
Iterated Function Systems as Human Perceivable
Spectral Tests of Randomness

MANOLIS WALLACE, HARA STEFANOU, STEFANOS KOLLIAS

Image, Video and Multimedia Systems Laboratory
National Technical University of Athens

9, Iroon Polytechniou Str., 157 73 Zographou, Athens
GREECE

wallace@image.ntua.gr http://www.image.ntua.gr

Abstract: - The deterministic generation of pseudorandom sequences is not a trivial task. Quite the contrary;
even chaotic functions are often poor pseudorandom sequence generators. Thus, given the range of
applications that require random inputs and the cost of actual random number generating equipment, the
establishment of reliable tests of randomness becomes necessary. To day, the spectral test seems to be the only
reliable test for randomness, as it can examine the correlation between successive symbols in a sequence. The
drawback of the spectral test is that its results can only be visualized when comparing for correlation between
consecutive pairs or triplets of symbols, while larger groups of symbols can only be examined mechanistically.
In this paper, after reviewing the main points of random number and chaotic functions theory, we introduce a
2-dimensional spectral test of randomness that is based on iterated function systems (IFSs) and use it to
examine the quality of various chaotic functions as random number generators and to draw conclusions on the
randomness of sequences produced by deterministic processes.

Key-Words: - Spectral test, pseudorandom sequence, Iterated Function System (IFS), chaotic function.

1 Introduction
The great variety of computer applications that
require the use of random data, combined with the
(economic and other) difficulties of attaching a
random number generating device to each computer,
calls for the use of computer-generated sequences,
that possess certain characteristics of randomness. In
short, we wish to use sequences of numbers that are
generated deterministically but appear to be random.
We refer to these sequences as pseudorandom or
quasi-random sequences.
 Although randomness is a concept that we
understand and identify easily in everyday
situations, it is somewhat harder to define and
identify it in a formal manner. One rather informal
way to approach the concept follows: “In a sense
there is no such thing as a random number; for
example, is 2 a random number? Rather we speak of
a sequence of independent random numbers with a
specified distribution, and this means loosely that
each number was obtained merely by chance, having
nothing to do with other numbers of the sequence,
and that each number has a specified probability of
falling in any given range of values” [1].
 A more formal approach is: “A random number
is a number chosen as if by chance from some
specified distribution such that selection of a large
set of these numbers reproduces the underlying
distribution. Almost always, such numbers are also

required to be independent, so that there are no
correlations between successive numbers.
Computer-generated random numbers are
sometimes called pseudorandom numbers, while the
term random is reserved for the output of
unpredictable physical processes. When used
without qualification, the word random usually
means random with a uniform distribution. Other
distributions are of course possible”.
 The above might strike us as relaxed constraints.
Still, it is impossible to produce an arbitrarily long
string of random digits, according to them.
Strangely, it is also very difficult for humans to
produce a string of random digits, and computer
programs can be written which, on average, actually
predict some of the digits humans will write down,
based on previous ones.
 A simple way to explain the criteria for
randomness proposed in [3] is the following: we
may consider as random all the sequences that are so
complicated, that the simplest way to describe them
is by providing a copy of them. In other words, if a
sequence can be reproduced by the application of a
relatively short algorithm, it may not be considered
random. This implies that by no means may a
computer-generated sequence be considered
random. In practice, though, we only attempt to
verify randomness by examining the distribution of
the numbers in a sequence and their independence.
 In this paper we start by reviewing some of the

most classical pseudorandom generators as well as
the tests used to verify their quality. As we shall
explain, the most powerful and reliable of them (the
spectral test) has the disadvantage of being purely
mechanistic, in the sense that it cannot be visualized
and thus be made humanly perceivable. Continuing,
after briefly reviewing chaotic functions, we propose
a human perceivable 2D test that is based on Iterated
Function Systems (IFSs) and is equivalent to the
spectral test. We also draw some conclusions on the
randomness of sequences produced by
pseudorandom number generators.

2 Random Number Generators
Pseudorandom number generators are simple
deterministic functions that can produce sequences
or numbers of arbitrarily long period. These
sequences are also required to have certain
characteristics that are related to randomness, as is
for example the independence of numbers.
 Numerous pseudorandom number generators can
be found in the literature, each one displaying
different characteristics. In the following we only
present two of them, in order to point out that simple
functions are often better pseudorandom number
generators that more complex ones, thus making the
need for a reliable test of randomness imperative.

2.1 von Neumann
One of the first methods proposed for the generation
of pseudorandom sequences is the following: given
number nX , acquire 1nX + by squaring nX and
keeping the middle digits. This technique, although
seems to be quite random, was proven to be quite
inadequate. One of its major drawbacks is the
dependence on the initial value 0X . For most initial
values the system quickly reaches an orbit of short
period, thus producing highly predictable sequences.
 We include this example in our presentation in
order to demonstrate that the generation of
pseudorandom sequences cannot be accomplished
with the use of methods chosen at random. This is
demonstrated more clearly in [1].

2.2 Linear Congruence
The linear congruential is the most widely used
deterministic random number generator. It is
described by the formula:
 1 ()modn nX aX c m+ = + (1)
It is obvious that this formula produces integers in
the interval []0, 1m − . Therefore, the generated
sequence is periodic with a period that cannot

exceed m . The study of (1) has produced the
necessary theoretical background, to allow for the
easy selection of combinations of a , c and m , that
lead to the generation of sequences of maximum
period m .
 Since all numbers in []0, 1m − are visited exactly
once, it is easy to verify that the distribution the
numbers in the sequence follow is uniform. Formula
(2) is used to produce fractions in the interval []0,1

1

n
n

XU
m

=
−

 (2)

 Of course, the linear congruence is not an
excellent random number generator for any given
value of its parameters. In fact, for some cases its
performance is remarkably bad. More on
deterministic random number generators (and
especially on the linear congruence) can be found in
[1].

3 Tests of Randomness
It is not that rare for a pseudorandom number
generator to appear to be able to produce random
numbers, and still for the acquired sequences to be
unacceptable. Therefore, a reliable way of verifying
the ‘randomness’ of a deterministic generator is
required.
 Unfortunately, it is not possible to evaluate the
‘goodness’ of a generator directly. Rather than that,
a generator is used to produce a pseudorandom
sequence of numbers, which is then examined for
characteristics of randomness. This means that our
tests can only provide a statistical estimation of the
goodness of a generator, rather than a conclusive
result. When a large number of such statistical tests
has been applied to a generator and the generator has
not failed any of them, then we assume it to be a
good generator (until proven otherwise).
 In [3] randomness is defined only for sequences
of numbers, and it is based on the complexity of the
sequences. Formally, a sequence S of length n is
considered to be random when
)(SKn = (3)
where)(SK is the complexity of the sequence, i.e.
the amount of information it contains. Using this
definition it may be shown that most finite
sequences are random. Therefore, the constraint that
this definition describes is considered overly relaxed
(and is not used in practice). When ∞→n , even for
chaotic sequences, nSK <<)(. This is “corrected” by
defining a new measure of complexity as follows

n
SKSK

n

)(lim)(
→∞

=′ (4)

 When 0)(>′ SK , we consider the sequence S to
be of maximum complexity, and therefore random.
As we will see later on, not all chaotic sequences
should be considered random. This means that the
measure of randomness described in (4) is not really
useful. Furthermore, the n →∞ component makes
the measure applicable only in theoretical studies of
randomness rather than in practical tests.
 Knuth [1] proposes a set of simple randomness
tests to apply to a sequence. FIPS 140-1 [6] is a
standard test series defined by the US National
Institute of Standards and Technology (NIST),
inspired by Knuth's basic tests. This standard was
overseed by FIPS 140-2. FIPS 140-2 [7] defines a
more comprehensive battery of tests, including
Maurer's Universal Statistical test. Maurer's
Universal Statistical test [4] is a test capable of
detecting a large class of defects. In addition, this
test provides an estimate of the entropy of the
source. A better estimate can be obtained using a
modified version of the test.
 In the following we review some of the most
common practical tests for randomness.

3.1 Period
The finite precision of computer arithmetic
guarantees that all deterministic pseudorandom
sequences are periodic. Still, if the period is large
enough (if the sequence is longer than the sequence
of random numbers that any application might ask
for) this is not a problem. This makes the length of
the sequence an important issue.
 Therefore, an obvious measure of the goodness
of a pseudorandom number generator is the length
of the period of the sequences it produces. Although
for the linear congruential generator this issue has
been solved theoretically (and uniquely), for other
generators this has to be done through testing. An
easy way to measure the period length is to let the
system iterate for n steps (n needs to be
considerably large, so that the system reaches a
periodic orbit), and then count the number of steps it
takes for it to return to the value nX .
 For most pseudorandom number generators, there
is not just one periodic orbit. Therefore, the
estimation of the length of the period will not always
produce the same output. Furthermore, the
consistent calculation of a large period for numerous
starting values does not guarantee the non-existence
of a periodic orbit of extremely short period. (For
more on this, one can see [2])

3.2 Chi-square
Chi-square is a statistical test that examines
randomness when a uniform distribution is assumed.
In the following we sketch the main concept behind
it: suppose that we choose randomly 6 digits from
the set { }1,0 , assuming equal probabilities for the
two symbols. There are 64 different permutations
that this procedure might have produced, all having
the same probability. The probability of the count of
ones being equal to the number of zeros is 64

20 .

The probability of the number of ones being 2 is
smaller (64

15). The same holds for the probability

of the number of ones being 4. Still, the probability
of the number of ones being 1 different than the
most probable is higher than the probability of them
being exactly 3. This implies that generally we
should not expect truly random sequences to follow
their distributions perfectly.
 Chi-square measures the difference between most
probable and observed frequencies. The formula
used is described in (5)

 ()
∑
+

=

−
=

1

1

2v

s s

ss

np
npY

V (5)

where 1+v is the count of possible values, sp is the
probability of the s th value, sY is the number of
times the s th value appears in the sequence and n is
the length of the observed sequence. Readers may
refer to [1] for the probabilities of V lying in a
specific range for various values of 1+v .

3.3 Spectral Test
The spectral test is one of the most important tests
proposed in the literature. The reason for this is that,
not only do all good generators pass it, but also all
generators known to be bad actually fail it. The test
checks the independence between consecutive
numbers produced by a generator, by grouping them
together in k -tuples and examining the way these
k -tuples are positioned in kR . When 3k = , the
positioning of the 3-tuples in 3R using spherical
coordinates, is referred to as a Noise Sphere.
 Although very efficient in examining the
‘randomness’ of a sequence of numbers using a
deterministic pseudorandom number generator, the
spectral test has a unique disadvantage when
compared to the simpler abovementioned tests:
when k assumes values larger than 3 it is not
possible for the test to be made human perceivable
through visualization.

4 Chaotic functions
It is quite obvious that (1) describes a chaotic
system. One typically has to wonder whether chaotic
systems can generally be considered as good
pseudorandom sequence generators. This was
actually first implied by Ulam and von Neumann,
who proposed the use of the quadratic equation (6)
for the generation of pseudorandom sequences.
)1(41 nnn XXX −=+ (6)
 Unfortunately, this turns out to be a poor random
number generator. First of all, it generates sequences
of extremely short period. Numerous consecutive
tests (using the timestamp as a seed) and using the
methodology described in section 3.1 calculated a
period of 5,638,349. Of course, as we have already
explained, this does not guarantee the non-existence
of orbits with longer (or shorter) periods. We may
consider, for example, the case of 3

4nX = , after
which the period is reduced to one, as 1n nX X+ = .
 Choosing the chaotic generator described in (7)
we calculate the significantly longer (but still quite
short) period of 55,176,418. On the other hand, a
few million random numbers are probably enough to
satisfy the needs of quite a large number of
applications, and therefore the small length of the
period is not necessarily enough for us to renounce
generators in (6) and (7) as bad. It is other properties
of randomness, such as those examined by the
spectral test, that determine the quality of a
pseudorandom number generator.
)sin(1 nn XX π=+ (7)
 Continuing, we apply the chi-square test, which
both (6) and (7) fail tragically, with the exception of
(6) when 21=+v . Especially in that case, we
suspect that the generator might not produce good
pseudorandom sequences, because the balance
between the two possible symbols is too good (and,
as we have already explained, the probability of the
balance being that good is very small). The poor
performance of these generators in the chi-square
test does not by any means imply that they are not
good random number generators. It just points out
that they are not following the uniform distribution,
which is a fundamental assumption for the
application of the chi-square test. This is apparent in
figures 1-3.
 It is relatively easy to find the analytic formula of
the distribution followed by these generators [2],
and therefore it is also possible to select 1+v areas
of unequal size in a such way that the chi-square test
is completed successfully.
 In general, the fact that these generators do not
follow the uniform distribution makes it impossible

to apply most statistical tests, as they are based on
the assumption of uniformicity. In general, it is not
easy to estimate how good most chaotic random
number generator are, as they rarely follow the
uniform distribution.

Fig. 1 Distribution of the Linear Congruence

Fig. 2 Distribution of the Quadratic

Fig. 3 Distribution of the Sinusoidal

5 Iterated Function Systems
IFSs allow for the extremely compact modeling of
complex fractal images, through the specification of
a limited number of affine transformation; the
reconstruction of the fractal image can be achieved
via recursive application of the affine
transformations.
 In fact, although having extremely good storage
properties, IFS modeling of images has the

important disadvantage of often leading to
computationally intractable representations. For
example, it is impossible to reproduce Barnsley’s
ferm deterministically.
 The reproduction of the attractors of IFSs can be
tackled using the monte carlo approach proposed in
[8]. This approach relies on the random sequential
application of the affine transformations that
describe the IFS. Its operation greatly relies on the
assumption of independence between elements of a
random sequence; this sequence is supposed to only
contain as many different symbols as the count of
transformations in the IFS, so we split]1,0[in that
many areas. In the case that the symbols are not
independent, the attractor of the IFS is not
completed successfully.
 Therefore, the application of the monte carlo
approach to drawing fractal images described via
IFSs can be used for the evaluation of the
independence of consecutive numbers of a random
number generator, much like the spectral test. For
example, using (6) to drive the monte carlo process
for the generation of the fern (see Fig. 7), an
extremely limited subset of the points of the triangle
is drawn, while the linear congruence produces the
fractal of Fig 6.
 When nX lies in a specific area of]1,0[, 1+nX
may only end up in a small set of areas of]1,0[. In
other words, consecutive elements of our sequences
are far from independent. Following the reasoning
of this proof, it is easy to conclude that all iterative
systems that rely on a continuous generator will be
bad generators of random numbers, if the first
derivative of the generator is absolutely small. In
general, the exponential propagation of error, that
chaotic systems guarantee, is not sufficient for a
good random number generator. It is necessary that
the error is multiplied by a great factor even from
the very first step, as we need the system to be
totally unpredictable, even as far as the very next
step is concerned.
 To further clarify this statement we present
figures 4-5. Figure 4 presents the function in (8). It
is easy to see that the area]8.0,6.0[is mapped to
the area]345.0,905.0[])6.0sin(,)8.0[sin(22 ≈ .
Therefore, if we use (8) to randomly generate
integers in the range 1-5, after the digit 4 we will
never have the digit 1 (which corresponds to area

]2.0,0[). On the other hand, if we use (9), which is
presented in figure 5, no such constraint exists.
 2

1)sin(nn XX π=+ (8)

 2
1)10sin(nn XX π=+ (9)

 If we attempt to use (9) for the generation of
random sequences with more than 5 symbols we
may start observing the same dependence between
consecutive symbols. This implies that
pseudorandom sequences only appear random up to
a certain level of detail. After that threshold,
dependence appears, and, after a second threshold,
all uncertainty is lost (if the number of symbols is
equal to the count of numbers representable in our
computer system, the process is obviously totally
deterministic).

Fig. 4 Function 8

Fig. 5 Function 9

 Having reached these conclusions, it is easy to
propose a new random number generator, as long as
we do not need the resulting pseudorandom
sequences to follow a uniform distribution. To
demonstrate this we propose the use of (10).
 2

1)12730sin(+=+ nn XX (10)
 Indeed, (10) drove correctly the chaos game. It
makes sense to expect it to continue to do so as long
as the number of transformations of the IFS are
greatly less than 730a = . As the number of
transformations becomes larger, we split]1,0[in
smaller areas and face the risk of not producing
statistically independent sequences. Of course, the
same holds even for the linear congruence, which
would be a very poor random number generator if
we selected a small parameter a .

6 Conclusion
In this paper we have proposed the use of the monte
carlo approach to fractal image reconstruction from
IFS models for the evaluation of the quality of
pseudorandom generators. We have explained that
this test is equivalent to the spectral test, which is
the most reliable test for randomness to day, with
the extra advantage that the approach proposed
herein allows for a human perceivable 2D
visualization of results.

Fig. 6 Attractor using the linear congruence

Fig. 7 Attractor using (6)

References:
 [1]D.E. Knuth, The art of computer programming,

vol 2, third edition, Addison—Wesley, 1997
[2] H.-O. Peitgen, H. Jurgens and D. Saupe, Chaos

& Fractals, Springer-Verlang, 1992
[3] J. Ford, How random is a coin toss?, Physics

Today, April 1983
[4]U.M. Maurer, A universal statistical test for

random bit generators, Journal of cryptology 5
(1992), no. 2, 89{105.

[5]A.J. Menezes, P.C. van Oorschot, and S.A.
Vanstone, Handbook of applied cryptography,
CRC Press, 1997.

[6]US DEPARTMENT OF COMMERCE -
National Institute of Standards and Technology,
FIPS 140-1: Security requirements for
Cryptographic Modules, 1994.

[7]FIPS 140-2: Security requirements for
Cryptographic Modules (Draft), 1999.

[8] Barnsley M.F., Ervin V., Hardin D., Lancaster
J., Solution of an inverse problem for fractals
and other sets, Proc. Natl. Acad. Sci. Vol 83, pp.
1975-1977, 1986.

