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Abstract. Extraction of visual descriptors is a crucial problem for state-
of-the-art visual information analysis. In this paper, we present a knowledge-
based approach for detection of visual objects in video sequences, extrac-
tion of visual descriptors and matching with pre-defined objects. The
proposed approach models objects through their visual descriptors de-
fined in MPEG7. It first extracts moving regions using an efficient active
contours technique. It then computes visual descriptions of the moving
regions including color, motion and shape features that are invariant to
affine transformations. The extracted features are matched to a-priori
knowledge about the objects’ descriptions, using appropriately defined
matching functions. Results are presented which illustrate the theoretical
developments.

1 Introduction

An Information Retrieval System (IRS) consists of a database containing a num-
ber of documents, an index that associates each document to its related terms,
and a matching mechanism that maps the user’s query (consisting of terms),
to a set of associated documents [1]. In the case of multimedia documents, the
content of the document cannot be directly used by the user of the IRS in the
query, since matching of multimedia content is not as simple as matching of
textual terms and features of the content must be used instead. The needs for
description of multimedia documents’ content have been addressed by MPEG-7,
the ISO standard for description of multimedia content [10]. A large number of
MPEG-7 compliant multimedia descriptions are currently being produced. The
standard defines three kinds of features that comprise the description, which
are Creation and Usage Information, Structural Information and Semantic In-
formation. The former regards mostly textual information, commonly known
as metadata. Structural information expresses a low-level and machine-oriented
kind of description, since they describe content in the form of signal segments
and their properties. On the other hand, semantic information expresses a high-
level, conceptual and human - oriented kind of description, since they deal with



Fig. 1. The proposed integrated scheme for object recognition, using the shape and
color descriptors.

semantic entities, such as objects and events.
In this paper we focus on a specific task of multimedia content description, i.e the
detection and recognition of objects being present in a video stream, whose dom-
inant characteristic is their motion. The extraction of moving objects in video
streams and their description with the use of low-level feature matching, is a task
that emerges in various applications in the fields of video understanding, such as
content-based retrieval and semantic description of events. This work constitutes
an integration of three steps for object recognition, revisiting and improving ex-
isting methods found in literature. The three steps being followed are illustrated
in Fig. 1 and can be briefly described as follows. The moving objects of interest
are extracted, with the use of a tracking method proposed in [12], which utilizes
an active contour (modified Snake) model and the motion information obtained
by a motion estimation scheme. Once the desired objects are extracted, i.e their
position and contour are estimated for each frame of the sequence, color descrip-
tors are extracted and their shape is appropriately modelled and transformed,
so that it becomes affine invariant. The final step of the overall scheme is the
matching of the color and shape descriptors with the respective ones of known
objects, existing in a database. In the experiments presented in this paper, we
use three different objects of either the same color or the same shape, to verify
the performance of the proposed integrated scheme in ground-truth examples.
More complicated examples of object recognition are currently being tested, with
the use of a database and an efficient searching procedure in terms of complexity.
Finally, for more sophisticated applications such as the semantic description of
events, the motion trajectory of the desired objects is to be utilized, in order to



obtain further useful information about the objects’ global motion, apart from
their instant motion, provided by motion estimation schemes.

2 Moving Object Extraction

Efficient moving object extraction in real-world conditions is a challenging task
for the researchers in the fields of computer vision and video processing. In
modern coding standards, like MPEG-4 and MPEG-7, the term ’video objects’
is used to define moving objects in a video sequence. Automatic extraction of
such objects is by no means trivial, and occlusion is one of most important
problems. In this paper we implement and extend the work presented in [12]
for object tracking, in order to support highly textured backgrounds and partial
occlusion of the moving objects.
In [12] object tracking is performed utilizing a snake model [8] and the motion
information obtained in previous time instances, or motion history. Regarding
the proposed snake model, its internal energy is defined in terms of the local
curvature and elasticity (distances between neighboring points), whereas the ex-
ternal energy term is defined with the use of a modified image gradient, replacing
the commonly used term |∇Gσ∗I| [7], which introduces noise in the snake mod-
els. More information about the definitions of the proposed energy terms can be
found in [12].
Before applying the tracking model in the current frame of a sequence, as de-
scribed in the following, we pre-process the image to eliminate noise, with the
use of an appropriate morphological Alternating Sequential Filter (ASF) [12, 9].
The modified image gradient used for our purposes is actually a part of the Wa-
tershed transformation in image segmentation problems [9] and consists of the
extraction of binary image markers through a morphological geodesic erosion
reconstruction of the image gradient, and successive morphological conditional
erosions of these markers, so that they constitute the only local minima of the
image gradient.

2.1 Motion Estimates Extraction

The correct extraction of moving edges in terms of position and direction is im-
portant and aids the accurate estimation of an object’s position from the current
to the next frame. Several existing techniques are able to adequately cope with
the difficult problem of optical flow recovery given that their assumptions hold.
The challenge is to achieve high robustness against strong assumption violations
commonly met in real sequences. We adopt the motion estimation technique
proposed by Black et al. [4] as an efficient tool for overcoming these violations.
They reformulate the objective function, which consists of the optical flow equa-
tion and the spatial coherence constraint, in order to include the robust statis-
tics tools [6] in an almost straightforward way. They simply take the standard
least-squares formulation of optical flow and use a robust estimator instead of
the quadratic one. This approximation is then minimized using a coarse-to-fine
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Fig. 2. Tracking method in steps: (a) object contour in the previous frame, (b) snake
initialization in the current frame, (c) uncertainty region, (d) object contour in the
current frame.

(multiresolution) simultaneous over-relaxation technique. The proposed refor-
mulation results in an area-based regression technique that is robust to multiple
motions due to occlusion, transparency or specular reflections and compensates
for over-smoothing and noise sensitivity.

2.2 Object Tracking

Given the proposed snake model presented in [12], the first step is to extract
some regions (a narrow band) around the curve, which are described as uncer-
tainty regions (Fig. 2). This is achieved by exploiting the motion history of the
tracked contour (curve points’ motion in previous time instances), estimated
with the use of the motion estimation scheme proposed in subsection 2.1: the
previously estimated contour (Fig. 2(a)) is deformed according to the previously
estimated motion (snake initialization) (Fig. 2(b)) and the standard deviation
of each point’s mean motion is calculated; the uncertainty region around each
point is then the region in the normal direction to the snake initialization, whose
width is defined according to the corresponding standard deviation (Fig. 2(c)).
The next step is to find the new position of each point of the curve, inside
its corresponding uncertainty region (Fig. 2(d)): instead of following an energy
minimization procedure, using a dynamic programming algorithm, we adopt a
force-based approach, which reduces the computational cost but also avoids the
point correspondence problem between different time instances.
According to that approach, energy terms are converted into forces and the final
solution is obtained by minimizing the resultant force [12] inside the extracted
uncertainty regions. The internal forces deform the snake to a shape similar to
the previously estimated object contour, whereas the external term forces the
snake towards the object boundaries, inside the extracted overall uncertainty
region. Thus, the energy minimization is approximated by using these forces, in
an iterative manner similar to the steepest descent approach [5].
The resultant force applied to each snake point is given by the weighted summa-
tion of the internal and external forces. The respective weights are automatically
estimated [12], whereas their estimation accuracy is not crucial for the final re-
sults. The final object contour is obtained when one of the following criteria is
satisfied: (a) if the resultant force is smaller than the one of the next iteration, or



(b) the maximum number of iterations is reached. It must be noted that the use
of the proposed steepest descent approach does not ensure that the final contour
corresponds to the solution of the energy minimization problem, but under the
constraints we pose, even if the final contour corresponds to a local minimum,
it is close to the desired solution (global minimum).
In order to separate background and object regions, especially when the back-
ground contains strong edges close to the object boundaries, as well as to cope
with moving object’s partial occlusion that may occur, we introduce two ad-
ditional constraints that each detected edge point must obey, so that we can
decide whether this edge belongs to the desired boundary; all candidate edges
are indicated by the snake’s external energy, and consequently by the modified
image gradient.
Without loss of generality, we suppose that the background is static and possible
occluding objects are also static. If p̃k is a detected candidate (possible bound-
ary) edge pixel, and pl and pm are the neighboring pixels in both sides of p̃k,
in the normal direction to the snake initialization (Fig. 2(b)), then (a) p̃k must
divide that line segment in two parts: an immiscibly moving and a immiscibly
static one, that is u(pl) � u(p̃k) and u(pm) � 0, and (b) p̃k must be a mov-
ing point with velocity close to the mean velocity of the object region, that is
u(p̃k) � uobject; u(·) and uobject denote the instant velocity and the object mean
velocity, obtained by the motion estimation scheme described in 2.1.
Thus, taking the above constraints into consideration, we overcome cases such
as (a) when the maximum is found in background: it is not a moving one and
does not separate two immiscible (according to the motion) parts of function
gm [12], (b) when the maximum is found inside the moving object region: al-
though it is a moving one, it does not divide function gm in such two parts, (c)
when occlusion occurs and the maximum is on the occluding object boundary:
the maximum is not moving, although it separates the uncertainty region and
(d) when occlusion occurs and the maximum is in the occluding object region:
neither the maximum is moving, nor it makes such a separation. In these cases,
where these two constraints are not reached, we ignore the external force and the
curve evolves according to its internal forces; in this way, we can obtain contours
similar to the ones in the past frames. Fig. 3 illustrates the performance of the
proposed method in a case of two moving objects: one getting partially occluded
by a static obstacle and the other moving in front of it. The adopted motion
estimation technique allows the utilization of the two rules described above, in
order to separate the moving objects from the static regions (background and
obstacle) of the scene.

3 Visual Descriptors

In the following, some visual descriptors, which have been introduced in the in-
tegrated scheme, are briefly revised according to the MPEG-7 framework [10].
The Dominant Color descriptor, illustrated in the experiments of this paper, is
presented in more detail in subsection 3.1.
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Fig. 3. (a1)-(a4) Motion estimation results and (b1)-(b4) the respective tracking results
for a case of two moving objects.

Dominant Color. The dominant color descriptor specifies a set of dominant col-
ors in any arbitrary shaped region. The extraction algorithm takes as an input
a set of color values and quantizes the image color vectors based on the Gener-
alized Lloyd Algorithm (GLA), as described in Section 3.1.
Region Contour. As contour shape descriptor an affine-invariant normalization
of the extracted object contours is used, as described in Section 3.2.

3.1 Color Descriptor

The Dominant Color descriptor used in our experiments to illustrate color match-
ing of visual objects is described in more detail below. This descriptor provides a
compact description of the representative colors of an image or image region. Its
main target applications are similarity retrieval in image databases and browsing
of image databases based on single or several color values. The representative
colors can be indexed in the 3D color space, which allows for efficient indexing
of large databases. In its basic form, the Dominant Color descriptor consists of
the number of dominant colors ND, and for each dominant color its value is
expressed as a vector of color components ci and the percentage of pixels pi in
the image region of the corresponding cluster [10].
In order to compute this descriptor, the colors present in a given image or region
are first clustered. Instead of the Generalized Lloyd Algorithm [10], the extrac-
tion procedure uses a fuzzy c-means algorithm [3] for the dominant color, to
divide the set of pixel values corresponding to a given image region into clusters
in the color space. The algorithm minimizes the supremum of the distance be-
tween the color pixel values and the representative color vectors using the global
distortion measure J defined as

J =
Nc∑
j=1

Ni∑
i=1

um
ij‖xi − coj‖2, (1)

where Nc is the number of clusters, Nj is the number of pixels of the j-th clus-
ter, xi is the i-th color vector, cj is the center (representative color) of the j-th



cluster and µi,j is the degree of membership of xi in the cluster cj . The proce-
dure is initialized with a predefined number of clusters ND whose representative
colors are computed as the centroid (center of mass) of each cluster. Then, the
algorithm follows a sequence of centroid calculation and clustering steps until
a stopping criterion (minimum distortion or maximum number of iterations) is
met.

3.2 Shape Descriptor

As shape descriptor we use an affine-invariant normalization of the object con-
tours extracted by the tracking algorithm described in Section 2. The obtained
contours are first re-sampled so that they constitute of a fixed number of equidis-
tant points, also preserving their original shape. In the following, we describe
the normalization method that transforms the object contours in order to make
them affine invariant, and thus appropriate for contour matching and recognition
[2].

Curve Othrogonalization The proposed procedure normalizes a curve with
respect to possible translation, skewing, and scaling, and affine transformation as
rotation or reflection. Let Ci = [xi, yi]T , i = 0, 1, .., N −1, be N curve points ob-
tained by the tracking algorithm. A 2×N matrix notation C = [C0, C1, ..., CN−1]
is used to represent the points, while their horizontal and vertical coordinates are
represented by x = [x0, x1, ..., xN−1] and y = [y0, y1, ..., yN−1]. For each curve
C, the (p, q)-order moments

mpq(C) =
1
N

N−1∑
i=0

(xp
i y

q
j ) (2)

of order up to two are used for the construction of the normalized curve na(C).
A set of linear operations (translation, scaling and rotation) in the curve are
computed during the orthogonalization procedure:

1. The center-of-gravity of the curve is normalized so as to coincide with the
origin:

x1 = x − µx, y1 = y − µy (3)

where µx = m10(C), µy = m01(C).
2. The curve is scaled horizontally and vertically so that its second-order mo-

ments become equal to one:

x2 = σxx1, y2 = σyy1 (4)

where σx = 1√
m20(C1)

, σy = 1√
m02(C1)

,

3. The curve is rotated counterclockwise by θ0 = π
4 as follows :

C3 = Rπ
4
· C2 =

1√
2
·
[
x2 − y2

x2 + y2

]
(5)



4. The curve is scaled again, exactly as in (2):

x4 = τxx3, y4 = τyy3 (6)

where τx = 1√
m20(C3)

, τy = 1√
m20(C3)

The normalized curve na(C) ≡ C4 can also be written as

nα(C) = N(C)(C − µ(C)) =
1√
2
·
[
τx 0
0 τy

]
·
[
1 −1
1 1

]
·
[
σx 0
0 σy

]
·
[
x − µx

y − µy

]
(7)

where µ(C) = [m10(C) m01(C)]T and N(C) denotes the 2 × 2 normalization
matrix of C. It can be seen in [2] that for each initial curve C, the normalized
curve na(C) defined in eqs. (2)-(6) has the following properties:

m10(na(C)) = m01(na(C)) = m11(na(C)) = 0,
m20(na(C)) = m02(na(C)) = 1

(8)

The term orthogonalization is justified since these conditions are equivalent to
na(C) · na(C)T = I. Let us now consider two curves C and C′ related through
an affine transformation:

C′ = A · C + t =
[
x′

y′

]
=

[
a b
c d

]
·
[
x
y

]
+

[
tx
ty

]
(9)

where matrix A is assumed to be of full rank. Then, C ′
1 = C′ + µ(C′) = A(C−

µ(C)) = A · C1 and translation is removed. Moreover, when a normalized curve
is rotated or reflected, in which case A is orthogonal, it remains normalized. It
is thus shown in [2] that there exists an orthogonal 2 × 2 matrix Q such that:

na(C′) = Q · na(C) (10)

This means that affine transformations are reduced to orthogonal ones that may
contain only rotation and/or reflection, depending on whether det(Q) = 1 or
det(Q) = −1. Therefore normalized curves are invariant to translation, scaling,
and skew transformations. Note that normalization is performed without knowl-
edge of the affine parameters A and t, and without one-to-one matching between
curves C and C′. In addition the transformation parameters (µx, µy, σx, σy, τx, τy)
along with na(C) contain all information on the original curve C.

Starting Point and Rotation Normalization The starting point normaliza-
tion procedure is based on the Discrete Fourier Transform (DFT) of the complex
vector z = x + jy = [z0z1...zN−1]T which is used here for curve representation,
where zi = xi + jyi, i = 0, 1, . . . , N − 1, denotes a single curve point. The DFT
of the curve z is given by:

u = [uk] =
N−1∑
i=0

zi · w−ki , k = 0, . . . , N − 1 (11)



where w = e
j2π
N , so that wlN = 1, l ∈ Z. Employing the primary argument, or

phase ak = Arg[uk] we construct the phase vector. Consider now a second curve
z′ = [z′0z

′
1 . . . z′N−1]

T that is circularly shifted with respect to z by m samples,
where m ∈ 0, 1, . . . , N − 1.

z′ = Sm(z) = [z′i = z(i+m) mod N | i = 0, 1, ...N − 1] (12)

In order to normalize the curve, a standard circular shift is defined using the
first and last Fourier phases:

p(z) = [
N

4π
(α1 − αN−1)] mod

N

2
(13)

and the opposite shift is applied to normalize the curve:

np(z) = S−p(z)(z) (14)

It is shown in [2] that the above normalization is invariant to starting point.
Rotation normalization is achieved by setting the phases of u1 and uN−1 to zero,
so that the became real and positive. Assume that two curves C and C′ have
been orthogonalized and normalized with respect to their starting point, thus
satisfying eq. (8). We then uniquely decompose matrix Q as

Q =
[
q11 q12

q21 q22

]
=

[
cosθ −sinθ
sinθ cosθ

]
·
[
sx 0
0 sy

]
(15)

where θ ∈ [0, π), sx = ±1 and sy = ±1 , in order to denote a one-to one relation
between rotation/reflection parameters and elements of Q. Adopting the complex
vector notation z, z′,

z′ = (sxx + jsyy)ejθ (16)

The rotation curve z is normalized according to the average value of Fourier
phases α1 and αN−1:

r(z) = [
1
2
(α1 + αN−1)] mod π (17)

z1 = z · ejr(z) (18)

Horizontal and vertical reflection is normalized according to the third-order mo-
ments of z1:

v(z1) = vx(z1) + jvy(z1) = sgn[m12(z1)] + j · sgn[m21(z1)] (19)

nr(z1) = z2 = vx(z1)x1 + j · vy(z1)y1 (20)

where sgn[·] denotes the signum function. It is then proved in eq. (3) that nr(C)
is invariant to rotation and reflection transformations:

nr(z′) = nr(z) (21)

As in curve orthogonalization, the set of parameters r(z), vx(z), vy(z) together
with nr(z) contain all information about the original curve z. Combining all
the above results, it is proved that the curve nr(np(na)) obtained by the entire
normalization procedure is invariant to any affine transformation.



4 Object Matching

Once visual descriptors have been extracted for each detected moving object,
these are employed to perform matching with existing objects stored in a database
with similarly computed visual descriptors. Matching functions are defined for
this purpose, for each visual descriptor. In the following, the matching procedure
is described for the color and shape descriptors defined in the previous section.

4.1 Color Matching

Matching of visual objects using color descriptors is based on mean color vectors
and dominant colors. More specifically, for mean color vectors, we use the RGB
information corresponding to the extracted moving objects of interest. The color
values of the region defined by the estimated object contour are normalized in
the interval [0, 1], and the respective mean values (r, g, b) are calculated. Thus,
each extracted object is described by the mean color vector m = [r, g, b]. The
color matching criterion between two objects with mean color vectors mi and
mj , respectively, is then,

DMC = ‖mi − mj‖ =
√

(ri − rj)2 + (gi − gj)2 + (bi − bj)2 (22)

This criterion is actually the mean square error between the two color descriptors
mi and mj . DMC is used in our implementation with adequate results, taking
into account the mean color vector of the objects in one or more frames: for more
accurate results, in case of external lighting changes along time, we calculate
the mean value of the vector m in successive frames, and then calculate DMC ,
according to that value.
For the dominant color descriptors, the matching function used depends on the
components present in the query and target descriptors. The basic matching
function DDC between two objects i and j uses only the percentages and color
values and is defined as follows

DDC =
Ni∑

k=1

p2
ik +

Nj∑
l=1

p2
jl −

Ni∑
k=1

Nj∑
l=1

2aik,jlpikpjl, (23)

where pi and pj correspond to query and target descriptors, and aik,jl is the
similarity coefficient between two colors cik and cjl:

aik,jl = {1 − dik,jl

dmax
, dik,jl ≤ Td,

0 , dik,jl > Td,
(24)

where dik,jl = ‖cik − cjl‖ is the Euclidean Distance between two colors cik and
cjl, Td is the maximum distance between two colors considered as similar, and
dmax = αTd, α > 1. This distance can be modified to take into account the op-
tional variance. One can then take a linear combination of the spatial coherency
and the above distance to give a combined distance as suggested in [10].



4.2 Shape Matching

Once object contours have been normalized and are invariant to affine trans-
forms, the most common way to measure the similarity between curves is the
Euclidean distance. Another way to measure the similarity between curves si,
sj is the cross-correlation criterion, which is defined as

DS = ρ(si, sj) =
∑N−1

k=0 sik · sjk√∑N−1
k=0 s2

ik ·
√∑N−1

k=0 s2
jk

(25)

where sik is the k-th point of curve si. The cross-correlation is a normalized
measure, which denotes how similar two curves are, and indicates a metric of
their content similarity.

5 Experimental Results

In this section we verify the efficiency of the proposed integrated scheme shown
in Fig. 1, in two video sequences representing three cases of object recognition.
In the first sequence a silver car is in motion, and it is successfully extracted
following the method presented in Section 2. In the second sequence two ve-
hicles are in motion and thus tracked: a car of the same shape with the one
extracted in the first sequence, but of different color (green), and a truck (differ-
ent shape) of the same color with the car of this sequence. Thus, we are called
upon to reach the three following conclusions: (a) the proposed scheme performs
very well even when the object contours are extracted with variations from the
ground-truth (actual contours), or when their shape is deformed due to the pro-
jection of their motion; to verify this assumption we use the same object in
different (non-successive) frames of the same sequence, (b) the two cars of the
two sequences are of the same type but they are not of the same color, and (c) in
the second sequence, the two moving objects are different in terms of shape, and
thus there is no need to proceed in color matching to decide whether they are
similar. Since the integrated scheme provides efficiency in the above three cases,
the authors are currently working on the construction of an object database and
a low-complexity searching procedure in that database.
Fig. 4 illustrates the performance of the tracking method described in Section
2, where the moving object of interest is the silver car. The object’s contour is
extracted in four non-successive frames, and it is used for both the shape and
the color matching procedures. In this example, the efficiency of the proposed
matching algorithm is verified in two frames (Fig. 4(a),(d)) of the sequence. The
contour of the car consisting of 100 sample points is illustrated in Fig. 5 for
each frame. The algorithm’s efficiency is based on the affine transformations,
following the proposed normalization steps described in Section 3.2, as shown
in Fig. 6. It can been seen that the final curves match very well, although nor-
malization of each curve is performed without the knowledge of the other. The
cross-correlation between these two curves is ρ = 0.9995 (� 1), which indicates
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Fig. 4. Tracking example in four frames of a sequence.
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Fig. 5. Affine invariant contours obtained for the same object in two different instances
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Fig. 6. (a) Curves after scaling normalization, (b) curves after rotation, and (c) starting
point normalization.

that these two contours very similar.
In the next example, illustrated in Fig. 7, two sequences containing objects of
different colors and with similar contours are presented. The respective tracking
results are shown in Figs. 3 and 4. The contour transformations, proposed in
Section 3.2, result in similar contours as shown in Fig. 7, which indicates that
the two cars are of the same type. This is also concluded numerically, using the
cross-correlation between the contours of the silver and the green car, which in
this case is ρ = 0.9988; the value of that measure is close to 1, which indicates
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Fig. 7. Sequences which contain objects with the same shape but different color
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Fig. 8. Sequences with different objects of the same color.

that these two cars are of the same type.
In the final example, two objects with different shape are examined, whose dom-
inant colors are similar, as shown in Fig. 8: green car and green truck extracted
in Fig. 3). In such cases, depending on the application, we conclude either that
there is no need to proceed to color matching, since the two shapes (and con-
sequently the two objects) are quite different, or that their dominant colors are
similar (if we are interested in objects of the same color). The contour normaliza-
tion results, illustrated in Fig. 8, show that the two contours are quite different,
whereas the cross-correlation between these two contours is ρ = 0.6586.
Fig. 9 illustrates the color clustering results for the three objects examined: (a)
silver car, (b) green car and (c) green truck. For each object, four color clusters
are estimated along with the respective centers. It must be noted that the colors
shown in the 3D graphs do not represent the true colors corresponding to the
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Fig. 9. Color distributions for the three objects, in the RGB space, after clustering:
four color clusters for each object have been estimated, whereas the center of each
cluster is also illustrated.

objects D DDC

silver car - green car 0.3692 0.2564
silver car - green truck 0.3430 0.2572
green car - green truck 0.0520 0.0447

Table 1. Color matching results (eq. 22) for the three moving objects of the examples
illustrated in Figs. 3 and 4.

clusters, but are used for representation purposes.
Finally, for the three extracted objects of the previously described examples,

the color matching results are illustrated in Table 1. As can be seen in the
last row, two of the objects (a car and the truck) are similar in terms of color
(DMC � 0.05, DDC � 0.04), whereas the matching between the silver car and
the other two objects leads to values of DMC > 0.3 and DDC > 0.2.

6 Conclusions and Further Work

In this paper an integrated scheme for moving object extraction and recognition
is proposed, aiming at the detection of objects of specific shape (contour) and
color. In this direction, three different methods of the literature are revised,
extended and integrated together: (a) moving object tracking, (b) contour affine-
invariant normalization, and (c) dominant color extraction. After following these
three steps, we decide on the similarity between two (or more) objects, according
to appropriate criteria. In this work, we test the proposed integrated scheme in
three simple examples, where the ground-truth is available; this is mainly done
to verify our assumptions. We are currently working on extending this scheme,
using an appropriate database of real-world sequences, for object-based video
retrieval.
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