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Abstract

In any neural network system, proper parameter initialization reduces training time and effort, and generally leads to compact modeling of

the process under examination, i.e. less complex network structures and better generalization. However, in cases of multi-dimensional data,

parameter initialization is both difficult and time consuming. In the proposed scheme a novel, multi-dimensional, unsupervised clustering

method is used to properly initialize neural network architectures, focusing on resource allocating networks (RAN); both the hidden and

output layer parameters are determined by the output of the clustering process, without the need for any user interference. The main

contribution of this work is that the proposed approach leads to network structures that are compact, efficient and achieve best classification

results, without the need for manual selection of suitable initial network parameters. The efficiency of the proposed method has been tested on

several classes of publicly available data, such as iris, Wisconsin and ionosphere data.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Resource Allocating Network (RAN) architectures

(Platt, 1991), were found to be suitable for online modeling

of non-stationary processes. In this sequential learning

method the network initially contains no hidden nodes. On

incoming training examples, based on two criteria, either

the RAN is grown, or the existing network parameters are

adjusted using a least mean square gradient descent. The

first criterion is based on the prediction error while the

second is the novelty criterion. In the cases where hidden

neurons are modeled via RBFs, the novelty criterion states

that the distance between the observation and the winning

RBF neuron should be greater than a threshold. If both

criteria are satisfied, then the data is memorized and a new

hidden node is added to the network.
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Starting without any hidden nodes is highly inefficient,

since outliers in the training data may create unnecessary

nodes and, therefore, increase both learning effort and

convergence time and deteriorate generalization perform-

ance. Furthermore, when neural networks are used for rule

extraction and especially for the sub-symbolic phase

(Apolloni et al., 2000) then proper initialization is

absolutely necessary. Unsupervised clustering of the train-

ing data provides the means of a successful initialization of

RAN architectures that initially contain RBF-type hidden

nodes. Clusters can be represented through their mean

vector and, either an overall spread (vector spread) or a

vector of spreads, corresponding to the spread of elements in

each input dimension. Clearly, such kind of parameters can

be directly transferred to RBF nodes.

In this paper we consider resource allocating radial basis

function (RBF) network architectures that generally consist

of three layers: the input layer, containing n neurons,

through which an input vector
�
x2R

n is fed to a hidden layer

containing q(t) RBF-type hidden neurons (at iteration t), and

an output layer, containing p sigmoid neurons (Lee & Street,

2001). Learning is incorporated into the network using the

gradient descent method, while a squared error criterion is
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used for network training. The squared error e(t) at iteration

t is computed in the standard way:

eðtÞ Z
1

2

Xp

kZ1

ðdkðtÞKykðtÞÞ
2 (1)

where dk(t) is the desired output and yk(t) is the output of

neuron k given by:

ykðtÞ Z
1 Ke2zk

1 Ce2zk
; zk Z ðwk

�
ÞT$fðtÞ

�
(2)

where wk
�
Z ½wk1;wk2;.;wkqðtÞ�

T are the weights connect-

ing the RBF hidden neurons with the output neurons and

fðtÞ
�
is the output of the hidden layer. Each hidden neuron

represents a single RBF and computes a kernel function of
�
x

according to the following equation:

fjðtÞ Z fjðxðtÞÞ Z exp K
1

2

Xn

iZ1

xiðtÞKmji

sji

� �2
 !

(3)

where mj
�
Z ½mj1;mj1;.;mjn� and sj

�
Z ½sj1; sj1;.; sjn� are

the center and spread of the jth hidden neuron, respectively.

Training data are supplied to the network in the form of pairs

xðtÞ
�
; dðtÞ

�
of input and target vectors. During training, if a new

input does not significantly activate any hidden neuron and

the prediction error is significantly large, a new neuron is

created. If the new input activates at least one of the hidden

neurons, or the prediction error is small, the network

parameters are updated. The network is initialized by setting

the value of q(0), i.e. the count of hidden neurons, mj
�
, sj

�
, jZ

1.q(0), i.e. the hidden layer parameters, and wk
�
, kZ1.p,

i.e. the weights connecting the hidden to the output neurons.

In Section 2 we present a methodology for properly

initializing networks through an unsupervised clustering

procedure. Experimental results are also presented, illus-

trating the theoretical developments.
2. The proposed clustering and network initialization

approach

In order to train the network to converge quickly, without

generating unnecessary hidden neurons, the initial par-

ameter values need to be as close as possible to their optimal

counterparts; such values may be estimated by clustering

available data samples: clusters will correspond to high

density areas in the input space, thus providing the

information needed for the formation and initialization of

the corresponding hidden neurons. As the count of mean-

ingful clusters in the training data, and equivalently the

optimal number of hidden layer neurons, is typically not

known beforehand, partitioning methods are inapplicable;

an agglomerative clustering approach needs to be utilized

(Theodoridis & Koutroumbas, 1998).

The generic agglomerative approach utilizes a metric

that quantifies the distance between clusters of data samples;
this metric is produced based on a metric that quantifies the

distance between individual data samples. Having a unique

metric to measure distances between data samples is not

compatible with the notion of input area density in real life

data, where different spreads have to be considered for each

one of the n input features. Moreover, when the input space

has more than one dimension, an aggregating distance

function, such as Euclidean distance, is typically used as the

distance metric, which is not always meaningful; cases

exist, in which the ‘context’ can change the metric to be

used. In such cases, a selection of distance function among

samples needs to be performed, prior to calculating the

distance among clusters (Wallace & Kollias, 2004).

In this paper, we extend the classic agglomerative

clustering algorithm in order to incorporate soft feature

selection in the inter cluster distance estimation process,

thus providing an output that is more effective for

initializing the network. To achieve this we tackle feature

selection based on the following principle: while we expect

data samples of a given set to have random distances from

one another according to most features, we expect them to

have small distances according to the features that relate

them. In the following, we rely on this difference in

distribution of distance values in order to identify the

context, i.e. the features that most probably relate a set of

data samples.

More formally, let c1 and c2 be two clusters of data

samples. Let also ri, iZ1.F be a distance metric defined in

space R
Si 4R

S, F the count of distinct metrics that may be

defined among a pair of clusters, S the count of features for

the data samples and Si the count of features considered by

the ith sample-to-sample distance metric. A distance metric

between the two clusters, when considering the ith sample-

to-sample distance metric, is given by

fiðc1; c2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
a2c1;b2c2

ðriðai
�
; bi

�
ÞÞk

jc1j$jc2j

k

s
(4)

where ai
�
, bi

�
are the positions of data samples a and b in

feature space R
Si and jc1j, jc2j are the cardinalities of

clusters c1 and c2 respectively and k2R is a constant.

Adjusting the value of k Eq. (4) can be transformed into

most of the classic agglomerative clustering metrics (Yager,

2000). For example, for k/KN Eq. (4) approaches the

min operator, for k/CN Eq. (4) approaches the

max operator, for kZ1 Eq. (4) estimates the mean value,

for kZ2 Eq. (4) becomes a Euclidian distance based metric

and so on.

The context is selection of features that should be

considered when calculating an overall distance value; we

define it as a vector ctx
�
2R

F
C with

PF
iZ1 ctxi Z1. Then, the

overall distance between clusters c1 and c2 is calculated as

f �ðc1; c2Þ Z
XF

iZ1

ðctxiðc1; c2ÞÞ
l$fiðc1; c2Þ (5)
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where l2R is a constant and ctxi is the degree to which fi is

included in the context. The optimal context can be

calculated as the context that produces the best (smallest)

overall distance f*:
,
 When lZ1 the feature i*2{1.F} for which fi�
ðc1; c2

ÞZminF
iZ1fiðc1; c2Þ is the only one included in the

context. If more than one feature satisfies the above,

they are all included to the same degree.
,
 When ls1 and di*2{1.F}: fi(c1,c2)Z0, then i is the

only feature included in the context. Again, if multiple

such features exist, they are equally included.
,
 In the non-trivial cases the optimal context is provided

by the following theorem.
Theorem. If ls1 and fi(c1,c2)s0ci2{1.F}, then the

optimal context is given by:

ctxiðc1; c2Þ Z ctxFðc1; c2Þ$
fFðc1; c2Þ

fiðc1; c2Þ

� � 1
lK1

;

i Z 1.F K1

(6)

ctxFðc1; c2Þ Z
1PF

iZ1
fFðc1;c2Þ
fiðc1;c2Þ

	 
 1
lK1

(7)

Proof. We start by substituting ctxF(c1,c2) for

ctxFðc1; c2Þ Z 1 K
XFK1

iZ1

ctxiðc1; c2Þ (8)

in Eq. (5), thus turning the minimization of f*(c1,c2) into an

(FK1)-parameter unconstrained optimization problem.

Demanding that

vf �ðc1; c2Þ

vctxiðc1; c2Þ
Z 0; i Z 1.F K1;

we have

vðctxFðc1; c2ÞÞ
l$fFðc1; c2Þ

vctxiðc1; c2Þ
C

vðctxiðc1; c2ÞÞ
l$fiðc1; c2Þ

vctxiðc1; c2Þ

Z 0; i Z 1.F K1 (9)

From Eq. (8) it is easy to calculate that

vðctxFðc1; c2ÞÞ
l$fFðc1; c2Þ

vctxiðc1; c2Þ

ZKl$ðctxFðc1; c2ÞÞ
lK1$fFðc1; c2Þ; i Z 1.F K1

(10)

applying which Eq. (9) is transformed into

ðctxFðc1; c2ÞÞ
lK1$fFðc1; c2Þ

Z ðctxiðc1; c2ÞÞ
lK1$fiðc1; c2Þ; i Z 1.F K1 (11)
The proof of Eq. (6) starting from Eq. (11) is

straightforward through simple term rearrangement, while

Eq. (7) is proven by considering Eq. (8). ,

The fact that the above theorem provides an analytical

solution to the optimization problem means that the

proposed approach can be incorporated in the hierarchical

agglomerative process without augmenting its compu-

tational complexity.

In order for distances to be used during clustering it is

imperative that they are transformed as to become directly

comparable to each other, even when different contexts are

used for different pairs of clusters. Therefore, the following

metric is finally used:

f ðc1; c2Þ Z
f�ðc1; c2Þ

adjðc1; c2Þ
(12)

where

adjðc1; c2Þ Z
X
i2NF

ðctxiðc1; c2ÞÞ
l (13)

As far as the termination criterion is concerned, a

threshold on the growth rate of f(c1, c2) is used. Once the

clustering algorithm terminates, the count of detected

clusters is used to determine the count q(0) of initial hidden

neurons. The centers mj
�

of the hidden RBF neurons are

obtained directly from the centers of the created clusters,

while the spreads sj
�
are set based on the clusters’ standard

deviations in each feature. Weights wk
�

are determined by

considering the way data samples of detected clusters are

mapped to output classes. Specifically, if per% of the

samples of cluster j belong to class k, then the corresponding

hidden neuron is linked to the class’s output neurons with a

weight of wkj Zper=100.
3. Experimental results

In order to prove the efficiency of the proposed approach,

in this section we present experimental results of its

application to the iris, breast cancer and ionosphere datasets,

all publicly available at UCI Repository of machine learning

databases.

The iris data set contains 150 elements characterized by 4

features and belonging to three classes; two of these classes

are not linearly separable from each other. For testing

purposes, a part of the set was used as training data (20% of

the data, i.e. 30 randomly selected elements, were used for

clustering and training of the resulting RAN, while all 150

elements were used for testing). Four different experiments

were carried out for the iris data set:
1.
 The network was initialized based on the results of the

proposed clustering, and was not trained.
2.
 The network was initialized with three random hidden

neurons and then trained.



Table 1

MSE as a function of epochs for the iris data
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3.
 Labels were used to partition training data in three

clusters, corresponding to the three existing classes, and

the network was first initialized based on these clusters

and then trained.
4.
Table 2

Classification rates and counts of hidden nodes for the iris data

No training Random

init

Bayesian

init.

Proposed

approach

Number of

rules

3 6 5 3

Classification

rate (%)

87.3 96 97.3 98
The approach described in this paper was used both for

clustering of available data and network initialization,

before training the network.

As can be seen in Table 1, where the mean square error is

presented as a function of the number of epochs, random

initialization of the network quickly reaches an upper bound

of performance, as far as the MSE is concerned, which is

probably caused by a local minimum that the network is

unable to overcome. Properly initialized approaches, on the

other hand, progress much better, indicating that proper

initialization is imperative. In Table 1, where the MSE on the

training set is considered, the Bayesian approach seems to

outperform the proposed approach, as has a smaller MSE in

both the initial epochs and after the termination of the

training. Still, the difference between the two, although

starting from considerable values, rapidly approaches zero

after few epochs of training. More importantly, as can be seen
in Table 2, where results from application on the whole data

set are presented, the proposed approach generates a more

efficient neural classifier, as it achieves better classification

rate on the test data, while at the same time having a smaller

number of hidden layer neurons. The reason is that the

proposed unsupervised clustering technique is more efficient

in detecting the patterns that underlie in the data, thus

providing better network initialization information.

In Table 3 we present a few of the best results reported in

the literature for the iris data set. (Countless more can be

found, as the iris data set is a data set that almost all

classification papers that refer to the UCI repository use

as a first simple example.) We can see that one of the two



Table 5

Comparative study on the ionosphere data

Method Classification rate (%)

Proposed approach 96

C4.5 94.9

RIAC 94.6

GALE 94

SVM 93.2

These results are reported in Barry, Holmes, and Llora (2004), Bennett and

Blue (1997), and Hamilton et al. (1996).

Table 3

Comparative study on the iris data

Method No of neurons/rules Classification rate (%)

Proposed approach 3 98

Pertselakis et al.

(2003)

3 98

Paul and Kumar

(2002)

5 100

These results are reported in Paul and Kumar (2002) and Pertselakis et al.

(2003).
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presented approaches, when using 5 rules, reaches 100%

precision. This is actually accomplished by numerous works

in the literature (with all other approaches using more than 5

rules) which is the main reason that results presented on the

iris data set are typically not considered sufficient to assess

the performance of a classification methodology. The main

problem with the iris data set is that due to the fact that it

contains too few data samples, it is not easy to partition it

into training and test data. Re-substitution is used, i.e. all the

data are used for training and then the same data are used for

testing purposes. In the experimental application of our

methodology we have used only 20% of the available data

and using 3 clusters we have equalled the performance of

the best known classifier that uses only 3 rules; the latter

achieves this performance through re-substitution.

The proposed approach has also been applied on the

Wisconsin breast cancer database, which contains 699

samples, characterized by 10 attributes, all assuming integer

values in (Apolloni et al., 2000; Wallace & Kollias, 2004).

65.5% of the data samples belong to the benign class and

34.5% to the malignant class. 16 samples are incomplete (an

attribute is missing) and have been excluded from the

database for the application of our algorithm. For testing

purposes, a part of the set was used as training data (50

randomly selected elements, i.e. 7.32% of the data, were

used for clustering and training of the resulting RAN, while

the remaining 633 elements were used for testing). Table 4

presents a comparative study between the proposed
Table 4

Comparative study on the Wisconsin data

Method No of neurons/rules Classification rate (%)

Nauk and Kruse

(1997)

7 96.7

Proposed approach 2 96.6

K-NN 200 samples 96.34

Bagui, Bagui, Pal, and

Pal (2003)

200 samples 96.17

Halgamuge and Gles-

ner (1994)

7 96

Kasabov (1996) 9 95.3

Kasabov and Wood-

ford (1999)

17 95.3

These results are reported in Bagui et al. (2003), Halgamuge and Glesner

(1994), Kasabov (1996), Kasabov and Woodford (1999), and Nauk and

Kruse (1997).
approach and other results reported in the literature for the

Wisconsin breast cancer database. The classifier generated

using the proposed approach achieves a classification rate

similar to the best performing other method (Nauk & Kruse,

1997), while displaying a considerably more compact

modeling (2 neurons compared to 7 or more).

Similar results are observed in other data sets as well.

Especially for the ionosphere data set, which is clearly a

high dimensional data set (it is characterized by 34

features), simpler initialization approaches, such as the

Bayesian approach followed for the iris data set, or the

selection of random initial parameter values, have proven to

be totally ineffective; using them the hidden layer is rapidly

populated with large numbers of neurons and this over-

fitting leads to poor performance on test data. The proposed

initialization leads to the generation of a very efficient

classifier of 10 hidden neurons. Comparative results are

presented in Table 5. In order to produce the results for the

proposed methodology 250 points have been utilized for

training and 101 data points for testing. Results of other

methods reported in other works in the literature and cited

here have been acquired using either leave-one-out

methodology (350 training, 1 test) or ten-fold cross

validation (316 training, 35 test). Similarly to the other

data sets, we can see that the proposed methodology can

lead to the generation of networks with high efficiency

demanding lesser training effort.
4. Conclusions

In this paper, we apply a novel agglomerative clustering

algorithm for the initialization of a RAN in order to properly

initialize the network parameters and especially the RBF

neurons of the hidden layer. Proper initialization serves two

purposes: (a) reduces the learning effort, (b) keeps the

number of hidden neurons low, thus being capable of

achieving good generalization performance. The classifi-

cation performance of the proposed network turns out to be

excellent, while using a compact problem representation.

When initiated with three hidden neurons, based on the

results of the proposed clustering approach, it outperforms

the majority of the soft-computing schemes that were tested

on the iris classification problem. It performs similarly in
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other data sets as well, especially as the dimensionality of

the input space increases.

The experimental results provided in this paper clearly

establish that the proposed methodology is very promising.

Currently, we are working towards the application of the

RAN structure and the initialization methodology presented

in this paper for the extraction and tracking of semantic user

preferences, in the framework of intelligent information and

multimedia retrieval.
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