate w,
closer to a minimum, is performed by solving the following linear
system:

HAw=—F

(28)

where the Hessian matrix H contains the second derivatives of
the error function with respect to the network weights. The
application of standard quasi-Newton algorithms [9]-[11] has
been examined as a solution to the learning problem [12}, but no
efficient parallel implementation in the form of an artificial
neural network was found. Application of such methods in the
solution of (2.8) requires 0[(np)2] operations per iteration. An
approach has been recently developed [13], which implements
Newton’s method as a second-order backpropagation algorithm
with complexity O(n,,). This approach uses, however, an approxi-
mation of matrix H, which, as is also mentioned in [13], is
inefficient for real life applications and can be useful only in
cases of uncorrelated input signals. Furthermore, it introduces
more tuning parameters in its attempt to approximate the second
derivatives in (2.8), making therefore its application more diffi-
cult.

In this paper we follow a different approach. This approach
permits the derivation of an efficient neural network learning
algorithm, based on the Marquardt-Levenberg least squares
method. The algorithm possesses quadratic convergence close to
a minimum, where it approximates the Newton method. More-
over it can converge even if the initial estimates are relatively
poor, as does the method of steepest descent.

[EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

III. ANALYSIS OF THE LEAST SQUARES LEARNING ALGORITHM

The Marquardi-Levenberg technique approximates matrix H
by a simpler one

H=FFT+\Q (3.1)

where A is a positive factor and @ is an appropriately chosen
matrix. A version of the Marquardt-Levenberg method, which
has successfully been used in many applications [8}, [14], was to
let © be diagonal, with elements equal to the diagonal terms of
FFT. The main idea followed in this paper in order to derive an
effective algorithm, which can efficiently be applied to dis-
tributed neural network training, is to let matrix @ have the
following near-diagonal form:

0 0

0 0

: : : (3.2)
R

o o f(s)

This form contains the diagonal elements of FF’, but it also
contains the rest of the f/(f’)7 elements around its diagonal
ones, keeping thus second order information for the input weights
w/ of each neuron in the network.

The system of equations defined by (2.8) and (3.1)-(3.2) can
easily be proved to result from the minimization of the following
error criterion:

Ei(w) =pEg(w)+ AwQAw (3.3)

where p=1/A and Ey was defined in (2.1). Let the increment
Aw, = w, — w, be provided by the solution of (2.8) using the
definitions (3.1)~(3.2), i.e., by minimizing the error criterion Ej
in (3.3). Then it can easily be shown, using (3.3), that

pEx(w) <pEg(w)+AwQhw

=E;(w) < E¢(w) =pEx(m) (34)

the last equality being true, because Aw, equals zero. In the first
inequality in (3.3), it was assumed that the symmetric and semi-
positive definite matrix € is positive definite. This condition is
always fulfilled, if a very small positive number, such as 0.01 [15],
is added to the diagonal elements of € in (3.2). Thus (3.4) shows
that minimization of the error criterion Ej also diminishes the
sum of squares error function Ey. Let now the increment Aw, =
w, — wy be provided by solving the general form of (2.8), ie,by
minimizing the original error function Eg in (2.1). It can be
shown, by using (3.3) and the increments Aw, and Aw, as in [6],
that it is

Aw[QAw, < AwlQAw,. (3.5)

Equation (3.5) proves that minimization of the error criterion in

[EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

(3.3) also reduces the weighted sum of squares of the increments
Aw, improving therefore the linearization procedure used to de-
rive (2.8). By letting A > 1, matrix H in (3.1) is written in terms
of (3.2)

H=\Q (36)

and due to the special form of matrix Q, (2.8)-(3.1) take the
following form in the case of the ith neuron of the /th layer, for
example,

HiAw/ = —pf! (3.7
where
K M [ay(m)] [dy(m)]"
H = _ . .
! rgl mz=l[awll r aw’l r (3 8)

As a result, the algorithm avoids the computation and storage of
second-order information about the cross-products between input
weights of different neurons and each weight vector Aw' can be
computed independently of all others during each iteration in a
distributed parallel form. The simple Gauss-Newton or weighted
Gauss-Newton least squares algorithm [8], [9] can be used to
solve each (3.7).

In the neural network formulation the system of equations
(3.7)-(3.8) implies that each neuron in the network tries to
minimize the error function with respect to its own weight vector
w/ and that all the neurons of the network, or at least these of the
same layer, may update their input weights during each iteration
independently of all others. The convergence factor p prevents
successive estimates from oscillating. The algorithm has the dis-
tributed form of the backpropagation technique. It performs two
sweeps through all the weights of the network at each iteration of
it. On the first sweep the input signals are propagated forward, so
that each hidden and output neuron computes its own output.
On the second sweep the error signals are computed at the top of
the network as the difference between the desired and actual
outputs. This information is then propagated down to the bottom
layer and each neuron updates its input weights using (3.7)-(3.8).
In the case ofthe weight vector w' in a multilayer network, the
proposed algorithm can be written in sequential form, for r =
1,---,K:

w/(r) =w(r—1)+ P(r)el(r)(=Y), (3.9)
Pi(r)y = Pi(r=1)=(1/d') P{(r =)=~ (x) PI(r —1)
(3.10)

where the matrix P/(K) is the inverse of H/ defined in (3.8) and
the scalars d and e are computed, as follows, for /=1,---, L and
i=1,--+, N

d=() "+ ()R- (D

el(r) =pel - B(x1) [w(r-1)-w/(0)]. (3.12)

In the above equations, the indication of dependence of some
quantities on r was ignored for notational simplicity. During
each iteration of the algorithm in (3.9)-(3.12), the input data are
processed sequentially and the outputs of all neurons are com-
puted using the weight vector w/(0). In the end the current weight
vector estimate w/(K) replaces w/(0), so that the next iteration
can begin. The procedure stops when the changes in all weights
are less than a very small threshold. At the beginning of each
iteration matrix P/(0) is chosen diagonal with relatively large
values. The algorithm can also be applied in recursive form. In

1095

this case the outputs of all neurons are computed, in each
recursion of the algorithm, using the weight vector w/(r—1)
instead of w/(0). The addition of an over-relaxation term, exactly
as in the momentum technique, is sometimes necessary to ensure
convergence in this case [16). The updating of matrix P/(r) in
(3.10) requires O[(N,_, +1)?] operations per iteration [17], thus
the computational complexity of the above described algorithm is
O[(N,_,)?] per neuron and iteration, or O(n},) in total, where,

L
, 2
n,= 3 N(N_+1)"
=1

(3.13)

Even in a massively parallel environment, the increased, com-
pared to standard backpropagation, per neuron complexity
O[(N,_,)?] constitutes a problem. However, this problem is less
serious, for implementation purposes, than the O[(n p)z] compu-
tational and storage requirement for the solution of the general
form of (2.8), using for example the technique presented in [12].
Moreover, the complexity of the algorithm can be reduced to
O(n,), if fast algorithms of the least squares method [17], [18] are
used. These efficient schemes do not calculate matrix P!, but
directly update vector P'x'~1, which is required in (3.9), having a
computational complexity similar to the backpropagation one.
Use of such algorithms is, however, feasible only when the
training is performed using consecutive samples of the input
data, i.e., when a sliding window passes over the data and
constitutes the input to the network in each iteration. This
happens in most signal and image processing applications, as is
discussed later in the paper.

Since the updating of the input weight vectors of all neurons
takes place in the second sweep of the algorithm, appropriate
formulas which update b/ and € recursively from the top to the
bottom of the network are derived next. The formulas for the ¢
are the same as the ones derived for the backpropagation algo-
rithm [2]

NI
dl=c Y € w!, (3.14)
m=1
for/=L-1,L—2,---,2 with
NL
(’.L*l=ci1‘_] Z c,ﬁw,f,,. (315)
m=1

Equations (3.14)-(3.15) provide a computationally efficient way
of computing the backward errors, because they require only
O(n,) operations per iteration. The proposed algorithm requires
the computation of the nonnegative quantities bl in (3.11)-(3.12)
as well. A similar, but more elaborate, recursive way of comput-
ing these quantities is given next and proved in Appendix A, by
defining the following sequence:

Ny N
e T o X, (316)
m=1 n=1
forI=L—1,L—-2,---,2and 1<i, j < N_,, with
Ny R
Lol= ettt Y winwn(en) (317)
m=1
and by letting
T (3.18)
In the above equations it is
= x,’[l— x,’] (3.19)

1096

while the - and b quantities at the output layer are

M
€ = 2103[d(M)—y("1)] (3.20a)

bL =

; (ck)’.
1

It can be shown that the updating of b/ using (3.16)-(3.20)
requires O(n;,) operations per iteration in the case of networks
with more than two layers. In this case we can use an approxi-
mate formula by ignoring the cross-neuron products in (3.16) and

by updating b/, for i=1,--+,N,_; and /=1, -, L, as follows:

(3.20b)

Mz

=

pll= (C[wl)z

m

(wh) 8.
1

(3.21)

As a result (3.21) has the same computational complexity as
(3.14). The above equations together with (3.9)-(3.12) form the
proposed learning algorithm.

IV. ADAPTIVE SELECTION OF THE CONVERGENCE
RATE FACTOR

The selection of the parameter p in (3.9) is a crucial problem in
the application of the proposed algorithm. This problem is exam-
ined next, by using suitable techniques, which have been devel-
oped for the general form of the Marquardt-Levenberg optimiza-
tion method. Two techniques, which can be combined with the
proposed algorithm, are the model trust region approach [19],
[20] and the line search strategy [19), [21]. Both techniques try to
determine a region, in which the nonlinear problem is adequately
represented by the quadratic model (3.3), so that convergence of
the algorithm to a local minimum of the error function be
guaranteed. A criterion is used, in the second for example tech-
nique, for selecting an acceptable value of p at the end of each
iteration of the algorithm. In the case of the distributed system of
(3.7) this criterion can be written as follows:

3 Ex(w)— Ex(w+ Aw) .

Chshw() ()

where w contains all vectors w/(0) used in each iteration, while
Aw contains all the increments Aw/(K) computed at the end of
each iteration and o is a small positive constant, such as 10~ % A
backtracking strategy is used, by selecting an initial value of
and then reducing it, until (4.1) is satisfied. Appropriate rules for
reducing p are given in [19]. The computation of Ex(w+ Aw),
required in each application of (4.1), does not seriously augment
the complexity of the method, due to the massive parallelism of
the network.

Since (3.7)-(3.8) are solved separately for each neuron of the
network, it would be more effective to use different values of p,
ie., p!, for updating the input weights of each neuron. This
would, however, require the selection of each parameter g in the
network, which would be a quite difficult task. An adaptive
distributed updating of these parameters is presented next, by
approximately computing the contribution of each neuron to the
minimization of the error function. Let us consider the error
Ex(w+ Aw) as a function of the parameter p. We may write, for
small values of the difference between two parameter values p
and p/,

(41)

9E,
EK(»'>=EK(M)+(u'—u)(—(-,;). (42)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

The derivative of the error Ej in (2.1) with respect to p can be
approximated by using the definition (2.6) and the block-iterative
form of (3.9), resulting from repeated summation of (3.9) for
r=1,---,K [8]:

)-[E L)]

L N
=2[>: ZR{-(K)] (43)
{=1i=1
where
K p K
Ri(K) =[>z f.’-(x”)r]l’,’(K)[Zlfﬁ(x“),}» (49)
r=1 r=

From (4.2) to (4.4) it is seen that the reduction of the error
function in each iteration of the algorithm, due to a small change
in the convergence parameter y, is proportional to the sum of the
positive scalars R/(K), which tend to zero as the minimum is
approached [8].

It should, however, be stressed that different neurons will
generally give different values of the R!(K) quantities and conse-
quently different reductions of the error function. Using this fact
we show next that we may let the convergence factor y vary with
iteration and neuron. If we call the resulting factors in each
iteration g/ and use them instead of p’ in (4.2), then it is easy to
show, using (4.3), that the error reduction due to the differences
(i — p) will be equal to

L N

2l Y X (M-p)RUK)|.

I=1i=1

(4.5)

It is desired that this reduction be nonnegative, therefore it
should be

L N L N
Y Y WR(K)]>p Y ¥ RI(K). (4.6)
I=1i=1 i=1i=1

An obvious solution to (4.6) could be to let all y;’s be greater
than g, but this would eventually lead to an unstable behavior of
the algorithm. A choice of y!’s which satisfies (4.6), keeping also
the sum of all u/’s constant and equal to p[Z/_, N), is

,_ [()] RI(K)
TS T RI(K)

(4.7)

as can be verified by using the above values of y! in (4.6) and the
following inequality:

"Z":aiz‘(i“i) ="i Zn: (ai_a;)2>0

i=1 i=1 i=1 j=i+1

(4.8)

where the a’s represent the R!’s and the summation over i in
(4.8) corresponds to the summation over i and / in (4.7). Follow-
ing the above analysis, each iteration of the algorithm is per-
formed using (3.9)-(3.12) and the same convergence factor p for
all neurons in the network. The R/(K) quantities are also com-
puted, by using a sequential form of (4.4). Then the weights
w!/(K, u!) are computed in the end of each iteration in terms of
the already determined w!(K,)

wl(K,pl) = wl(0) = (i /p)[w/(K.p)—w/(0)]. (4.9

Derivation of (4.9) is based on the fact that all quantities, apart
from the parameters ., which are used to calculate both w/(K, u})

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

and w/(K, p), are computed in terms of w/(0). Thus they are the
same and, apart from the p’s, they cancel each other.

Let us now replace the parameter p in (4.1) by its distributed
values ! from (4.7). The selection of the y/ parameters is then
equivalent to the selection of the single parameter p in (4.7). The
criterion (4.1) can therefore be applied to determine an accept-
able value of p, using the already computed values of the
quantities R{(K). It should be added that the exact number of
the required hidden units in most neural network applications is
unknown and a larger number of neurons is generally used. In
these cases (4.7) and (4.9), which update the weights of each
neuron by examining its contribution to the minimization of the
error function, can be very useful. For ease of implementation in
cases of massive layered networks, it would be more preferable to
compute the p/ using only the R!’s of the same layer /. Equation
(4.7) would then be written

NR(K)

“FENRI(K) (410)

i

V. EXAMPLES
A. Digital Image Halftoning

The accuracy of the proposed algorithm in estimating the
weights of a single layer network is investigated first, by examin-
ing the use of a neural network in the problem of digital image
halftoning. Image halftoning techniques create a bilevel image,
whose average density mimics the one of a given continuous
image. Let u,, , be the given continuous image with values in the
interval [0,1] and x,, , the resulting bilevel one with values either
0 or 1. In the case where a sigmoidal nonlinearity is used, the
values 0.1 and 0.9 are more appropriate than the 0 and 1 ones.
The values —1 and 1 can also be used instead of 0 and 1. An
error function for the image halftoning problem can depend on
the difference between the continuous level image and an average
density of the bilevel one

(5.1)

Upon — Z wuxmfl.n—/
G, /))eR

where R is the model support region and w;, are the weight
coefficients. If the above difference is equal to zero, then

'xm,n= Z

(i,/))€R=-(0,0)

(5.2)

(= W) Xpumi o+ Wiot

where

LM Lt
e . (53)
However, x,, , may take only bilevel values, thus a thresholding
nonlinearity g, such as a sharp sigmoidal one, can be included in
the right-hand side of (5.2). Then the error function is, in case of
an (N * N) image, the following sum of squares:

N N
0= Y €,

m=1n=1

(5.4)
where

fn,ﬁxm,n—g(>

(7 wli/')xm—i,n~j + w()/()um‘n) = 0
(i,/)€R~-(0,0)

(5.5)

Let us assume that we are given a pair of an original image u and
a good halftoned version x of it. If we correspond the summation

1097

Fig. 3. A bilevel image produced by a standard halftoning technique.

over r in (2.1)—(2.2) with summation over i and j in (5.4)-(5.5)
and let M =1 in (2.1), we may easily see that (5.4)-(5.5) repre-
sent a single neuron (perceptron) network, which is trained using
as input and desired response the bilevel image x and as thresh-
old the original image u. A nonsymmetric half plane [18] model
region R is used in this paper. This model region permits a
space-recursive generation of the bilevel image in the usual
pixel-by-pixel form, using (5.2), after the weights w/; have been
estimated. The same technique can determine the weights of
non-causal models, which lead to parallel implementations using
Hopfield-type networks [22].

An 8-bit gray-scale (256 #256) image and a bilevel one, which
was provided by an error diffusion halftoning algorithm [23] were
used as the u,, , and x, , images in (5.5), respectively. The
bilevel image is shown in Fig, 3. The proposed algorithm, as well
as the momentum-backpropagation, were used to compute the
unknown coefficients w’ in (5.5). A part of the above-mentioned
images, the square between pixels (170,170) and (210,210) was
used to provide 1600 samples of input and desired output se-
quences. The error measure Q, defined in (5.4) and normalized
over the sum of the squares of the corresponding bilevel pixel
values, was used to test the performance of the learning algo-
rithms after each iteration. This error, expressed in decibels, is
plotted in Fig. 4 as a function of the number of iterations. The
number of errors and the corresponding values of Q after 100
iterations of both algorithms are given in Table I. The momen-
tum algorithm was applied with parameters p in the interval
[0.1,0.5] and a momentum factor equal to 0.9, its final perfor-
mance being similar in all cases. For a value of p > 0.5, problems
of stability appeared. The iterative and recursive versions of the
least squares algorithm were used. The recursive version seemed
to converge slightly faster than the iterative one, but the latter
was more accurate and its overall performance was slightly
better. It can easily be seen that in this example both versions
outperformed the backpropagation algorithm in accuracy. More-
over, the computational complexity of all methods was compara-
ble in this case, because a fast scheme of the least squares method
[18] was feasible. It can be added that fast least squares schemes
can also be useful in multilayer networks, if the inputs to hidden
or output units also follow a sliding window rule. This may be
the case, when former values of these inputs, either in the spatial
or in the temporal domain, are also used in the form of addi-
tional neuron outputs, for the training of the network.

1098 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989
-5
(dB)
-7
L
.
-11 (a)
(b)
L — ()
-3y 20 20 60 80 100
ITERATIONS
Fig. 4. Performance of the least squares and backpropagation algorithms.
Y
X, X,
Fig. 5. A bilevel image produced by the neural network halftoning method. Fig. 6. A three neuron neural network able to perform the XOR function.

TABLE 1
PERFORMANCE OF THE LEAST SQUARES AND BACKPROPAGATION ALGORITHM
(IMAGE HALFTONING)

METHOD (100 ITERATIONS} NUMBER OF ERRORS NORMALIZED ERROR (dB)
Iterative LS 114 - 12.2
Recursive LS 122 - 11.9

Backpropagation (#=0.1) 146 - 11.3

Backpropagation(U=0.3) 152 - 10.7

We used the whole image as testing data. Using the weight
estimates w’ provided by the least squares algorithm and (5.2),
the bilevel image shown in Fig. 5 was generated. A comparison of
the images in Figs. 3 and 5 shows that the neural network has
quite successfully learnt to perform image halftoning. The
above-described recursive implementation of image halftoning, of
course, has a higher complexity than the error-diffusion tech-
nique. In this paper it was used as an interesting example to
examine the properties of the learning algorithm. Application of
this algorithm to the estimation of the weights of other image
models, which lead to efficient parallel implementations, is in-
cluded in a forthcoming publication.

B. The XOR Problem

This classical learning problem requires the use of at least one
hidden layer in the network. The simplest form of such a network
comprises three neurons, as is shown in Fig. 6. Four pairs of
input and desired output patterns are used for its training

a:(0,0,0) 5:(0,1,1) ¢:(1,0,1) d:(1,1,0). (5.6)

The following sequence of 20 patterns was generated and used as

1EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

1099

0
(dB)
-50
\
— |
-100 \ (a)
-150
-200 \
-250
\ \] B
RN ot SIS NS
-300 \ {d)
j (e)
=350
1 200 400 600 800 1000
ITERATIONS
Fig. 7. Average performance (10 cases) of the momentum-backpropagation algorithm with (a) u=01; (b) p=03; (¢) p=05;
(d) p = 0.75; and (e) of the adaptive least squares algorithm.
0
AN
-100 \\
-150 \ \
e \ |
-250
\ (a)
-300
— (b)
\ {c)
-350)
1 200 400 600 800 1000
ITERATIONS
Fig. 8. Average performance of the iterative least squares algorithm with (a) p=0.1; (b) p=0.3; (c) p=0.5; and (d) of the adaptive
version of it.
TABLE II
PERFORMANCE OF THE LEAST SQUARES AND BACKPROPAGATION ALGORITHM
(xOR FUNCTION)
METHOD Backpropagation Iterative LS adaptive LS
u 0.1 0.3 0.5 0.75 0.9 0.1 0.3 0.5 —
ERROR (dB) _ - - - - -3 -86 -131 ~-256
100 Tterations 28 52 71 96 104 2
ERROR (dB) -72 -158 | -246 -284 | -299 -139 | -281 -322 -332
500 Iterations
ERROR (dB) -114 | -276 | -292 -293 | -303 | -226 | -325 | -327 -333
999 Iterations
input data for each iteration of the learning algorithms: The performance of the least squares algorithm using

bdacadcbdaaccbddachbb. (5.7)
Ten different sets of initial weights were generated in the range
(—0.3,0.3) by feeding a random number generator with different
initial seeds. The backpropagation algorithm (Fig. 7(a)-(d)) was
examined in the above cases with 2 momentum factor = 0.9
and different values of #- The iterative version of the least squ-
ares algorithm was also examined using the corresponding val-
ues of p. An initial choice P/(0) =100 was used, when appl-
ying the latter algorithm.

the adaptive selection of u was also investigated. The criterion
(4.1) was used, based on a simple halving technique for reducing
p, which proved equivalent to using a constant value of p=0.5.
Figs. 7 and 8 show the average normalized output error provided
by the above techniques, expressed in decibels, as a function of
the number of iterations. Table II summarizes the output error
values after 100, 500, and 1000 iterations of the above algorithms.
A value of p>0.75 often led to an unstable behavior of the
backpropagation algorithm. This result is in agreement with

1100

similar results reported in [2]. The case of p = 0.9 was included in
Table II for comparison purposes, by averaging the eight (out of
the ten) cases, when convergence was obtained. In this example,
the least squares algorithm had a better performance than back-
propagation, being also less sensitive to initial conditions. A way
to measure the convergence speed of the algorithms is to multiply
the number of iterations required for convergence by the number
of computations, either per iteration, or per iteration and neuron
in a massively parallel environment, given in (2.7) and (3.13) for
the backpropagation and the least squares algorithm respectlvely
It is very interesting to see that the adaptive selection of u’s has
greatly increased the convergence speed of the least squares
algorithm, without causing any stability problems, as would have
caused the use of a higher constant value of p. Furthermore, its
performance was independent of the selected initial conditions,

ay(m)][dy(m) 3y(m)

L-1
ax,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

APPENDIX

We will prove (3.17) first by considering the (L —1) layer. Let
us define 5! as follows:

i

Let us also note that each wl~! affects the outputs y(m)
through the hidden unit outputs x/~~! and the connections with
weights wL. If we use definition (3. 19) m (A.1), we can easily
derive (3. 17) and then let bL ™! equal B}

We will prove next (3.16) by considering the (L —2) layer and
using the chain rule to compute the required derivatives.

dy(m)
aij—l

r=lm

[3y(m)

awL 1

:| I*l 171(L- 1) (Al)

L-2 L1 L2
ax, x, axpy

dy(m)

flmlme] - L

il 2
= c,."’zch’2 Z (c,’,l
m=1

awL 2 au?L72 ax:fl

in contrast to backpropagation, the performance of which heavily
depended on the choice of initial conditions. It can also be
mentioned that the above-described results favorably compare
with corresponding results of the algorithm presented in [13].

VL

The development of a neural network learning algorithm,
which is more powerful than conventional backpropagation, has
been investigated in this paper. The algorithm was based on a
modification of the Marquardt-Levenberg least-squares opti-
mization method, which was suitable for the parallel updating of
the input weights of each neuron in the network. A distributed,
adaptive computation of the convergence rate parameter p was
presented and combined with a search criterion, used in opti-

A

L-3
w

CONCLUSIONS

dy(m)

L-3
aw

!

Ny
Y o
n'=1

mization techniques. A subject of further research, which is also
suggested in a recent paper [24], is to examine the application of
other powerful optimization methods, such as the conjugate
gradient method [9]-[10], in efficient neural network forms and
to further investigate the use of other efficient convergence
criteria [19] in the massively parallel neural network optimization
problem. Various examples from digital image halftoning and
logical operations were used to illustrate the performance of the
proposed algorithm. Similar results have been obtained, when
examining other problems, such as the recognition of handwrit-
ten digits. The application of the proposed technique in more
complex real-world problems needs to be further examined. The
least squares technique is more elaborate than backpropagation.
It was shown that for an important class of applications its
computational complexity can be made similar to that of back-
propagation, by using fast versions of it. A study of such applica-
tions is under investigation and constitutes another topic of
research.

L2
ax,

L
L L l L
Cn WamWin Z n’

w5 (@] T

E‘)w,.l"2 axk1 ax,i‘,_z an;H

][[ipAES R el

[xL‘Z!(xL—S)T])

wn mw]n’ (AZ)
Therefore,
Nl—l NL 1
-2 _ L-2.L- ekl L-1
i[} =¢ ¢ Z Z Z () anWn'm
n=1 n'=1
(A3)
or
Ny Np_a
L-2_ cL-2 L-2 L1 L-1pL—1
ij cj Z Win jn’ nn’ (A4)
n=1 n'=1
where the definition (3.17) for BL. ! was used.

Generalization of this procedure in the case of the /th layer is
straightforward. In the case of the (L —3) layer, for example,

Ny NL 2
n=1

Np_»
Wh,o Y c,f,zw,f?nlmifz}[x"4(x’“4)T]. (A5)
k'=1
Therefore,
Np- Np_z
:ﬁ 3_ Z L2 Y W,
= k'=1
M Niy Ny
[CkLZCkL'Z Z (053)2 Y o wwi - Z 5T W Wil o
m=1 n=1
(A6)
and using (A.2)-(A.3) we get
N Np-2
5= (A7)

L— -3 L-2 L-2pL-2
30,'1 Z Wik Z Wik Brk
k=1 k'=1

REFERENCES

P. Werbos, * Beyond regression: New tool for prediction and analysis in
the behavioral sciences,” Ph.D. dissertation, Harvard Univ., Cambridge,
MA, 1974.

11

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 36, NO. 8, AUGUST 1989

{2] D. Rumelhart, G. Hinton, and G. Williams, “Learning internal repre-
sentations by error propagation,” in Parallel Distributed Processing, vol.
1, (D. Rumelhart and J. McCleland, Eds.). Cambridge, MA: MIT
Press, 1986.

[3] D. Parker, “Learning logic,” MIT Tech. Rep. TR-47, Center for Comp.
Res. in Econ. and Manag. Sci., 1985.

[4] T. Sejnowski and C. Rosenberg, “NET talk: A parallel network that
learns to read aloud,” Comp. Syst., vol. 1, pp. 145-168, 1987.

[S] P. Werbos, “Building and understanding adaptive systems: A statisti-
cal/numerical approach to factory automation and brain research,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-17, Jan. /Feb. 1987.

[6] K. Levenberg, “A method for the solution of certain non-linear prob-
lems in least squares,” Quart. Appl. Math., pp. 164-168, 1944.

[71 D. Marquardt, “An algorithm for least squares estimation of non-linear
parameters,” J. Soc. Ind. Appl. Math., pp. 431-441, 1963.

[8] J. Beck and K. Arnold, Parameter Estimation in Engineering and Seci-
ence. New York: Wiley, 1976.

[9] D. Luenberger, Linear and Nonlinear Programming. Reading, MA:

Addison-Wesley, 1984.

J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations

in Several Variables. New York: Academic, 1970.

R. Fletcher and T. Freeman, “A modified Newton method for minimiza-

tion,” J. Opt. Theory Appl., vol. 23, pp. 357-372, 1977.

R. Watrous, “Learning algorithms for connectionist networks: Applied

gradient methods of nonlinear optimization,” Tech. Rep. MS-CIS-87-51,

LINC LAB 72, Univ. of Pennsylvania, 1986.

D. Parker, “Second order backpropagation: Implementing an optimal

O(n) approximation to Newton’s method as an artificial neural

network,” presented at the IEEE Conf. on Neural Information Process-

ing Systems, Denver, CO, Nov. 1987,

M. Davies and J. Whitting, “A modified form of Levenberg correction,”

in Numerical Methods for Nonlinear Optimization. (Ed. F. A. Lootsma).

London, England: Academic, 1972.

J. Cadzow, “Recursive digital filters synthesis via gradient based algo-

rithms,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-24,

pp. 349-355, 1976.

G. Watson, Approximation Theory and Numerical Methods.

Wiley, 1980.

G. Carayannis, N. Kalouptsidis, and D. Manolakis, “A fast sequential

algorithm for filtering and prediction,” JEEE Trans. Acoust., Speech,

Signal Processing, vol. ASSP-31, pp. 1394-1402, 1983.

Y. Boutalis, S. Kollias, and G. Carayannis, “A fast multichannel ap-

proach to adaptive image estimation,” JEEE Trans. Acoust., Speech,

Signal Processing, vol. 37, July 1989.

J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Opti-

mization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall,

1983.

J. Moré, “The Levenberg-Marquardt algorithm: Implementation and

theory,” in Numerical Analysis, (G. A. Watson, Ed.) Lecture Notes in

Math., 630, Springer Verlag, Berlin, 1977.

M. Osborne, “Nonlinear least squares: The Levenberg algorithm revis-

ited,” J. Australian Math. Soc., vol. 19 (Series B), pp. 343-357, 1976.

D. Anastassiou, “Digital image halftoning: A neural based approach,”

in Proc. IEEE Int. Symp. on CAS, Helsinki, Finland, June 1988.

J. Jarvis, C. Judice, and W. Ninke, “A new technique for displaying

continuous-tone images on bi-level displays,” Computer Graphics and

Image Processing, vol. 5, pp. 13-40, 1976.

P. Werbos, “Backpropagation: Past and future,” in Proc. IEEE Int.

Conf. on Neural Networks, San Diego, CA, July 1988.

[10]
(11]

[12]

[13]

[14]
[15]

[16] New York:

[17]
(18]
19]
{20}

[21]
[22}

{23)

(24

A Digital Controlled Oscillator Based on
Controlled Phase Shifting

GIULIANO DONZELLINI, DANIELE D. CAVIGLIA,
GIANCARLO PARODI, DOMENICO PONTA,
AND PAOLO REPETTO

Abstract —A new architecture for digital controlled oscillators is pre-
sented. Based on a controlled phase shifting principle, the novel oscillator
shows phase and frequency characteristics comparable to those of simple

Manuscript received February 26, 1988; revised November 8, 1988 and
February 24, 1989. This paper was recommended by Associate Editor
T. Matsumoto.

The authors are with the Department of Biophysical and Electronic Engi-
neering, University of Genoa, 16145 Genoa, Italy.

IEEE Log Number 8928271.

1101

accumulator-type rate multiplier based circuits. The strongest point of the
proposed configuration is the possibility of a high clock frequency, also
with conventional low-cost technologies. Due to its characteristics, it is
especially suitable for applications involving synchronization of different
systems. Its transfer characteristic, frequency resolution, and phase perfor-

are eval d and di d. Results from computer simulation and
functional verification are reported.

I. INTRODUCTION

The continuous advances in signal processing require the use
of digital structures whose speed is of paramount importance. As
an example, the transfer of standard coded signals between
different systems is a common need, requiring synchronization
among the systems themselves. Phase-locked loops (PLL) are
often used to achieve this goal [1]-[4].

For technological reasons, PLL’s are almost always imple-
mented as analog circuits (APLL) or, sometimes, as hybrid
circuits (ADPLL). As a result, such analog structures, connected
to a usually completely digital system, constitute the weakest part
of the system itself, because of the well-known problems of
stability, sensitivity to noise, drift, etc.

Clearly, the trend in PLL’s is toward the use of completely
digital systems: Lindsey and Chie {5] offer a wide review of
general problems and design options connected with the imple-
mentation of digital PLL (DPLL). In synchronization problems,
the main obstacle is represented by the speed required to the
digital components of the DPLL; often the specific structures
used for its design constitute another important limitation in
reaching high operating frequencies.

The aim of this paper is to contribute to the solution of these
problems: a new architecture for oscillators employed in DPLL,
the phase shifting digitally controlled oscillator (PSDCO), is
presented.

Usually a square wave digital controlled oscillator (DCO) is
based on a programmable down counter, used as a divider circuit
[5], [6]. Frequencies generated are precise’ and stable, but their
values are excessively discretized, as they are controlled by an
integer parameter in an inversely proportional mode. In some
cases, the designer has to resort to large ratio programmable
dividers to reach a good frequency resolution, which would
require impractically high input clock frequencies for operation.

When minimum rms phase jitter is not a primary requirement,
DCO’s can be implemented with accumulator-type rate-multi-
plier circuits [7]. Output frequency is obtained taking up the
carry signal of a circuit calculating the phase: a good frequency
resolution can be reached by increasing the length of the phase
accumulator register. In order to minimize phase irregularities,
proportional to the master clock period time, an high input clock
frequency is needed: this is limited, however, by the speed of the
phase calculating circuit, which works at master clock rate. In
addition, the output waveform is almost regular only if an output
by-two divider is employed: so, for a given application, the
master clock frequency must double.

In the same class of rms phase jitter behavior, we find DCO’s
based on “add/delete” one clock cycle techniques, where phase
can be easily controlled [8]-[10]. Phase control is obtained by
adding or deleting one master clock cycle, then dividing down to
reach an acceptable time-step/total-period ratio and duty cycle.
Reported implementations usually do not provide direct control
of DCO output frequency, as this structure is normally integrated
in complete DPLL’s. The basis add/delete circuit has to work

0098-4094 /89 /0800-1101$01.00 ©1989 IEEE

