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Abstract: - The deterministic generation of pseudorandom sequences is not a trivial task. Quite the contrary; 
even chaotic functions are often poor pseudorandom sequence generators. Thus, given the range of 
applications that require random inputs and the cost of actual random number generating equipment, the 
establishment of reliable tests of randomness becomes necessary. To day, the spectral test seems to be the only 
reliable test for randomness, as it can examine the correlation between successive symbols in a sequence. The 
drawback of the spectral test is that its results can only be visualized when comparing for correlation between 
consecutive pairs or triplets of symbols, while larger groups of symbols can only be examined mechanistically. 
In this paper, after reviewing the main points of random number and chaotic functions theory, we introduce a 
2-dimensional spectral test of randomness that is based on iterated function systems (IFSs) and use it to 
examine the quality of various chaotic functions as random number generators and to draw conclusions on the 
randomness of sequences produced by deterministic processes. 
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1   Introduction 
The great variety of computer applications that 
require the use of random data, combined with the 
(economic and other) difficulties of attaching a 
random number generating device to each computer, 
calls for the use of computer-generated sequences, 
that possess certain characteristics of randomness. In 
short, we wish to use sequences of numbers that are 
generated deterministically but appear to be random. 
We refer to these sequences as pseudorandom or 
quasi-random sequences.  
     Although randomness is a concept that we 
understand and identify easily in everyday 
situations, it is somewhat harder to define and 
identify it in a formal manner. One rather informal 
way to approach the concept follows: “In a sense 
there is no such thing as a random number; for 
example, is 2 a random number? Rather we speak of 
a sequence of independent random numbers with a 
specified distribution, and this means loosely that 
each number was obtained merely by chance, having 
nothing to do with other numbers of the sequence, 
and that each number has a specified probability of 
falling in any given range of values” [1]. 
     A more formal approach is: “A random number 
is a number chosen as if by chance from some 
specified distribution such that selection of a large 
set of these numbers reproduces the underlying 
distribution. Almost always, such numbers are also 

required to be independent, so that there are no 
correlations between successive numbers. 
Computer-generated random numbers are 
sometimes called pseudorandom numbers, while the 
term random is reserved for the output of 
unpredictable physical processes. When used 
without qualification, the word random usually 
means random with a uniform distribution. Other 
distributions are of course possible”.  
     The above might strike us as relaxed constraints. 
Still, it is impossible to produce an arbitrarily long 
string of random digits, according to them. 
Strangely, it is also very difficult for humans to 
produce a string of random digits, and computer 
programs can be written which, on average, actually 
predict some of the digits humans will write down, 
based on previous ones.  
     A simple way to explain the criteria for 
randomness proposed in [3] is the following: we 
may consider as random all the sequences that are so 
complicated, that the simplest way to describe them 
is by providing a copy of them. In other words, if a 
sequence can be reproduced by the application of a 
relatively short algorithm, it may not be considered 
random. This implies that by no means may a 
computer-generated sequence be considered 
random. In practice, though, we only attempt to 
verify randomness by examining the distribution of 
the numbers in a sequence and their independence. 
     In this paper we start by reviewing some of the 



most classical pseudorandom generators as well as 
the tests used to verify their quality. As we shall 
explain, the most powerful and reliable of them (the 
spectral test) has the disadvantage of being purely 
mechanistic, in the sense that it cannot be visualized 
and thus be made humanly perceivable. Continuing, 
after briefly reviewing chaotic functions, we propose 
a human perceivable 2D test that is based on Iterated 
Function Systems (IFSs) and is equivalent to the 
spectral test. We also draw some conclusions on the 
randomness of sequences produced by 
pseudorandom number generators. 
 
 
2   Random Number Generators 
Pseudorandom number generators are simple 
deterministic functions that can produce sequences 
or numbers of arbitrarily long period. These 
sequences are also required to have certain 
characteristics that are related to randomness, as is 
for example the independence of numbers. 
     Numerous pseudorandom number generators can 
be found in the literature, each one displaying 
different characteristics. In the following we only 
present two of them, in order to point out that simple 
functions are often better pseudorandom number 
generators that more complex ones, thus making the 
need for a reliable test of randomness imperative. 
 
2.1 von Neumann 
One of the first methods proposed for the generation 
of pseudorandom sequences is the following: given 
number nX  , acquire 1nX +   by squaring nX  and 
keeping the middle digits. This technique, although 
seems to be quite random, was proven to be quite 
inadequate. One of its major drawbacks is the 
dependence on the initial value 0X . For most initial 
values the system quickly reaches an orbit of short 
period, thus producing highly predictable sequences. 
     We include this example in our presentation in 
order to demonstrate that the generation of 
pseudorandom sequences cannot be accomplished 
with the use of methods chosen at random. This is 
demonstrated more clearly in [1]. 
      
2.2 Linear Congruence  
The linear congruential is the most widely used 
deterministic random number generator. It is 
described by the formula:  
 1 ( )modn nX aX c m+ = +  (1) 
It is obvious that this formula produces integers in 
the interval [ ]0, 1m − . Therefore, the generated 
sequence is periodic with a period that cannot 

exceed m . The study of (1) has produced the 
necessary theoretical background, to allow for the 
easy selection of combinations of  a , c  and  m , that 
lead to the generation of sequences of maximum 
period m . 
     Since all numbers in [ ]0, 1m −  are visited exactly 
once, it is easy to verify that the distribution the 
numbers in the sequence follow is uniform. Formula 
(2) is used to produce fractions in the interval  [ ]0,1  
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      Of course, the linear congruence is not an 
excellent random number generator for any given 
value of its parameters. In fact, for some cases its 
performance is remarkably bad. More on 
deterministic random number generators (and 
especially on the linear congruence) can be found in 
[1]. 
 
 
3   Tests of Randomness 
It is not that rare for a pseudorandom number 
generator to appear to be able to produce random 
numbers, and still for the acquired sequences to be 
unacceptable. Therefore, a reliable way of verifying 
the ‘randomness’ of a deterministic generator is 
required.  
     Unfortunately, it is not possible to evaluate the 
‘goodness’ of a generator directly. Rather than that, 
a generator is used to produce a pseudorandom 
sequence of numbers, which is then examined for 
characteristics of randomness. This means that our 
tests can only provide a statistical estimation of the 
goodness of a generator, rather than a conclusive 
result. When a large number of such statistical tests 
has been applied to a generator and the generator has 
not failed any of them, then we assume it to be a 
good generator (until proven otherwise).  
     In [3] randomness is defined only for sequences 
of numbers, and it is based on the complexity of the 
sequences. Formally, a sequence S  of length n  is 
considered to be random when  
 )(SKn =  (3) 
where )(SK  is the complexity of the sequence, i.e. 
the amount of information it contains. Using this 
definition it may be shown that most finite 
sequences are random. Therefore, the constraint that 
this definition describes is considered overly relaxed 
(and is not used in practice). When ∞→n , even for 
chaotic sequences, nSK <<)( . This is “corrected” by 
defining a new measure of complexity as follows 
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     When 0)( >′ SK , we consider the sequence S  to 
be of maximum complexity, and therefore random. 
As we will see later on, not all chaotic sequences 
should be considered random. This means that the 
measure of randomness described in (4) is not really 
useful. Furthermore, the n →∞  component makes 
the measure applicable only in theoretical studies of 
randomness rather than in practical tests. 
     Knuth [1] proposes a set of simple randomness 
tests to apply to a sequence. FIPS 140-1 [6] is a 
standard test series defined by the US National 
Institute of Standards and Technology (NIST), 
inspired by Knuth's basic tests. This standard was 
overseed by FIPS 140-2. FIPS 140-2 [7] defines a 
more comprehensive battery of tests, including 
Maurer's Universal Statistical test. Maurer's 
Universal Statistical test [4] is a test capable of 
detecting a large class of defects. In addition, this 
test provides an estimate of the entropy of the 
source. A better estimate can be obtained using a 
modified version of the test. 
     In the following we review some of the most 
common practical tests for randomness. 
 
3.1 Period   
The finite precision of computer arithmetic 
guarantees that all deterministic pseudorandom 
sequences are periodic. Still, if the period is large 
enough (if the sequence is longer than the sequence 
of random numbers that any application might ask 
for) this is not a problem. This makes the length of 
the sequence an important issue.  
     Therefore, an obvious measure of the goodness 
of a pseudorandom number generator is the length 
of the period of the sequences it produces. Although 
for the linear congruential generator this issue has 
been solved theoretically (and uniquely), for other 
generators this has to be done through testing. An 
easy way to measure the period length is to let the 
system iterate for n  steps ( n  needs to be 
considerably large, so that the system reaches a 
periodic orbit), and then count the number of steps it 
takes for it to return to the value nX . 
     For most pseudorandom number generators, there 
is not just one periodic orbit. Therefore, the 
estimation of the length of the period will not always 
produce the same output. Furthermore, the 
consistent calculation of a large period for numerous 
starting values does not guarantee the non-existence 
of a periodic orbit of extremely short period. (For 
more on this, one can see [2]) 
 

 
3.2 Chi-square 
Chi-square is a statistical test that examines 
randomness when a uniform distribution is assumed. 
In the following we sketch the main concept behind 
it: suppose that we choose randomly 6 digits from 
the set { }1,0 , assuming equal probabilities for the 
two symbols. There are 64 different permutations 
that this procedure might have produced, all having 
the same probability. The probability of the count of 
ones being equal to the number of zeros is 64

20 . 

The probability of the number of ones being 2 is 
smaller ( 64

15 ). The same holds for the probability 

of the number of ones being 4. Still, the probability 
of the number of ones being 1 different than the 
most probable is higher than the probability of them 
being exactly 3. This implies that generally we 
should not expect truly random sequences to follow 
their distributions perfectly. 
     Chi-square measures the difference between most 
probable and observed frequencies. The formula 
used is described in (5) 
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where 1+v  is the count of possible values, sp  is the 
probability of the s th value, sY  is the number of 
times the s th value appears in the sequence and n  is 
the length of the observed sequence. Readers may 
refer to [1] for the probabilities of V  lying in a 
specific range for various values of 1+v . 
 
3.3 Spectral Test 
The spectral test is one of the most important tests 
proposed in the literature. The reason for this is that, 
not only do all good generators pass it, but also all 
generators known to be bad actually fail it. The test 
checks the independence between consecutive 
numbers produced by a generator, by grouping them 
together in k -tuples and examining the way these 
k -tuples are positioned in kR . When 3k = , the 
positioning of the 3-tuples in 3R  using spherical 
coordinates, is referred to as a Noise Sphere. 
     Although very efficient in examining the 
‘randomness’ of a sequence of numbers using a 
deterministic pseudorandom number generator, the 
spectral test has a unique disadvantage when 
compared to the simpler abovementioned tests: 
when k  assumes values larger than 3 it is not 
possible for the test to be made human perceivable 
through visualization. 
 
 



4   Chaotic functions 
It is quite obvious that (1) describes a chaotic 
system. One typically has to wonder whether chaotic 
systems can generally be considered as good 
pseudorandom sequence generators. This was 
actually first implied by Ulam and von Neumann, 
who proposed the use of the quadratic equation (6) 
for the generation of pseudorandom sequences. 
 )1(41 nnn XXX −=+  (6) 
     Unfortunately, this turns out to be a poor random 
number generator. First of all, it generates sequences 
of extremely short period. Numerous consecutive 
tests (using the timestamp as a seed) and using the 
methodology described in section 3.1 calculated a 
period of 5,638,349. Of course, as we have already 
explained, this does not guarantee the non-existence 
of orbits with longer (or shorter) periods. We may 
consider, for example, the case of 3

4nX = , after 
which the period is reduced to one, as 1n nX X+ = . 
     Choosing the chaotic generator described in (7) 
we calculate the significantly longer (but still quite 
short) period of 55,176,418. On the other hand, a 
few million random numbers are probably enough to 
satisfy the needs of quite a large number of 
applications, and therefore the small length of the 
period is not necessarily enough for us to renounce 
generators in (6) and (7) as bad. It is other properties 
of randomness, such as those examined by the 
spectral test, that determine the quality of a 
pseudorandom number generator. 
 )sin(1 nn XX π=+  (7) 
     Continuing, we apply the chi-square test, which 
both (6) and (7) fail tragically, with the exception of 
(6) when 21=+v . Especially in that case, we 
suspect that the generator might not produce good 
pseudorandom sequences, because the balance 
between the two possible symbols is too good (and, 
as we have already explained, the probability of the 
balance being that good is very small). The poor 
performance of these generators in the chi-square 
test does not by any means imply that they are not 
good random number generators. It just points out 
that they are not following the uniform distribution, 
which is a fundamental assumption for the 
application of the chi-square test. This is apparent in 
figures 1-3.  
     It is relatively easy to find the analytic formula of 
the distribution followed by these generators [2], 
and therefore it is also possible to select 1+v  areas 
of unequal size in a such way that the chi-square test 
is completed successfully.  
     In general, the fact that these generators do not 
follow the uniform distribution makes it impossible 

to apply most statistical tests, as they are based on 
the assumption of uniformicity. In general, it is not 
easy to estimate how good most chaotic random 
number generator are, as they rarely follow the 
uniform distribution. 
 

 
Fig. 1 Distribution of the Linear Congruence 
 

 
Fig. 2 Distribution of the Quadratic 
 

 
Fig. 3 Distribution of the Sinusoidal 
 
 
5   Iterated Function Systems 
IFSs allow for the extremely compact modeling of 
complex fractal images, through the specification of 
a limited number of affine transformation; the 
reconstruction of the fractal image can be achieved 
via recursive application of the affine 
transformations. 
     In fact, although having extremely good storage 
properties, IFS modeling of images has the 



important disadvantage of often leading to 
computationally intractable representations. For 
example, it is impossible to reproduce Barnsley’s 
ferm deterministically. 
     The reproduction of the attractors of IFSs can be 
tackled using the monte carlo approach proposed in 
[8]. This approach relies on the random sequential 
application of the affine transformations that 
describe the IFS. Its operation greatly relies on the 
assumption of independence between elements of a 
random sequence; this sequence is supposed to only 
contain as many different symbols as the count of 
transformations in the IFS, so we split ]1,0[  in that 
many areas. In the case that the symbols are not 
independent, the attractor of the IFS is not 
completed successfully. 
     Therefore, the application of the monte carlo 
approach to drawing fractal images described via 
IFSs can be used for the evaluation of the 
independence of consecutive numbers of a random 
number generator, much like the spectral test. For 
example, using (6) to drive the monte carlo process 
for the generation of the fern (see Fig. 7), an 
extremely limited subset of the points of the triangle 
is drawn, while the linear congruence produces the 
fractal of Fig 6. 
     When nX  lies in a specific area of ]1,0[ , 1+nX  
may only end up in a small set of areas of ]1,0[ . In 
other words, consecutive elements of our sequences 
are far from independent. Following the reasoning 
of this proof, it is easy to conclude that all iterative 
systems that rely on a continuous generator will be 
bad generators of random numbers, if the first 
derivative of the generator is absolutely small. In 
general, the exponential propagation of error, that 
chaotic systems guarantee, is not sufficient for a 
good random number generator. It is necessary that 
the error is multiplied by a great factor even from 
the very first step, as we need the system to be 
totally unpredictable, even as far as the very next 
step is concerned. 
     To further clarify this statement we present 
figures 4-5. Figure 4 presents the function in (8). It 
is easy to see that the area ]8.0,6.0[  is mapped to 
the area ]345.0,905.0[])6.0sin(,)8.0[sin( 22 ≈ . 
Therefore, if we use (8) to randomly generate 
integers in the range 1-5, after the digit 4 we will 
never have the digit 1 (which corresponds to area 

]2.0,0[ ). On the other hand, if we use (9), which is 
presented in figure 5, no such constraint exists. 
 2

1 )sin( nn XX π=+  (8) 
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1 )10sin( nn XX π=+  (9) 

     If we attempt to use (9) for the generation of 
random sequences with more than 5 symbols we 
may start observing the same dependence between 
consecutive symbols. This implies that 
pseudorandom sequences only appear random up to 
a certain level of detail. After that threshold, 
dependence appears, and, after a second threshold, 
all uncertainty is lost (if the number of symbols is 
equal to the count of numbers representable in our 
computer system, the process is obviously totally 
deterministic). 

 
Fig. 4 Function 8 

 

 
Fig. 5 Function 9 

 
     Having reached these conclusions, it is easy to 
propose a new random number generator, as long as 
we do not need the resulting pseudorandom 
sequences to follow a uniform distribution. To 
demonstrate this we propose the use of (10). 
 2

1 )12730sin( +=+ nn XX  (10) 
     Indeed, (10) drove correctly the chaos game. It 
makes sense to expect it to continue to do so as long 
as the number of transformations of the IFS are 
greatly less than 730a = . As the number of 
transformations becomes larger, we split ]1,0[  in 
smaller areas and face the risk of not producing 
statistically independent sequences. Of course, the 
same holds even for the linear congruence, which 
would be a very poor random number generator if 
we selected a small parameter a . 
 
 



6   Conclusion 
In this paper we have proposed the use of the monte 
carlo approach to fractal image reconstruction from 
IFS models for the evaluation of the quality of 
pseudorandom generators. We have explained that 
this test is equivalent to the spectral test, which is 
the most reliable test for randomness to day, with 
the extra advantage that the approach proposed 
herein allows for a human perceivable 2D 
visualization of results.  

 
Fig. 6 Attractor using the linear congruence 
 

 
Fig. 7 Attractor using (6) 
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