
Improving the Performance of Resource
Allocation Networks through Hierarchical
Clustering of High – Dimensional Data�

Nicolas Tsapatsoulis1, Manolis Wallace1, and Stathis Kasderidis2

1 School of Electrical and Computer Engineering
National Technical University of Athens

9, Iroon Polytechniou Str., 157 73 Zographou, Athens, Greece
{ntsap,wallace}@image.ntua.gr

http://image.ntua.gr/
2 Department of Mathematics,King’s College London, Strand, WC2R2LS, UK

stathis@mth.kcl.ac.uk

http://www.kcl.ac.uk/

Abstract. Adaptivity to non-stationary contexts is a very important
property for intelligent systems in general, as well as to a variety of ap-
plications of knowledge based systems in era of ”ambient intelligence”. In
this paper we present a modified Resource Allocating Network architec-
ture that allows for online adaptation and knowledge modelling through
its adaptive structure. As in any neural network system proper parameter
initialization reduces training time and effort. However, in RAN archi-
tectures, proper parameter initialization also leads to compact modelling
(less hidden nodes) of the process under examination, and consequently
to better generalization. In the cases of high-dimensional data parame-
ter initialization is both difficult and time consuming. In the proposed
scheme a high – dimensional, unsupervised clustering method is used
to properly initialize the RAN architecture. Clusters correspond to the
initial nodes of RAN, while output layer weights are also extracted from
the clustering procedure. The efficiency of the proposed method has been
tested on several classes of publicly available data (iris, ionosphere, etc.)

1 Introduction

When functioning in an environment with non-stationary contexts both online
training and adaptation are critical. Online adaptation during normal operation
is a very complex problem because target outputs are not available. The problem
is handled either by using reinforcement learning or semi-supervised techniques
[1].

Resource Allocating Network (RAN) architectures [2], were found to be suit-
able for online modelling of non-stationary processes. In this sequential learning

� This work has been partially funded by the ORESTEIA IST-2000-26091/TBD
project

method the network initially contains no hidden nodes. On incoming training
examples, based on two criteria, either the RAN is grown, or the existing net-
work parameters are adjusted using a least mean square gradient descent. The
first criterion is based on the prediction error while the second is the novelty
criterion. In the cases where hidden neurons are modelled via RBFs ,the novelty
criterion states that the distance between the observation and the winning RBF
neuron should be greater than a threshold. If both criteria are satisfied, then the
data is memorized and a new hidden node is added to the network.

Starting from no hidden nodes is highly inefficient, since outliers in the train-
ing data may create unnecessary nodes and, therefore, increase both learning
effort and convergence time and deteriorate generalization performance. Unsu-
pervised clustering of the training data provides the means of a successful ini-
tialization of RAN architectures that initially contain RBF-type hidden nodes.
Clusters can be represented through their mean vector and, either an overall
spread (vector spread) or a vector of spreads, corresponding to the spread of ele-
ments in each input dimension. Clearly, such kind of parameters can be directly
transferred to RBF nodes. It will be shown in subsection 2.4 that the weights
connecting the hidden neurons and the output nodes of the neural network can
be also easily initialized based on the clustering results.

The number of clusters that are created by an hierarchical clustering pro-
cedure does not depend solely on the data; it is also affected by the stopping
criterion. In the case of RAN architectures, creating as few clusters as possible is
an advantage, while in pruning techniques starting from a relatively high number
of hidden nodes is not much a problem. However, in both cases, selecting the
stopping criterion of data clustering is not so critical, since structured learning
follows.

2 The Modified Resource Allocation Network

The RAN architecture that we adopt consists of three layers: The input layer,
containing n nodes, through which an input vector x ∈ Rn is fed to the hidden
nodes, a hidden layer containing q(t) RBF-type hidden nodes (at iteration t),
and an output layer, containing p sigmoid nodes [3].

2.1 Learning

Learning is incorporated into the network using the gradient descent method. A
squared error criterion is used as a training performance parameter. The squared
error e(t) at iteration t is computed in the standard way:

e(t) =
1
2

p∑
k=1

(dk(t) − yk(t))2

where dk(t) is the desired output and yk(t) is the output at node k given by:

yk =
1 − e2zk

1 + e2zk
, zk = wT

k · φ

where wk = [wk1 wk2 . . . wkq(t)]T , k =∈ Np, are the weights connecting the RBF
neurons with the output nodes and φ is the output of the hidden layer.

Each hidden node represents a single RBF and computes a kernel function
of x according to the following equation:

φj(x) = exp{−1
2

n∑
i=1

(
xi − µji

σji
)2}

where µj = [µj1, µj2 . . . µjn] and σj = [σj1, σj2 . . . σjn] are the center and the
spreads of the j-th hidden node, respectively. The output of the hidden layer is
given by φ = [φ1, φ2 . . . φn]

The three parameters of the network (µj , σj , j ∈ Nq(t) and wk, k ∈ Np) are
modified on the basis of update equations taking the following forms:

wkj(t + 1) = wkj(t) − η(t) · aj
ϑe(t)

ϑwkj(t)
(1)

µji(t + 1) = µji(t) − η(t) · aj
ϑe(t)

ϑµji(t)
(2)

σji(t + 1) = σji(t) − η(t) · aj
ϑe(t)

ϑσji(t)
(3)

η(t) is the online computed, decreasing with time, learning rate.
Parameter aj in equations 1,2,3 is related with the j-th hidden node and

accounts for soft competitive learning. In particular, aj indicates the similarity
between the j-th hidden node and the input pattern x(t), computed using the
following equation:

aj = 1 −
‖x(t) − µ

j
‖ − ‖x(t) − µ

nearest
‖

‖x(t) − µ
farthest

‖ − ‖x(t) − µ
nearest

‖

where µ
farthest

and µ
nearest

are centers of the farthest and nearest hidden nodes
from x(t) respectively, and ‖ · ‖ denotes the Euclidean distance.

2.2 Creating a hidden node

Training data are supplied to the network in the form of pairs (x(t), d(t)) of
input and target vectors. If a new input x(t) does not significantly activate any
hidden node and the prediction error is significantly large, a new node is created
according to the following relations: q(t) = q(t − 1) + 1, Nq(t) = 1, µ

q(t)
= x(t),

σq(t) = k · ‖x(t) − µ
nearest

‖ and wkq(t) = dk(t) − yk(t), k ∈ Np, where k is a
constant (overlap factor).

2.3 Updating the network

If the new input x(t) activates at least one of the hidden nodes, or the prediction
error is small, the network parameters are updated based on equations 1,2,3 and
4, 5, 6:

ϑe(t)
ϑwkj(t)

= φj(x(t)){dk(t) − yk(t)}{1 − (yk(t))2} (4)

ϑe(t)
ϑµji(t)

= φj(x(t))
{xi(t) − µji(t)}

σ2
ji(t)

p∑
k=1

(wkj(t){dk(t)−yk(t)}{1− (yk(t))2}) (5)

ϑe(t)
ϑσji(t)

= φj(x(t))
{xi(t) − µji(t)}

σ3
ji(t)

p∑
k=1

(wkj(t){dk(t)− yk(t)}{1− (yk(t))2}) (6)

2.4 Initialization of the Network Parameters

The network is initialized by setting the values of µ
j
, σj , j ∈ Nq(t) and wk,

k ∈ Np, according to the results of the hierarchical clustering algorithm. In
particular, the centers µ

j
of the hidden RBF neurons are obtained directly from

the centers of the created clusters, while the spreads are set according to the
following equation:

σji =

√√√√ 1
Nj

Nj∑
k=1

(νk
ji − mj)2

where νji is the i-th element of the k-th vector of the j-th cluster, mj is the
center of the cluster and Nj is the number of vectors of the cluster. Weights wk

are determined by considering the way elements of detected clusters are mapped
to output classes. Specifically, if per% of the elements of cluster j belong to class
k, then the corresponding hidden node is linked to the class’s output node with
a weight of wkj = per

100 .

3 Hierarchical Clustering of High – Dimensional Data

When the count of clusters that exist in a data set is not known beforehand,
partitioning methods are inapplicable; an hierarchical clustering algorithm needs
to be applied [4]. Their general structure is as follows:

1. Turn each input element into a singleton, i.e. into a cluster of a single element.
2. For each pair of clusters c1, c2 calculate a compatibility indicator CI(c1, c2).

The CI is also referred to as cluster similarity, or dissimilarity, measure.
3. Merge the pair of clusters that have the best CI. Depending on whether

this is a similarity or a dissimilarity measure, the best indicator could be the
maximum or the minimum operator, respectively.

4. Continue at step 2, until the termination criterion is satisfied. The termina-
tion criterion most commonly used is the definition of a threshold for the
value of the best compatibility indicator.

This process creates a dendrogram of partitionings on the data.
The core of this generic algorithm is the definition of a unique compatibility

indicator among any pair of clusters. When the input space has more than one
dimensions, an aggregating distance function, such as Euclidean distance, is
typically used as the CI. This, of course, is not always meaningful. Cases exist,
in which the “context” can change the similarity or dissimilarity measure to be
used. In such cases, a selection of distance function among elements needs to be
performed, prior to calculating a CI among clusters.

Real elements are usually grouped together semantically, based on their sim-
ilarity in a single or a few features. When the total number of features is high,
small distances in a small subset of them barely affect the overall distance, when
an aggregation of distances in all features is used. Thus, only when the correct
subset of features is considered, can elements be compared correctly. In this pa-
per we tackle feature selection based on the following principle: while we expect
elements of a given set to have random distances from one another according to
most features, we expect them to have small distances according to the features
that relate them. We rely on this difference in distribution of distance values in
order to identify the context, i.e. the features that most probably relate a set of
elements.

More formally, let c1 and c2 be two clusters of elements. Let also ri, i ∈ NF

be the metric that compares the i-th feature, and F the count of features (the
dimension of the input space). A distance (dissimilarity) measure between the
two clusters, when considering the i-th feature, is given by

fi(c1, c2) = κ

√∑
a∈c1,b∈c2

[ri(ai, bi)]κ

|c1||c2|

where ei is the i-th feature of element e, |c| is the cardinality of cluster c and
κ ∈ R is a constant.

The context is a selection of features to consider when calculating an overall
distance value. We can define it as a vector x of R+

F , with
∑F

i=1 xi = 1. Then
the overall distance between c1 and c2 is calculated as

d(c1, c2) =
F∑

i=1

[xi(c1, c2)]λfi(c1, c2)

where λ ∈ R is a constant and xi is the degree to which fi is included in the
context.

The features that relate c1 and c2 are “most probably” the ones that produce
the smallest distances fi. Therefore, the “correct” context can be calculated as
the context that produces the best (smallest) overall distance.

When λ = 1 the optimization is trivial: the feature that produces the smallest
distance is the only one selected. The degree to which it is selected is 1. If more
than one features produce the best distance, then they are equally selected, as
there is no information as to which should be favored.

Table 1. Classification rates and numbers of hidden nodes

No training Random Bayesian Pre-clustering

Number of rules 3 6 5 3
Classification rate 87.33% 96% 97.3 98%

When λ �= 1 and fi(c1, c2) �= 0∀i ∈ NF , then it is easy to prove that the best
context is given by:

x1(c1, c2) =
1∑F

i=1[
f1(c1,c2)
fi(c1,c2)

]
1

λ−1
and xi(c1, c2) = x1[

fi(c1, c2)
f1(c1, c2)

]
1

λ−1

where i ∈ NF . Proof is omitted for the sake of space.
When λ �= 1 and ∃i ∈ NF : fi(c1, c2) = 0, then the features for which

fi(c1, c2) = 0 are the ones the are (equally) selected.
As λ increases, pairs of clusters that are related by fewer features, and thus

have greater values in their contexts, are obviously assigned greater distances. It
order for distances to be used as compatibility indicators it is, of course, imper-
ative that they are transformed as to become directly comparable to each other,
even when different contexts are used for different pairs of clusters. Therefore,
the following compatibility indicator is used:

CI(c1, c2) =
d(c1, c2)
xλ(c1, c2)

where xλ(c1, c2) =
F∑

i=1

[xi(c1, c2)]λ

As far as the termination criterion is concerned, a threshold on the growth
rate of value of CI is used. In other words, when the best CI starts increasing
rapidly, we conclude that all valid clusters have already been detected and are
starting to be merged with each other. Therefore, the algorithm terminates.

The average values of features of a detected cluster cj form the centroid
mj = [mj1,mj1 . . . mjF], i.e. a “virtual” element that is located in the center of

the cluster. In this equation, mji is given by mji =

∑
a∈cj

ai

|cj |

4 Experimental Results

In order to demonstrate the efficiency of the proposed scheme, we have applied
it to several well known data sets. The iris data set contains 150 elements,
characterized by 4 features, that belong to three classes; two of these classes
are not linearly separable from each other. This is a relatively easy data set, as
the number of clusters in the data is equal to the number of classes. For testing
purposes, a part of the set was used as training data.

Four different experiments were carried out for the iris data set:

– The network was initialized as described in subsection 2.4, based on the
results of the clustering, and was not trained.

Fig. 1. MSE as a function of epochs: (a)random initialization (b) bayesian initialization
(c) with pre-clustering

– The network was initialized with three random hidden nodes
– A bayesian approach was used. Specifically, the three existing classes were

used as clusters, and the network was initialized as described in subsection
2.4.

– The network was initialized as described in subsection 2.4, based on the
results of the clustering.

As can be seen in Figure 1, where the MSE is presented as a function of the
number of epochs, random initialization has an upper bound of performance,
which is probably caused by a local minimum that the network has to overcome.
Properly initialized approaches, on the other hand, progress much better. The
bayesian approach seems to be better, as far as MSE during the first epochs is
concerned, but only the network that was initialized using the high – dimensional
pre-clustering continues to improve drastically. After a few epochs (about 20),
the proposed scheme has an MSE that is considerably lower that those of different
approaches.

Moreover, Table 1 presents the classification rate and the number of hidden
nodes in the final network. The first remark we can make is that the network
that was not trained performed much worse than others, indicating that training
is necessary for this data set. As far as the classification rate and the number
of rules are concerned, our method converges to a network of just three rules,
no more than the classes of the problem, while not loosing in performance when
compared to networks with larger numbers of hidden nodes. In addition to the
experiments presented herein, our method outperforms others in the literature

as well (7 rules, 96.7% [5]) (17 rules, 95.3% [6]) (9 rules, 95.3% [7]) (7 rules, 96%
[8]).

Similar results are observer for other data sets as well. Especially for the
ionosphere data set, which is clearly a high dimensional data set (it is charac-
terized by 34 features), simpler initialization approaches, such as the bayesian
approach, have proven to be totally ineffective.

5 Conclusions

In this paper, we combine an hierarchical clustering algorithm with a modified
Resource Allocation Network in order to properly initialize the network param-
eters and especially the RBF nodes of the hidden layer. RANs are dynamically
formed architectures and, thus, provide the means to model non-stationary phe-
nomena. On the other hand, proper initialization serves two purposes: (a) Re-
duces the learning effort, (b) keeps the number of hidden nodes low and increases
generalization performance; this is highly desirable since in RBF networks one
may consider the hidden nodes to be ”rules” and therefore use the RAN ar-
chitecture for knowledge extraction from numerical data [9]. The latter is very
important since there are several domains in which no estimation about the num-
ber of rules that are required to solve a particular problem is available. Moreover,
”rules” can be created to model a changing context, given the dynamic nature
of RANs.

The classification performance of the proposed network turns out to be excel-
lent. When initiated with three hidden nodes, based on the results of the high –
dimensional clustering, outperforms the majority of the soft-computing schemes
that were tested on the iris classification problem. It performs similarly in other
data sets as well, especially as the dimensionality of the input space increases.

References

1. Vapnik, V.: Statistical Learning Theory. John Willey and sons (1998)
2. Platt, J.: A resource-allocating network for function interpolation. Neural Comput-

ing 3, (1991) 213-225
3. Lee, K., Street, W. N.: Intelligent Image Analysis using adaptive resource allocating

networks. Procs of IEEE International Workshop on NN for Signal Processing (2001)
4. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, Academic Press (1998)
5. Nauk, D., Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from

data. Fuzzy sets and Systems 8 (1997) 277-288
6. Kasabov, N., Woodford, B.: Rule insertion and rule extraction from evolving fuzzy

neural networks: Algorithms and applications for building adaptive, intelligent, ex-
pert systems. Procs of FUZZ-IEEE’99, (1999) 1406-1411

7. Kasabov, N.: Learning fuzzy rules and approximate reasoning in fuzzy neural net-
works and hybrid systems. Fuzzy Sets and Systems 82, (1996) 135-149

8. Halgamuge, S., Glesner, M.: Neural Networks in designing fuzzy systems for real
world applications. Fuzzy Sets and Systems 65, (1994) 1-12

9. Mitra, S., DE, R.K., Pal, S.K.: knowledge-based fuzzy MLP for classification and
rule generation. IEEE Trans. Neural Networks 8,(1997) 1338-1350

