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1. INTRODUCTION 
 

1.1 Age-Related Macular Degeneration 
 
Age-related macular degeneration (AMD) is a disease that causes progressive      
damage to the macula, a small, specialized part of the eye that allows us to see fine 
details clearly. When the macula malfunctions, people experience blurring or darkness 
in the center of their vision and tasks such as reading and driving are affected. Some 
common ways vision-loss is detected are when words on a page look blurred, a dark 
or empty area appears in the center of vision, or straight lines look distorted.  
 
There are two forms of AMD including dry (also called atrophic, non-neovascular, or 
nonexudative) and wet (also called exudative). Dry AMD is the more common form 
of the disease and accounts for 90% of all AMD. The key identifier for dry AMD is            
small, round, white-yellow deposits called drusen that build up in the macula. The dry            
form currently cannot be treated with medication or surgery, but magnifying and            
telescopic lenses may be used to take advantage of most of the remaining eyesight. 
Vitamins and            supplements may be helpful in slowing the progress of AMD.  
 
 The dry form may or may not progress to the wet form. The wet form is less          
common but more severe than the dry form. It accounts for approximately 10% of            
all AMD but 90% of all blindness from the disease. This form is characterized by            
choroidal neovasculariztion (CNV), the development of abnormal blood vessels            
beneath the retinal pigment epithelium (RPE) layer of the retina. These vessels can            
bleed and cause macular scarring which can result in profound loss of central vision. 
Curently, laser treatment can be performed to stop the blood-vessel growth. This            
treatment does not restore vision, but it may minimize or delay the loss of eyesight.            
Since laser photocoagulation can damage healthy surrounding tissue, treatment is           
typically not performed until the disease has progressed to a stage where the laser          
treatment causes less damage than the disease.  
 
AMD is the leading cause of irreversible vision loss in people over 65 in the U.S.          
Although the cause of AMD is not completely understood, it has been identified that           
age is the greatest risk factor and there is a hereditary associated with the disease.           
AMD occurs more often in Caucasians than in Hispanics or African-Americans. In           
addition, there is a higher incidence in females than males.  
 

1.2 Medical Examination 
 
A thorough examination by an eye doctor is the best way to determine if one has 
macular degeneration, or if he/she is at risk for developing the condition. The typical 
eye exam evaluates the health of eyes through a number of tests. 
  
The exam begins by testing the visual acuity or the sharpness of vision. There are 
several different tests for visual acuity. After these visual tests, the front part of the 
eyes is examined to determine if everything is healthy. The doctor may put anesthetic 
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drops in the eyes before measuring the pressure in each eye. Then, drops are 
administered and cause pupils to dilate. This allows the doctor to examine the retina 
through the enlarged pupil. The drops typically take between 20 and 45 minutes to 
work, and wear off in about 4 hours. While the pupils are dilated, it is usually difficult 
to read, and bright lights may be uncomfortable. Some patients use sunglasses after 
dilation to reduce light sensitivity. 
 
The slit lamp is a microscope that gives the examiner a magnified view of the retina. 
Using the slit lamp, the doctor looks for drusen and other areas of the retina that 
appear suspicious or abnormal. After the dilating drops are administered and 
generated their effect, the eye doctor seats the patient at the slit lamp, which is a 
special microscope that enables the doctor to examine the different parts of the eye 
under magnification. When used with handheld lenses or special contact lenses, the 
slit lamp gives the examiner a highly magnified view of the retina.  
 
The examiner looks for drusen and other areas of the retina that might appear 
suspicious or abnormal. Since choroidal neovascularization (the new blood vessel 
growth found in the "wet" form of macular degeneration) occurs beneath the retina, 
the blood vessels themselves are not usually visible. But the examination can reveal 
clues, such as elevation of the retina, or fluids behind the retina, that suggest the 
presence of choroidal neovascularization (CNV). In these cases, further testing may 
be necessary. 
 

 
Fig. 1.1-(a) shows many drusen and fluid under the retina, in a case that is suggestive 
of choroidal neovascularization. Fig. 1.1-(b) shows fluid and blood beneath the retina, 
which suggests the presence of wet form AMD or choroidal neovascularization 
(CNV). Additional testing will be required for complete diagnosis and treatment. 
 
This examination process is tedious for both the doctor and the patient. Depth vision 
cameras have been developed to capture the retinal images for accurate off-line 
analysis. One particularly useful device is the Fundus camera developed in Spectral 
Imaging Technologies & Biomedical Diagnostics Lab-Institute of Electronic Structure  
& Laser (I.E.S.L.). 

Fig. 1.1 Retinal photographs showing (a) dry and (b) wet form of AMD 

(a) (b) 
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1.3 Image Acquisition 
 

 
The use of Fundus camera for optical imaging of retina is illustrated in Fig. 1.2. A 
digital camera is adapted to Fundus camera in combination with optical and digital 
filters, to capture images from eye’s retina. 
 

1.4 Problem Definition: 

 
In this thesis we attempt to develop an automated system for analyzing the images 
from a depth-vision camera. The goal is to isolate the drusen areas, detect their 
presence and measure their spatial extent. 
 
In examining for AMD, our region of interest is the nearly central part of the retina 
and actually the area, which does not contain the optic nerve. Drusen appear in the 
form of random shaped spots inside the retina. It is very difficult to localize drusen by 
just looking at a retina’s image, because many drusen are vague and “intermixed” 
with vessels. 
 
The images to be analyzed are complex mainly due to the vessels’ and fibres’ 
presence. Moreover, a problem that makes the analysis difficult is the non-uniform 
illumination caused by the different surface curvature (different light absorption). In 
brief, the following problems must be considered: 
 

Fig. 1.2 Schematic of Fundus camera  
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• Non-uniform illumination. 
 
• Vessels interact with drusen. 
 
• Contrast is low ⇒ drusen are difficult to be discriminated from background in terms 
of their intensity. 
 
• Drusen are of different sizes (large and small). 
 
• Small drusen near to each other tend to create larger areas that can be mistaken as 
large drusen. 
 
• Drusen tend to spread (blur) around their location. 
 
 
 
By taking the previous facts under consideration, the following tasks must be 
performed: 
 
• The non-uniform illumination effect has to be moderated (Fig. 1.3). 
 
• Each image must be further enhanced, in order to create more distance between the 
intensities of spots and background. 
 
• The resultant image has to be thresholded so that the diseased areas can be 
accurately isolated. 
 
• Finally, a refinement operation might be necessary for obtaining the whole area of a 
detected spot. 
 
These issues are examined in the following chapters of the thesis and an algorithm is 
proposed for the effective detection of drusen. 
 
More specifically the chapters of the thesis are organized as follows. Chapter 2 
presents an overview of enhancement and thresholding techniques. Chapter 3 
develops and analyzes the proposed approach for drusen detection. Chapter 4 presents 
examples of the application of the algorithm proposed on actual retinal images. 
Chapter 5 concludes this thesis with a summary and further directions opened up by 
this research. 
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1.5 Related Research 

 
During our search for related problems we came across similar enhancement, 
thresholding and detection issues. Some of them are reviewed here in relation to our 
work. 
 
Cork is a natural material produced in the Mediterranean countries. Cork stoppers are 
used to seal wine bottles. The cork stoppers are grouped into eight classes according 
to the degree of defects on the cork surface. These defects appear in the form of 
random-shaped holes, cracks, and others and they are not specifically defined to a 
particular shape or size. Thus, a “good” enhancement and classification process has to 
be built in order to reduce the rejection rate [9]. An iterative local enhancement and 
adaptive thresholding scheme was used in [9] to define and separate cracks from 
background. Classification is achieved with the use of a fuzzy MLP with a 
backpropagation-training algorithm. 
 
Breast cancer is a major cause of fatality among all cancers for women. However, the 
etiologies of this kind of cancer are unclear and no single dominant cause has yet 
emerged. Early detection is maybe the only way, till now, to start treatment before 
cancer is spread to other parts of the body. The proposed detector, in [11], consists of 
image preprocessing, feature extraction, cancer detection and classification (decision). 
Image preprocessing performs noise reduction by median, band-pass and Gaussian 
filters, and enhancement of features extracted from the mammogram by band-pass 
and wavelet filters. A sharpening filter is then applied to maximize the contrast value 
between the masses and the local background. Mean, variance, skewness, and kurtosis 
are statistical features used for the detection phase through an RBFNN (Radial Basis 
Function Neural Network) for classification purposes. 
 
Early detection and removal of skin cancer can also lead to patient’s survival. A 
segmentation of skin cancer images is proposed in [10], which consists of the 

  (a) 
  (b) 

Fig. 1.3 (a), image with non-uniform illumination, (b), image after non-uniform illumination 
correction 
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following steps. During the preprocessing phase the color image is transformed in 
such a way that the intensity of a pixel shows the distance of it from the background. 
An initial segmentation is obtained by the application of a threshold value determined 
from the average intensity of high gradient pixels. Shrinkage and expansion of a 
closed elastic curve, initialized at the approximate boundary of skin cancer, is applied 
so as to obtain best fit. 
 
Localization of the prostate in ultrasound images is crucial in urology. The objective 
of the proposed method in [13] is edge detection and localization of prostate in such 
images. Initially, the image is smoothed and first (edge strength) and second 
derivatives (edge location) are calculated. An approach that uses large filters in 
homogeneous areas and smaller ones in areas with some gray level transitions is 
presented and evaluated. An improvement of the previous method is achieved by 
adaptive filtering, in [12], using local standard-deviation calculations. Refinement of 
the edge localization is achieved by adjusting the filter size for areas with a local 
standard deviation above the average. 
 
A novel automated image analysis system is built, in [14], in order to differentiate 
immunohistochemically stained cells from background. Initially, global thresholding 
algorithms are applied to find an approximate threshold at which cells could be 
separated. A refinement algorithm follows, so as to erode edge pixels of the regions. 
However, resulting cells’ regions are overlapping and a new decomposition method is 
designed, in order to segment cells correctly. 
 
The characteristics and functionality of blood vessels play an important role in clinical 
and research studies on a number of diseases. An algorithm for vessel detection is 
presented in [15] that uses a set of linear filters. These filters are sensitive to vessels 
of different orientation and thickness. Thresholding with hysteresis, in [16], is used to 
differentiate actual vessels from noise or misleading regions. 
 
During our research on thresholding techniques, we came across several publications. 
A class of methods uses entropy’s principle for threshold decision. References [17], 
[18], [19] use two-dimensional entropies, while Wong and Sahoo, in [20], propose a 
threshold selection method based on the maximum entropy principle. Another class of 
techniques, in [5,21,22], based directly on the histogram’s shape proved to be more 
suitable to our problem. Otsu proposes a non-parametric and unsupervised method for 
automatic threshold selection in [5], while two other methods, namely Kittler’s - 
Illingworth’s and extension of Lloyd’s, are presented in [21] and [22] respectively. 
 
Our first approach on detecting drusen, after enhancing and thresholding the images, 
was the use of circle/ellipse detectors. Hough Transform, which is described in 
[23,24], is used for line and curve detection. Variants of HT exist and make use of the 
edge orientation, the circle radii, a complex accumulator with the phase proportional 
to the log of radius, etc. A modificated CHT (Circular Hough Transform) is presented 
in [25]. A two-dimensional Hough transform in conjunction with radius 
histogramming is used for circle recognition in [27]. A new circle/ellipse detector that 
adopts a hybrid scheme, which consists of a genetic algorithm phase and a local 
search phase, is proposed in [26]. 
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2. CRITICAL OVERVIEW OF ALGORITHMS 
 

2.1 The Illumination Model and its Compensation 
 
•The illumination-reflectance model: 
 
The term image refers to a two-dimensional (2-D) light-intensity function, denoted by 
f(x, y), where the value or amplitude of f at spatial coordinates (x, y) gives the 
intensity(brightness) of the image at that point. As light is a form of energy, f(x, y) 
must be nonzero and finite, that is 
 
   0 < f(x, y) < ∞.    (2.1-1) 
 
The images people perceive in everyday visual activities normally consist of light 
reflected from objects. The basic nature of f(x, y) may be characterized by two 
components: (1) the amount of source light incident on the scene being viewed and 
(2) the amount of light reflected by the objects in the scene. Appropriately, they are 
called the illumination and reflectance components, and are denoted by i(x, y) and r(x, 
y), respectively. The functions i(x, y) and r(x, y) combine as a product to form f(x, y): 
 
   f(x, y) = i(x, y)r(x, y)    (2.1-2) 
 
where  

 
0 < i(x, y) < ∞     (2.1-3) 

and 
 
   0 < r(x, y) < 1.    (2.1-4) 
 
 
 
• Homomorphic filtering: 
 
The illumination-reflectance model can be used as the basis for a frequency domain 
procedure that is useful for improving the appearance of an image by simultaneous 
brightness range compression and contrast enhancement. It is particularly effective in 
cases of large intensity variations of the background where object differences are 
diffused within the background changes and objects are hard to be identified. In terms 
of its illumination (background) and reflectance components (objects), an image is 
expressed by means of the relation ? q. (2.1-2). 
    
This equation cannot be used directly to operate separately on the spectra of 
illumination and reflectance because the Fourier transform of the product of two 
functions is not separable. In other words, 
 
   { } { } { }),(),(),( yxrFyxiFyxfF ≠  
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Let, however, define 
 
   z(x, y) = ln f(x, y)     (2.1-5) 
            = ln i(x, y) + ln r(x, y). 
 
Then, 
 
       F{z(x, y)} = F{ln f(x, y)}     (2.1-6) 
           = F{ln I(x, y)} + F{ln r(x, y)} 
 
or 
 
   Z(u, v) = I(u, v) + R(u, v)    (2.1-7) 
 
where I(u, v) and R(u, v) are the Fourier transforms of ln i(x, y) and ln r(x, y), 
respectively. 
 
If we process Z(u, v) by means of a filter function H(u, v) then 
 
   S(u, v) = H(u, v)Z(u, v)    (2.1-8) 
     = H(u, v)I(u, v) + H(u, v)R(u, v) 
 
where S(u, v) is the Fourier transform of the result. In the spatial domain, 
 
   s(x, y) = F-1{S(u, v)}     (2.1-9) 
            = F-1{H(u, v)I(u, v)} + F-1{H(u, v)R(u, v)}. 
 
By letting 
   
   { }),(),(),(' 1 vuRvuHFyxi −=     (2.1-10) 
 
and 
 
   { }),(),(),(' 1 vuRvuHFyxr −=    (2.1-11) 
 
Eq.(2.1-9) can be expressed in the form  
 
   ),('),(),( ' yxryxiyxs +=     (2.1-12) 
 
Finally, as z(x, y) was formed by taking the logarithm of the original image  
f(x, y), the inverse operation yields the desired enhanced image g(x, y); that is, 
 
   g(x, y) = exp[s(x, y)] 
    = exp[ ),(' yxi ] exp[ ),(' yxr ]   (2.1-13) 
    = i0(x,y )r0(x, y) 
 
where 
 
   i0(x,y ) = exp[ ),(' yxr ]    (2.1-14) 
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and 
   r0(x,y ) = exp[ ),(' yxr ]    (2.1-15) 
 
are the illumination and reflectance components of the output image. The whole 
process is summarized in Fig. 2.1. 
 
This enhancement approach is based on a special case of a class of systems known as 
homomorphic systems. The key to the approach is the separation of the illumination 
and reflectance components, achieved by Eq. (2.1-7), so that homomorphic filter H(u, 
v) can operate on these components separately, as indicated in Eq. (2.1-8). 
 
 
 
 
 
The illumination component of an image is generally characterized by slow spatial 
variations, while the reflectance component tends to vary abruptly, particularly at the 
junctions of dissimilar objects. These characteristics lead to associating the low 
frequencies of the Fourier transform of the logarithm of an image with illumination 
and the high frequencies with reflectance. Although these associations are rough 
approximations, they can be used to advantage in image enhancement. 
 
The previous method produces an undesirable effect when applied to images with 
illumination varying strongly from side to side (dark to bright or reverse). As a 
consequence, these images have different illumination at each side. Homomorphic 

filtering enhances such differences. For 
smoother transitions at the edges of the image 
we need to impose some similarity at the 
horizontal and vertical borders, which results in 
a horizontal and vertical averaging at border 
areas (Fig 2.2). Border smoothing is achieved 
through windowing with W(x). 
 
 
 
Two procedures of line scanning and filtering: 
 

)(*)()(*))(1( xfxWxfxW −+−  
 
 
 

)(*)()(*))(1( yfywyfyW −+−  
 
 
 
 
 
 
 

For x=0...N-1 

For y=0...N-1 

?  

X -X 

 ?  0 

0 

0.5 
W (x) 

Fig. 2.2 Border smoothing 

     ln      FFT 
 

  H(u,v)    (FFT)-1     exp 

Fig. 2.1 Steps of homomorphic filtering 

f(x,y) ⇒       ⇒         ⇒        ⇒    ⇒            ⇒ g(x,y) 
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It becomes obvious that a good deal of control can be gained over the illumination 
and reflectance components with the homomorphic filter. This control requires the 
specification of a filter function H(u, v) that affects differently the low- and high-
frequency components of the image’s spectrum. Fig. 2.3 shows a cross section of such 
a function. A complete specification of H(u, v) is obtained by rotating the cross 
section 360o about the vertical axis. If the parameters ?L and ?H are chosen so that 
?L<1 and ?H >1, the filter function shown in Fig. 2.3 tends to decrease the low 
frequencies and amplify the high frequencies, which is the desirable operation of this 
filter as described previously. 
 
 

 
 
The selection of the filter’s cutoff frequency is crucial. The overall illumination is 
actually a slowly varying 2D function caused e.g. by surface curvature. We want to 
attenuate this component so that the high frequency detail will be easily detected. 
Nevertheless, illumination is spread out to a range of low frequencies, so that the 
appropriate cutoff point for separating the operation in the frequency domain is not 
obvious. As an example, consider the image in Fig.2.5-(a) that illustrates the problem. 
Selection of a very low cutoff frequency will not moderate the non-uniform 
illumination effect as seen in (Fig. 2.5 – (c)). On the contrary, if the cutoff frequency 
is high, then noise (high frequencies) is retained and the result is of questionable 
value, as seen in (Fig. 2.5-(b)). A closer look on spectra of images under consideration 
facilitates the appropriate selection. Fig. 2.4 shows the plot of one horizontal line of 
image’s FFT. We observe a common abrupt fall in a certain region, so that we can 
select the appropriate cutoff, (Fig. 2.4-(b)), as the point of first significant FFT 
curvature change, or the first point where the magnitude of its derivative falls below a 
threshold. This cutoff point derives the image in Fig. 2.5–(d), which has compensated 
for illumination changes by the background. 

Fig. 2.3 Cross section of a circularly symmetric filter function for use in 
homomorphic filtering. D(u, v) is the distance from the origin (from 
[1].) 
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Selected 
cutoff 

Fig. 2.4 (a) Fourier spectrum of image showing low and high cutoff frequencies; (b) zoomed plot showing 
the approximate position of selected cutoff 
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The selection of appropriate ?L and ?H is challenging, since a trade-off between 
preservation of low and amplification of high frequencies exist. In order to get this 
trade-off over, we provide results, shown in Fig. 2.6, obtained with various 
differences between values of ?L and ?H. 

 
 
 
 
 
 
 
 

(a) (b) 

(c) 

Fig. 2.5 (a) original image after modification of edges through averaging; (b) result of 
applying homomorphic with a high cutoff; (c) use of a low cutoff; (d) use of an intermediate 
cutoff (the selected one) 

(d) 
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The image in Fig. 2.6-(a) is badly illuminated resulting in darker right side and lighter 
right side. When the difference (?H - ?L) is large, as in Fig. 2.6-(b), low frequencies are 
attenuated and uniform areas (large drusen) are not clearly distinguished from the 
background. This means that further enhancement would either shrink or break these 
areas apart. When the difference is small, as shown in Fig. 2.6-(c), the non-uniform 
illumination effect is not moderated, because low frequencies (responsible for overall 
illumination) are not adequately attenuated. Best result is obtained in Fig. 2.6-(d), as 
the difference in illumination is corrected and large drusen are clearly distinguishable. 

(d) 

(a) (b) 

(c) 

Fig. 2.6 (a) original image; (b) ?L=0.01 ?H=1.5; (c) ?L=0.9 ?H=1.1; (d) ?L=0.1 ?H=1.2; 

(d) 
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2.2  Contrast Enhancement Techniques 
 
2.2.1  Global vs. Local Enhancement 

 

 
The contrast of an image is a property based on human perception abilities. An 
approximate definition of contrast is [37] 
 

  c
F B
F B

=
−
+

 

 
where F and B are the mean gray levels of two regions whose contrast is evaluated. 
Image processing defines several methods suitable for overall enhancement, like 
global histogram equalization - specification. Beyond global enhancement, it is often 
necessary to enhance details over small areas of an image.  
 
Global enhancement techniques are affected by the overall distribution in the image 
and stretch illumination differences that are widely spread within the image. Actually, 
they separate strong concentrations in the distribution of the image. Small intensity 
differences in a local region are not accentuated. 
 
The general idea can be expressed in the framework of three cases:  
a) no enhancement for very small gray level differences between neighborhoods 

(caused probably by quantization noise or very small gray level variance;  
b) moderate to strong enhancement applied if the contrast between regions is small 

but outside the range of quantization contrast;  
c) no contrast enhancement is applied if the contrast is already sufficient.  
 
Global histogram processing techniques, like histogram equalization, are easily 
adaptable to local enhancement. The procedure is to define a sliding or a non-sliding 
window and apply the technique at smaller parts of the image. Features from 
neighboring pixels’ intensities, like mean and standard deviation (variance), are often 
used at typical local transformations. Mean is a measure of  average brightness and 
the variance is a measure of contrast (high contrast if pixels deviate significantly from 
their neighbors). Fig. 2.7 presents an example, where the same image is processed by 
both global and local technique. Fig. 2.7-(b) illustrates the overall enhancement of 
intensity variations obtained by global histogram equalization, while in Fig. 2.7-(c) 
we notice the excessive contrast enhancement in small regions. 
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2.2.2 Local Enhancement Techniques 
 
The general form of a local transformation is expressed as follows: 
 

[ ] ),(),(),(),(),( yxmyxmyxfyxAyxg +−∗=  
 

where A x y k
M
x y

( , )
( , )

=
σ

 0 < k < 1 

 
m(x, y): gray level mean in neighborhood centered at (x, y) 
s (x, y):  gray level standard deviation of local neighborhood 
M:  global image mean 
 

Fig. 2.7 (a) original image; (b) result of global histogram equalization; (c) result of local 
histogram equalization using a small neighborhood about each pixel 

(a) 

(b) (c) 
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Application of the local gain factor A(x, y) to the difference between f(x, y) and  the 
local mean amplifies local variations. Because A(x, y) is inversely proportional to the 
standard deviation, areas with low contrast receive larger gain. The mean is added 
back to restore the average intensity level of the image in the local region. In practice, 
by adding back only a fraction of the local mean and restricting the variations of A(x, 
y) between two limits (Amin, Amax) we can balance large deviations of intensity in 
isolated regions. 
 
Several variations of the previous equation have been established in the literature. 
 
 
• Adaptive contrast enhancement filter (ACE) 
 

The ACE filter is used to adjust the contrast differently in different regions of 
the image. Thus, regions with low standard deviation are enhanced, while regions 
with high standard deviation (e.g. those containing edges) retain their actual contrast. 
The adaptive contrast filter is based on the following equation [1]: 
 

{ } ( ) ),(2),(),(
),(_

),(
1),( yxmkyxmyxI

yxlsigma
yxIM

kyxg ∗+−∗∗=   

 
{ }),( yxIM : mean of the entire image I(x,y) 

sigma_l: local standard deviation 
m:  local mean 
k1, k2:  constants between 0 and 1 
 
 
• Adaptive contrast enhancement filter II (ACE2) 
 

The ACE2 filter is a spatial domain method for contrast and dynamic range 
modifications with less limitation on linear contrast stretching [28]. 
 

[ ]),(),(1),(2),( yxmyxIkyxmkyxg −∗+∗=   
 
I(x,y):   pixel brightness value of the original image 
m(x,y):  arithmetic mean brightness value of an (n × n) window that is  

centered on the pixel position (r,c) 
k1:  local gain factor 
k2:  local mean factor 
 
 
• Wallis statistical differencing  
 

The form of statistical differencing for enhancement is 
),(
),(

),(
yxS
yxf

yxg =  where 

),( yxS  is the standard deviation estimated at pixel’s neighborhood. Wallis suggested 
a generalization of this operator in which the enhanced image is forced to desired first 
order and second order moments [2]. The operator is defined by 
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[ ] [ ]),()1(
),(

),(),(),( yxmrrM
SyxAS

AS
yxmyxfyxg d

d

d −++







−

−=   

dM : desired mean 

dS : desired standard deviation 
A: gain factor that prevents overly large output values when ),( yxS is small 
r: mean proportionality factor controlling the ratio of the edge to background 
deviation 
 
 
• Exponential ACE 
 
The exp_ACE’s algorithm is able to enhance the contrast and dynamic range of the 
image. It uses linear brightness stretching to modify the dynamic range of an image 
as: 
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M: the number of gray levels(255) 
m: the local mean 
k1: local gain factor 
k2: local mean factor 
 
The application of exponentials (k1,k2), controls the contrast gain to each region. 
Thus, if pixel’s value is much higher than local mean almost no gain is applied, since 
g(x,y) is inversely proportional to pixel’s value. The first part of g(x,y) adds back a 
value and compensates for large deviations of intensity. 
 
• Logarithmic ACE 
 
The log_ACE’s algorithms are able to enhance the contrast and dynamic range of the 
image. Log_ACE’s algorithm uses linear brightness stretching to modify the dynamic 
range of an image as:  
 
      [ ] ),(_2))),(_ln(),(ln(1),( yxbarmkyxbarmyxIbarkcrg ∗+−∗=  [29] 
 

m_bar  =  1-
M

yxm ),(
: normalized complement of local mean 

l_bar = 1-
M

yxI ),(
:  normalized complement of image 

 
M: number of gray levels (typically 255) 
k1: local gain factor 
k2: local mean factor 
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• Histogram specification 
 
In histogram specification, the general idea is to increase the distance between gray 
levels of objects of interest and background, so that a single threshold can provide 
“good” segmentation results. Point operators (Fig. 2.8) can achieve histogram 
modification and succeed in separating different areas in a histogram. 

  
 
 
 
 
 
 
 
 
 
 
 
 

 
Nevertheless, such approaches apply the same transformation in all image areas, 
irrespective of the particular local distribution. The next method defines a local 
stretching transformation based on histogram specification. 
 
 
• Iterative local enhancement 
 
Point operators act only on the gray scale irrespective of the spatial location and the 
neighborhood features of that pixel. As a result, they often amplify noise. The method 
proposed in [9] could be seen as an adaptive histogram modification technique where 
the adaptation is performed according to the overall features of the local 
neighborhood. In order to achieve this, a linear transformation for each pixel is 
defined on a local area surrounding it. To refine the enhancement result, the size of 
the local area is iteratively reduced and act as a moving window. The goal is to obtain 
an enhanced image with an easy-to-threshold histogram (Fig. 2.9). 
 
 

 
 
 
 
 
 
 
 

The transformation can be expressed as follows: 
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Fig. 2.8 Point operators 

Low 
threshold 

Fig. 2.9 (a) Histogram of original image; (b) histogram of enhanced image 
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(N = total # of iterations) 
 
 
• Multilevel Histogram Equalization (MLE): 
 
Although, the previous methods may work well for a certain group of parameters, it’s 
hard to select these parameters. In addition, because of its iterative scheme the 
previous technique is time consuming. On the contrary, exponential filtering is fast 
but is not capable of detecting single drusen and tends to combine them in bigger 
ones. 
 
Histogram equalization reassigns the brightness values of pixels, so that their 
distribution spans the entire dynamic range of the image. In many cases, this spreads 
out the values in regions where different objects are observed, expressing detail in 
high differences of brightness. Essentially, histogram specification spreads out the 
peaks of the histogram and combines small intensity concentrations around the peaks 
into single values. Thus, it does not enhance detail of small spatial extent, even 
though it stretches overall intensity differences. 
  
Equalization of the entire image could be useless  when the image presents a trend of 
intensity variation along its spatial extent,. The non-uniform illumination effect, 
which is part of our problem, prohibits the use of global histogram equalization. 
Moreover, the existence of detail (objects) of varying extent and contrast necessitates 
the use of locally adaptive algorithms that adapt their performance without changing 
their design parameters. We propose here an enhancement scheme that takes 
advantage of both global and local approaches. In fact, it is a hierarchical (multilevel) 
scheme that progresses from the entire image to smaller regions. Due to the expected 
intensity similarity in small areas, the windows considered are non-overlapping. 
Compared with a sliding window approach, our scheme results in smaller 
computational complexity and larger speed of operation, without compromising on 
the local enhancement ability owing to its multilevel nature. In this approach, 
problems could arise using windows that are small enough to fit inside a drusen’s 
region. This case can produce non-desirable misleading contrast variations as shown 
in Fig. 2.10-(c). It is desirable to use spatial windows larger than any drusen in the 
image. Considering this effect the algorithm proceeds as follows. The 1st stage of 
equalization uses a window equal to images’s size (global). The 2d stage splits the 
image into non-overlapping windows and applies the same operation to each part 
(block) of the previous result that is larger than any defected area. At any stage i a 
window wi is further processed by smaller non-overlapping windows if and only if 
some application driven criteria are met. 
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The first “pass” (Fig. 2.11-(a)) is responsible for enhancing the brightest parts of the 
image, including small, bright drusen and central parts of larger drusen. However, 
vague anomalies and dark areas that belong to spread drusen must be further 
enhanced, in order to be detected. The second stage of equalization, as shown in Fig. 
2.11-(b), contributes in generating more distance between those “hidden” anomalies 
and surrounding areas. In our application we always proceed to the second stage. 
Nevertheless, due to the relatively large drusen experienced in all images tested, 
further enhancement is meaningless. 
 
     
 
 
 

         
 
 

 
 
 

A common problem of block processing is 
the undesirable generation of blocking effects. 
Usually, that means the generation of vertical or 
horizontal lines at block boundaries. To overcome 
such problems we utilize overlapping windows with 
a certain amount of overlap, as illustrated in Fig. 
2.12. 
The formula for obtaining the net result for each of 
the windows in the horizontal direction is written as 
 
    ),(*)(),(*)(),( yxgxwyxgxwyxg lrll +=

 ),( yxg r

)( xw r)( xw l  

Fig. 2.12 Scheme for enhancing an 
image using non-overlapping 
windows with border interaction 

Fig. 2.11 (a), 1st level of histogram equalization (global) applied to entire 
image; (b) 2d level of histogram equalization applied to regions of 
previous result  

(a) (b) 

⇒ 

(a)   (b) (c) 
Fig. 2.10 (a) Original window containing one relative large drusen; (b) 
Histogram equalization using the entire window; (c) Histogram equalization 
using a smaller window inside the drusen’s area 
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2.2.3 Effectiveness of Local Enhancement Operators 
 
 
 
 

 
 
 
For comparison purposes, two representative images are tested. The first image 
contains relative large and small drusen that are close to each other, while the second 
one consists of small dense drusen at the central part and sparse ones elsewhere. 
Generally, extracting the entire area of large drusen is difficult because of the relative 
wide range of present gray-levels. Smaller drusen are either bright enough to make 
detection easy, or darker, with intensities similar to that of the background, which 
make their detection difficult. The results of the iterative method were thresholded 
using a large value, as specified from the method. Images derived from exponential 
filtering were manually thresholded to obtain almost optimal results and finally, 
multilevel equalization is applied and is thresholded by the technique presented in the 
next section. The results of segmentation are superimposed on the original images for 
comparison and are presented along with the enhanced images in figures 2.14-15-16. 
 
 
  
 
 
 
 
 
 
 
 

Initial images:  

Fig. 2.13 (a) Initial image with large and small drusen; (b) initial image with small dense 
drusen 
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Iterative method: 

Fig. 2.14 (a),(c) enhanced images; (b),(d) detected regions over original images thresholded 
at 90th gray level 
 

 (a)  (b) 

 (c)  (d) 
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Exponential filter: 

(a) (b) 

(c) (d) 

Fig. 2.15 (a),(c) enhanced images; (b),(d) detected regions over original images thresholded 
at 80% of corresponding histogram 
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Multilevel equalization: 
 

(a) (b) 

(c) (d) 

Fig. 2.16 (a),(c) enhanced images; (b),(d) detected regions over original images thresholded 
using HALT 
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Iterative local enhancement and exponential contrast enhancement are neighborhood 
operators that access pixels in an area around the central pixel, perform a calculation 
on those values and then derive a new value for the central pixel. Their main 
drawback is the required parameters, which are, in general, hard to specify and affect 
the algorithm’s performance drastically. Both of them proved to be inefficient in our 
case study, mainly because there is not a group of constant parameters that will 
produce an adequate enhancement result for the set of images available. The 
exponential method performs a one-pass filtering, so it’s relative fast. Iterative 
enhancement is based on a procedure that performs multiple passes according to the 
specified parameters. Consequently, it’s a very slow and memory-consuming method, 
since the previous step’s image has to be saved before continuing with enhancement. 
Our proposed multilevel equalization approach is much faster and does not require 
temporary memory for storing intermediate results. 
 
The iterative method succeeds in detecting all the drusen that are contrasted from the 
background “by first glance”, as shown in Fig. 2.14. The algorithm manages to detect 
large drusen thoroughly, but fails in separating some small, dark drusen. The latter 
case is obvious at the second test image, where vague drusen are either not detected or 
joined with false edges belonging to vessels. Another issue is the failure to separate 
nearby drusen, resulting in contours that contain more than one drusen. Fault 
detection is also present in regions where the background is lighter than usual or, as 
mentioned, where drusen are near to vessels. 
 
Exponential filtering detects most evident drusen, as illustrated in Fig. 2.15, but is 
sensitive to small brightness variations. This results in false detection of areas that 
surround real anomalies and belong mostly to the background. The latter remark is 
evident in processing the second image, where many false negatives are detected. 
 
The proposed approach of multilevel histogram equalization is capable of detecting 
and separating properly most of the anomalies, as shown in Fig. 2.16. It is much less 
sensitive to small brightness variations (located at background regions) and produces 
isolated contours containing areas with similar bright gray values (single drusen). 
Fault detection is not experienced in the images tested and hard to distinguish drusen 
are also located. An undesirable situation could arise out of the presence of noise, 
generated during the acquisition phase. Equalization in areas containing noise will 
result in further enhancement of noise and present objects. Although noise is not 
common among this kind of images, (we experienced this problem only once in spite 
of our extended test set of images) the proposed algorithm involves certain steps to 
compensate for this problem, as explained in Chapter 4. 

 

2.3 Thresholding Techniques 

 
Gray level thresholding is the simplest segmentation process. Its effectiveness derives 
from the fact that many objects are characterized by nearly constant reflectivity or 
light absorption of their surfaces. The enhancement process emphasizes and amplifies 
object similarities compared with their background. However, local enhancement 
operators also amplify intensity variations within the same objects. For this reason 
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global thresholding may not be adequate to derive object detail due to object 
differences at various intensity levels. In image processing applications it is often 
crucial to make an appropriate threshold selection, so as to obtain a fine segmentation. 
To achieve this, global thresholding may be performed on smaller blocks of the image 
rather than on the entire image. 
 
 
 Haralick and Shapiro [4] have established the following quantitative guideline for a 
“good” image segmentation scheme: “Regions of an image segmentation should be 
uniform and homogenous with respect to some characteristic such as gray tone or 
texture. Region interiors should be simple and without many small holes. Adjacent 
regions of a segmentation should have significantly different values with respect to 
the characteristic on which they are uniform. Boundaries of each segment should be 
simple, not ragged, and must be spatially accurate.”  
 
A threshold can be determined interactively or through an unsupervised non-
parametric method.The use of histogram to select a threshold is a very common 
technique. Frequently, simple observations are enough for detecting a good threshold 
point. The lowest point between two histogram peaks is often a good threshold value. 
The problem of detecting this point automatically consists of two steps: locating the 
two peaks and finding the lowest point in between. A parametric approach to identify 
these peaks is by approximating them with Gaussian curves. Thus, Gaussians are used 
to fit the histogram and the largest two are used to identify the major peaks. However, 
this method is slow and not promising because of the unknown number of normal 
distributions and the distances among them. Several segmentation techniques focus on 
two distributions assuming that object and background pixels have different mean 
levels and are random numbers drawn from one of two normal distributions. These 
distributions have their own standard deviations and variances. One of the most 
important and older methods that uses this assumption is the Otsu [5] one. 
 
It’s now obvious how difficult it is to find a single “good” threshold for the gray level 
image in our application, because of the non uniform illumination, the different 
background color or the non uniform surface curvature. As an alternative option, we 
can define thresholds for smaller image regions, either based on local properties or 
local histogram information. 
 
The histogram of a local area is more focused and informative regarding the 
separation of included objects. Moreover, in our approach local thresholding is 
imposed by local (adaptive) enhancement. Most of thresholding techniques are easily 
adjusted to a localized scheme without algorithmic changes. The following sections 
consider well established thresholding techniques and develop one new approach 
suitable for our application. 
 
 
2.3.1 Otsu Algorithm 

 
Otsu [5] proposed an automatic optimal threshold selection method from gray level 
histograms using a discriminant criterion. The method is unsupervised and 
nonparametric, properties that are desirable in most image processing applications. 
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In an ideal case an image’s histogram has a deep valley between two peaks 
representing objects and background. However, that is not the case for most realistic 
scenes, since noise or unequal heights of the two peaks produce a non-ideal gray level 
distribution. Some techniques attempt to overcome this problem by approximating the 
histogram in the least square sense by a sum of Gaussian distributions, and then apply 
statistical decision procedures [6]. The implementation of these techniques requires 
many and, sometimes, unstable calculations. However, the conclusion from the 
application of these threshold selection methods is that Gaussian distributions are 
good for approximating the modes of a histogram. 
 
Towards this direction, Otsu’s approach, is based on discriminant analysis. The 
threshold operation is regarded as the partitioning of the pixels of an image into two 
Gaussian classes C0 and C1 (e.g., objects and background) discriminated at gray level 
t. That is C0= {0,1...t} and C1={t+1,t+2...l-1}. Let σ σ σw B T

2 2 2, ,  be the within-class 
variance, between-class variance, and the total variance, respectively. An optimal 
threshold can be determined by minimizing one of the following (equivalent) criterion 
functions with respect to t: 
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Of the above three criterion functions, ? is the simplest. Thus, the optimal 

threshold t* is defined as: 
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Extension to multilevel thresholding using Otsu method is straightforward. 
 

 
2.3.2 Thresholding According to Distribution’s Curvature 

 
The use of a single global threshold is almost always inadequate for realistic images. 
A single threshold is unsuccessful when e.g. more than one objects with different gray 
levels and a non-uniform background exists. A solution to this problem could be the 
use of a multiple threshold technique. Different objects are recognized from different 
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lobes in a multimodal histogram. The histogram of an image with gray levels in [0,L-
1] is a discrete function p r n

nk k( ) = , where rk is the kth gray level, nk is the number of 

pixels in the image with that gray level, n is the total number of pixels in the image, 
and k = 0,1,2...L-1. Under the ergodicity assumption p rk( ) provides an estimate of the 
probability of occurrence of gray level rk. A plot of this function for all values of k can 
provide a crude description of image’s appearance. Boukharouba  et al. [7,8] 
proposed a method that uses the intrinsic properties of the cumulative distribution 
function of an image to derive threshold values. In this method, the curvature of the 
distribution function is examined prior to the threshold values. The distribution 
function F(k) at point k is given by 
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where h(i) is the histogram distribution and f(i) the cumulative distribution. 
 
The curvature of F is then defined by 
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where ′F  and ′′F  are the first and second derivatives of F, respectively. The zeros of 
the curvature determine the thresholds, as well as the gray level to be assigned to each 
class. 
 
Other properties of the histogram are often used for threshold selection. Some of the 
most important properties are presented in Appendix A. 
 
These thresholding techniques can be applied to either global or local segmentation 
performed on the entire image or on smaller windows, respectively. In our problem 
we need to discriminate small regions of varying intensities within the image. Global 
thresholding fails to discriminate small local differences. Therefore, the method we 
use is a local thresholding technique. It is based on local histogram analysis as 
presented in the following section.  
 

 
2.3.3 Relaxation Method 
 
Relaxation was introduced by Southwell [30,31] to improve the convergence of 
recursive solution for systems of linear equations. In image segmentation the pixels of 
an image are first probabilistically classified into “light” and “dark” classes, based on 
their gray levels. Then by looking at every pixel’s neighborhood these probabilities 
are adjusted, so as to become very high for light and dark regions. 
 
Rosenfeld and Smith,[32], suggested following formula for initial classification of 
pixels: 
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If d and l are the darkest and lightest gray levels and gi is the gray level of a pixel xi, 
then if gi > m, let 
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Another approach, which assumes that a histogram can be divided into two Gaussian 
distributions is suggested by Fekete et al.[33]. 
 
Finally, previous probabilities must be updated according to a pixel’s neighborhood, 
in order to obtain a “good” segmentation. So, if ?  is the set of class labels (e.g., the 
classes of dark and light pixels), then a compatibility coefficient, rij(?,?’), between a 
pixel xi with label ?∈?  and another pixel xj with label ?’∈?  is defined such that 
 
            
 

 
 
 
Zucker et al.[34] propose the following equation for updating the probabilities: 
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where Ni is the 8-neighbor of xi. 
 
However, Pavlidis [35] proves that the previous formula is not mathematically 
correct. The above scheme violates the natural expectation that the labeling should not 
change if neighboring pixels are independent. Thus, Peleg [36] suggests another 
formula: 
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2.3.4 Histogram Local Adaptive Thresholding (HALT): 

 
If our purpose was to distinguish bright and darker areas in an image,a  localized Otsu 
thresholding scheme would work well. However, our goal is to separate those areas, 
as well as others hidden in the background distribution, without being affected by 
intensity variations, caused by non uniform illumination. Otsu’s method will separate 
with no respect to these pecularities of the problem. 
 
Forced by this weakness, we propose a thresholding technique that is based on local 
histogram properties. After previous algorithm steps part of the background 
disappears. Although this facilitates the decision of a single threshold, its unique 
specification is still difficult because of the dense and complicated image’s histogram. 
However, if we zoom into each local area , we observe the different shapes of 
histograms for each of these regions. In order to determine a “good” single threshold 
for each neighborhood, we can take the following facts into consideration: 
 
The histogram’s mean is a good measure of central tendency for roughly symmetric 
distributions but can be misleading in skewed ones, since it can be greatly influenced 
by extreme values (e.g. large number of black pixels-bias). For normal distributions 
the mean is efficient and less subject to sample fluctuations than other measures of 
central tendency. Nevertheless, other statistics, such as the median, are sometimes 
more useful, since they are more efficient than the mean in highly skewed 
distributions. The peak (or mode) can be informative but it can not be used as the only 
measure of central tendency, since it is highly susceptible to extreme gray value 
differences. Another problem occurs when the histogram has more than one peaks 
(multimodal distribution) and it is difficult to determine the “right” one or the one 
closer to the distribution’s center. 
 
As a consequence, the mean, median and peak are almost equal for roughly 
symmetric distributions. The mean is higher than the median in positively skewed 
distributions and lower than the median in negatively skewed distributions. 
 
In background or general homogeneous regions, the gray-scale distribution 
approaches a normal one and the histogram appears like a Gaussian function. On the 
contrary, when small or bigger bright spots (drusen) are present, the histogram is 
positively skewed denoting a non-symmetric distribution. In either case an 
appropriate threshold decision has to be taken. 
 
In order to distinguish between the latter cases, two symmetry quotients are proposed. 
The first one utilizes the differences mean median−  and mean peak−  as a gross 
indication. The second quotient examines skewness in conjunction with kurtosis as a 
refined symmetry quotient. The mean median−  difference is a first measure of 

symmetry based on statistical measures. The mean peak−  difference is chosen as a 
measure of histogram’s main lobe spread, since it is often the largest of the two 
differences in our application. Representative examples are shown in Fig. 2.18. 
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Histogram has to be checked for general symmetry or asymmetry. The two symmetry 
quotients described above are used for this purpose. Thus, if both of them are small 
the distribution under consideration appears to be almost symmetric in contrast to the 
opposite case. 
 
Generally, if a symmetric distribution is the case, then the area under consideration 
belongs probably to the background and setting 90% of histogram as threshold will 
remove it. Application of this threshold will also leave only isolated points in the sub 
region, which can be removed by a small median filter. On the contrary, a 
thresholding scheme like Otsu would be effective in separating different sub-
distributions, when the histogram is asymmetric. Otsu’s thresholding technique is 
more suitable for the non-symmetric distribution, since it can effectively detect the 
transition level from background to drusen. More details about the method will be 
given during the description of main algorithm. 

 
 
2.3.5 Results of Thresholding Schemes 
 
In order to demonstrate the efficiency of the HALT method, two representative 
images are chosen. One with large drusen dominating extensive areas and one with 
few, small and vague drusen(Fig. 2.19).  Both images are enhanced using multilevel 
histogram equalization (MLE) and thresholded using HALT. A median filter is 
applied afterwards to remove isolated pixels. 
 
Otsu’s localized thresholding scheme works fine in regions that are dominated by 
drusen (brighter areas), since the distinction between them and the background is 
evident. This is demonstrated in the first image (Fig. 2.20–(a)), where drusen at the 
central part of it are correct distinguished from the surounding areas. Unfortunately, 
the algorithm is strongly confused by regions that do not contain any abnormality, like 
those located at the sides. Because of non uniform illumination, parts of these regions 
are brighter and are misclassified as anomalies. Second image, Fig. 2.20-(b) brings 

Fig. 2.18 Three typical cases of histogram shape (negatively skewed, symmetric, 
positively skewed) and relative positions of corresponding features. 
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out another disadvantage of this scheme. Vague drusen, which are either small or 
located inside bright background regions, are not segmented. The algorithm seems to 
detect the most obvious drusen (two of them are easily conceived), but fails to detect 
“hidden” anomalies; some of those are indicated by the arrows (Fig. 2.19 –(b)). On 
the contrary, the HALT technique removes most of the background in both cases, as 
shown in Fig. 2.21. Even the most hard-to-see drusen are segmented without loosing 
their actual size and shape. Some false negatives generated by the existence of noise 
can be easily removed at a following detection step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
Fig. 2.19 (a) Image with large dense drusen; (b) image with small sparse drusen 
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Fig. 2.20 Images after MHE enhancement, local thresholding using Otsu’s method at each block and 
median filtering to eliminate sparse pixels 

Fig. 2.21 Images after MHE enhancement, local thresholding using HALT method and median filtering to 
eliminate sparse pixels 
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3. MAIN ALGORITHM FOR DRUSEN DETECTION 
 
 
The main algorithm we used is summarized in Fig. 3.1. Each block stands for a 
different algorithm operation. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

3.1 Illumination Model Compensation 
 
The first problem we encountered is the non-uniform illumination caused by the 
varying curvature of the retina’s surface. Thus, the first block in our algorithm is 
directed towards illumination model compensation, which is achieved by border 
averaging and homomorphic filtering. This part of the algorithm is actually the only 
one that requires parameter specification, so as to obtain the best possible illumination 
correction. These parameters are case dependent, implying that for our class of images 
constant parameters are used, while different values would fit better to e.g. 
mammogram application. Nevertheless, the non-uniform illumination effect cannot be 
fully cancelled. The following steps of the algorithm have to take in consideration that 
not all bright parts of the image (drusen are brighter than anything else) are defected 
areas. 
 

3.2 Enhancement 

 
The second step in our algorithm is the enhancement operation that is responsible for 
generating more distance between gray levels of abnormalities and background. We 

Fig. 3.1 Algorithm for anomalies’ detection in human eye’s retina 
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emphasize here that the background also includes the vessels, which are of any 
interest to our application. The proposed MLE approach succeeds in enhancing most 
drusen, being insensitive to small brightness variations, caused e.g. from non-uniform 
illumination. Small and bright drusen are extracted correctly, something that holds 
also true for large and spread drusen that tend to be darker near the edges. 
 

3.3 First Level Thresholding 
 
As a result of the previous operators, sharp abnormalities in intensity (candidate 
drusen) are strongly enhanced and separated from background. They, actually, look 
brighter than everything else in the image does. A global threshold is capable of 
removing darker parts that belong to the drusen’s surrounding areas (background). For 
this purpose we employ Otsu’s [5] thresholding technique that is unsupervised, non-
parametric and generally considered as an efficient method [7]. In addition to these 
desirable characteristics, its implementation is straightforward and fast. The 
thresholding operation is used for eliminating unnecessary regions of the image. Thus, 
values above the threshold are set to zero. Another scheme to achieve the same result 
first derives a binary image with 1’s and 0’s at values above and below the threshold, 
respectively, and then multiplies the input image with this binary template. In our 
analysis we adopt this scheme to preserve the structures of interest in binary form. 
Nevertheless, this first level of thresholding cannot discriminate vague abnormalities 
hidden in the local regions of background. 
 
This step, in general, will detect and preserve regions of evident abnormalities that are 
crisply separated from their background and background regions mixed with vague 
abnormalities. In order to refine the segmentation, the algorithm proceeds with local 
thresholding operations. 
 

3.4 Local Thresholding and Elimination of Sparse Pixels 
 
In order to extract the actual drusen and get rid of misleading areas a novel local 
thresholding operator is designed and tested. The HALT technique provides quite a 
powerful unsupervised tool for separating objects of interest from background areas. 
At first, the image is divided in small areas and a threshold for each area is selected, 
according to its histogram shape. This process is continued to a second stage of local 
thresholding inside each block area, if required.  
 
It is emphasized her that local thresholding considers only the histogram of pixels that 
pass the global thresholding steps. In essence it is only applied to pixels that are not 
set to zero by the first level thresholding in 3.3. 
 
As shown in Fig. 3.4 the HALT operator is preceded by a morphological dilation and 
succeeded by a median filter. The morphological dilation expands the regions that are 
not removed by global thresholding. If this expansion occurs in background areas, 
there is not much effect, since the following segmentation is capable of removing 
these expanded regions completely. The main advantage of dilation comes into sight 
in those areas that contain only one or two large drusen and no background. In this 
case any threshold application would result in loss of drusen’ area. The expansion 
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results in the recovering of some anomalies’ background. In other words, it forces 
better distinction between bright areas (anomalies) and darker (surroundings) at the 
corresponding histogram. Morphological filtering compensates this critical problem. 
Mathematical morphology consists of two basic operators, namely dilation and 
erosion. If A and B are sets in Z2, with components a=(a1, a2) and b=(b1, b2) then 
morphological dilation, [1], is defined as 
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Set B is referred as the structuring element and previous operator results usually to an 
expansion of set A. After the application of HALT, a median filter is applied. The 
gray level of each pixel is replaced by the median of the gray levels in a predefined 
neighborhood of that pixel. This operator eliminates sparse pixels, causing false 
“alarms” for presence of anomalies, and preserves only those pixels that appear 
compactly distributed into regions. 
 
The background is composed of a noise process superimposed on a deterministic 
smoothly varying ramp image with uniform histogram. A symmetric Gaussian 
distribution characterizes this overall background process. Using the ergodicity 
assumption, any realization of the stochastic process or any acquired image from this 
process is also characterized by this Gaussian distribution. It is expected therefore that 
by thresholding the distribution at its 90% and preserving only values above this 90% 
threshold, we leave only isolated pixels randomly distributed along the spatial extent 
of the image that can be easily removed by median filtering. 
 
Negatively skewed distributions are likely to describe areas of background. So, setting 
90% as threshold would remove them. That holds for both cases of symmetric and 
non-symmetric distributions. 
 
A more analytic consideration of symmetry and histogram analysis in the HALT 
algorithm is given in Fig. 3.2-3. Recall that crude symmetry indicators are used as 
first level discriminants and the categorization is refined through histogram-shape 
indices. 
 
 
A. Histogram is totally or almost symmetric (Table) 
 
• A totally symmetric gray level distribution signifies areas that are mainly occupied 
by background regions; uniform large regions, which surround anomalies. However, 
small drusen may be present, so setting 90% as threshold would be adequate to 
remove background and leave whole or part of the anomalies. 
 
• The class of platykurtic distributions may be misleading. Generally, symmetric 
distributions signify background areas. Nevertheless, the platykurtic feature signifies 
interaction of distributions that jointly preserve symmetry. For example, if 
background areas’ and anomalies’ gray levels are normally and equally distributed, 
histogram will still appear symmetric. So, in order to avoid removal of drusen, we use 
Otsu method for thresholding. 
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• In case of sharp-peaked (leptokurtic) almost symmetric histograms we observe high 
concentration of pixels around the mean value. These sections appear with almost 
uniform background. Leptokuric distributions allow the existence of only small 
drusen as outliers that do not alter the general uniformity of the intensities. Using 
Otsu thresholding, that is obtaining a threshold value close to mean, would retain 
anomalies and big part of the background. So, setting 90% as threshold would remove 
background areas and retain, if existing, small drusen. 
 
• The case of mesokurtic and positively skewed histograms requires particular 
attention. The mesokurtic characteristic most likely arises from the background 
distribution. The positive skewness indicates interaction with another distribution, 
which is observable but not significant one to alter drastically the background 
statistics. This distribution is detected at high intensity values indicating the existence 
of object(s), whose intensity however interacts with that of the background. Thus, 
their direct segmentation may be inefficient. Using Otsu’s threshold may leave large 
areas of the background, whereas using the 90% threshold may delete a good portion 
of the object’s structure. So, an additional step of local thresholding is used, which is 
actually the application of HALT method focused on smaller areas of first level’s 
region. This helps in obtaining better distinction of anomalies and background at 
corresponding histograms. 
 
B. Histogram is totally or almost asymmetric (Table) 
 
• A positively skewed distribution of this class notifies the presence of many small or 
large drusen. In fact, bright gray levels that generally characterize anomalies dominate 
the histogram. Otsu technique is best suited to this case, since the distinction of bright 
and darker areas (background) is obvious. 
 
• In general, an asymmetric distribution signifies the presence of drusen. The 
asymmetric platykurtic and mesokurtic distributions can result as combinations of 
similar distributions, characterizing background and abnormalities (drusen). The 
leptokurtic distribution describes an area dominated by background (with highly 
concentrated values) and less drusen. 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 



 42 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Positively skewed  

Leptokurtic Platykurtic Mesokurtic 

• Can signify the case of only a 
small portion of drusen. If there is 
some small portion of drusen of 
high intensity 
      ⇓ 

  90%  (will preserve  
  them well) 

• Drusen and background 
are hard to distinguish  
      ⇓ 
 Application of HALT in 
smaller regions 

•  
      ⇓ 
               Otsu 

       Skew ≈ 0 

Leptokurtic Platykurtic Mesokurtic 

• Almost constant 
background 
      ⇓ 
               90% 

• Mainly background 
and maybe some drusen 
or just large drusen (one 
distribution) 
    ⇓ 
             90% 

• Can result as 
combination of two or 
more distributions 
      ⇓ 
               Otsu 

    Negatively skewed 

Leptokurtic Platykurtic Mesokurtic 

• Mainly background 
      ⇓ 
               90% 

• Mainly background 
   ⇓ 
            90% 

• Mainly background 
      ⇓ 
               90% 

Fig. 3.2 Decision making of HALT in case of a symmetric distribution 
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       Skew ≈ 0 

Leptokurtic Platykurtic Mesokurtic 

• Mostly background, 
less drusen 
      ⇓ 
              Otsu 

• Drusen & 
background are 
almost equally 
distributed  
           ⇓ 
        Otsu 

• Drusen are present 
    ⇓ 
            Otsu 

       Positively skewed  

Leptokurtic Platykurtic Mesokurtic 

• Drusen & background 
      ⇓ 
              Otsu 

• Mainly drusen 
 ⇓ 
          Otsu 

• Drusen & background 
are almost equally 
distributed 
 ⇓ 
         Otsu 

    Negatively skewed 

Leptokurtic Platykurtic Mesokurtic 

• Mainly background 
      ⇓ 
               90% 

• Mainly background 
      ⇓ 
               90% 

• Mainly background 
      ⇓ 
               90% 

Fig. 3.3 Decision making of HALT in case of an asymmetric distribution 
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3.5 Expansion 
 
If the median filter preserves large drusen, especially in symmetric mesokurtic, 
skewed regions, then it is likely that the region is dominated by large drusen which 
appear homogeneous, just as the background. This is the case of a histogram that 
looks totally symmetric (small skew-mesokurtic). In such cases, we need to check if 
these remaining compact regions need to be extended further to capture the entire 
blob region. 
 
This expansion is achieved by mathematical morphology. The second basic operator 
of morphology is the erosion, [1], which is defined as 
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A morphological closing operator is actually a dilation followed by erosion and is 
defined as 
 
   BBABA Θ⊕−• )( . 
 
A morphological closing with a small structuring element (disk shaped) will dilate all 
remaining regions and as a consequence it will join neighboring groups of pixels that 
possibly belong to a larger defective area. The following erosion will restore the size 
of those areas, but will retain previous joined regions. These regions generated by 
previously separated groups of pixels must be further expanded, in order to obtain 
more or less their actual size. A small dilation is needed to achieve this goal. 
 

3.6 Overall Algorithm 

  Cut-off frequency and ?l - ?h 
        for High pass filter 

Border averaging 
and homomorphic 
filtering 

Multilevel Histogram 
Equalization (MHE) 
 

Global 
thresholding 
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Thresholding 

Median  
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Illumination Model 
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Enhancement Local 
thresholding and 
elimination of 
sparse pixels 

Selective 
morphological 
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Morphological 
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Expansion, if 
needed, of drusen 

  First level 
thresholding 

Fig. 3.4 Algorithm for anomalies’ detection in human eye’s retina 
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4. EXAMPLES 

4.1 Illumination Model Compensation  

  
The original image, in Fig. 4.1-(a), shows an eye’s retina in which an overall variation 
in brightness is obvious. Left part of the image looks darker than the right one and 
some anomalies, especially in the bright areas, look similar to the background. After 
averaging the borders and applying homomorphic filtering, as shown in Fig. 4.1-(b), 
drusen are better defined and separated from the background. Diseased areas become 
brighter and surroundings become darker, as can be seen from the large drusen at the 
central part. In addition to the non-uniform illumination correction signifies an 
increase in contrast is obvious. The distinction among neighboring drusen is improved 
and vessels become dark enough, so as not to misjudge parts of them as actual 
anomalies. 
 
As mentioned in 2.3.4 and 3.4, the crude symmetry indicators are used by HALT as 
first level discriminants and the categorization of the histogram is refined through 
histogram-shape indices. The numerical limits of symmetry quotients are derived after 
careful observations of images’ local histograms and are consolidated as 
a) If 4<=− medianmean  and 5<=− peakmean  ⇒ symmetry 

b) If  5.05.0 −<<− skew   ⇒ histogram is not skewed 
If  5.0>=skew   ⇒ histogram is positively skewed 
If 5.0−<=skew   ⇒ histogram is negatively skewed 

c) If  22 <<− kurtosis  ⇒ distribution is mesokurtic 
If 2>=kurtosis   ⇒ distribution is leptokurtic 
If 2−<=kurtosis   ⇒ distribution is platykurtic 

  (a)   (b) 
Fig. 4.1 (a) Original image with non-uniform illumination, (b), image after non-uniform 
illumination correction using homomorphic filtering 
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4.2 Enhancement and Global Thresholding 

 
 
Although, we experienced an increase in contrast after applying homomorphic 
filtering, further enhancement is needed, so as to achieve a correct and accurate 
segmentation. MHE enhances large and small drusen and makes them look brighter 
than other areas.  As shown in Fig. 4.2-(a), diseased areas surrounded by uniform 
background are almost thoroughly defined and separated.  Also, drusen that were 
vague become more visible. The disadvantage of histogram equalization and, 
consequently, of MHE, is the further enhancement of existing noise; as shown at the 
upper left-hand corner of Fig. 4.2-(a), several groups of pixels, not belonging to 
drusen, are strongly enhanced. These pixels must be removed during following 
algorithm steps or else they will lead to false estimation of diseased areas. Global 
thresholding, illustrated in Fig. 4.2-(b), succeeds in removing small parts of the 
background areas that are mainly located around small drusen. It fails in removing 
noisy areas, but it’s still a useful step for getting rid of many background regions. 
 
 
 
 
 
 
 
 
 
 

Fig. 4.2 (a) Image after multilevel histogram equalization; and (b) after global thresholding 

  (a)   (b) 
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4.3 Morphological Dilation, HALT and Median Filtering 

  

 
Large drusen at the central part of the image are already good separated, so a 
thresholding operation in a small bounding area will fail to detect the whole object 
under consideration. It’s obvious that dilation, Fig. 4.3-(a), results in a small 
expansion of these drusen coming into view by a retrieval of surrounding background 
areas. As a consequence HALT is successful in detecting a good threshold in the 
resulting area’s histogram and separating almost the whole area of large drusen (Fig. 

  (a)   (b) 

Fig. 4.3 (a) Image after morphological dilation; (b) image after HALT; (c) image after median 
filtering 

  (c) 
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4.3-(b)). Smaller anomalies are also good segmented and it seems that false negatives 
exist only because of sparse 8-connected pixels. This problem is solved by median 
filtering, which removes these isolated pixels as shown in Fig. 4.3-(c), without 
affecting large connected regions. This image does not need expansion, since the 
criteria in section 3.4 –(A) are not met anywhere in the image. 
  
 

4.4 Other Examples 

Another example of an image that requires expansion of some regions after HALT is 
illustrated in Fig. 4.4-(a). This image contains large drusen that consist of bright and 
darker parts. Correct segmentation is hard to achieve, since setting whichever 

(a) (b) 

(c) 

Fig. 4.4 (a) Original image; (b) image after HALT and elimination of sparse pixels; (c) image after 
expansion  
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threshold inside an area that mainly consists of one drusen and almost no background 
will remove part of the anomalies. 
In Fig. 4.4-(b) it is obvious that after HALT we are left with areas that must be joined 
or expanded, so as to recover missing parts of anomalies. As shown in Fig. 4.4-(c), 
after morphological dilation and closing, the upper areas that appeared “cracked” are 
joined together and form a single region that covers almost entirely the actual 
anomaly’s area. 
 
A hard to enhance image is shown in Fig. 4.5-(a). Presence of noise is strong, as it can 
be seen from the supposed background regions. Although, these areas had to be 
almost uniform, they appear noisy and non-homogeneous. In addition to that, large 
drusen do not differ sufficiently from the background.  
 

(a) (b) 

(c) 

Fig. 4.5 (a) Original image; (b) image after HALT and elimination of sparse pixels; (c) image after 
expansion  
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Except of the circular bright drusen, all others are noisy and intermixed with 
surrounding areas. Even at this case, out algorithm detects correctly all small drusen 
and looses few parts of bigger ones, as shown at the central part of Fig. 4.5-(c),(d). 
 
In order to further demonstrate the efficiency of the proposed algorithm the results are 
subtracted from the original images, so that detected regions appear black. If parts of 
the drusen are not detected, they will appear bright, retaining their original gray level. 
As shown in Fig 4.6 for few representative images, almost all significant drusen have 
been detected. 

 

Fig. 4.6 Detected regions appear black, while not detected regions retain their actual gray level 
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4.5 General conclusion on the application 
 
We tested our algorithm using a set of 23 images. 8 pairs of them were actually 
captured from the left and right eye of patients. We focused in the central part of the 
retina by defining a rectangle at the right or left side of the optical nerve (right or left 
eye). The proposed method was able to detect actual drusen in all cases. Even in hard-
to-diagnose cases, where many small and vague drusen exist, our method succeeded 
in isolating them form background. 
 
Initially, we experienced problems with the presence of vessels and their interaction 
with drusen. After applying the proposed algorithm we eliminate this problem and we 
don’t experience false detection, due to vessels, in the entire test set of images. Large 
drusen, covering usually the central part of the eye, are hard-to-segment. 
Nevertheless, most of the images, containing such drusen, are correctly segmented 
and the drusen are accurately detected. Generally, our test set of images covers a wide 
range of possible drusen sizes and formations, including vague, non-canonical shaped 
and thin blobs. Thus, we faced the most common problems of macular degeneration 
and solved them in an efficient way. 
 
Some other techniques we developed and tested for the same problem are presented in 
Appendix B. These methods, however, perform well only in specific images from the 
test set and require the tedious selection of parameters for their efficient operation. 
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5. CONCLUSION AND FUTURE WORK 
 
The detection of anomalies in human eye’s retina is a biomedical problem, 
appropriate for image processing and automated pattern recognition, whose solution is 
intended to help the doctors in their decision making process. Use of the proposed 
detector may reduce false negatives and give reliable detection accuracy in both 
position and mass size. 
 
 We started this project with very simple ideas such as the single thresholding 
technique and calculation of curvature or orientation of objects inside the image. 
However, as we got more involved in this project, we faced a lot of critical problems 
that must be solved to obtain good results, such as the non-uniform illumination 
correction, contrast enhancement, feature extraction, image segmentation and so on. 
Using existing techniques found in bibliography solved these problems. The 
ineffectiveness of such methods in dealing with the entire set of images led to the 
design of new operators. The most critical and challenging part was the final 
segmentation, achieved by the HALT algorithm. This is a novel method for 
segmenting areas that differ slightly from their background regions. It is fully 
unsupervised and non-parametric. Furthermore, it is easily adjusted to other 
segmentation problems, where anomalies or defects are not brighter than the 
background.  
 
The proposed method was able to detect actual drusen in all cases. Even in hard-to-
diagnose cases, where many small and vague drusen exist, our method succeeded in 
isolating them from the background. A significant factor that affects the overall 
performance of other approaches is the presence of noise, which makes surfaces look 
rough and renders the segmentation process difficult. Although, it is not a common 
case, since the presence of noise is rare in such images (only one in our test set), our 
method provides adequate results even in the case of noise contamination. 
 
Further investigations could be focused towards increasing the mass-location 
accuracy and reducing the number of false diagnoses. The latter objective requires the 
correct characterization of anomalies according to their shapes or masses. We tried 
different features at the detection phase (see Appendix C), but we need an expert’s 
advice so as to use the correct combination of them. Some examples are shown in Fig. 
5.1. It is obvious that the features used in the example are not capable of producing a 
robust result. The shape and size of anomalies are irregular and, therefore, cannot be 
described by features addressing only circularity or mass size. 
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Fig. 5.1 (a) result of proposed method; (b) selection of anomalies according to area; (c) selection of 
anomalies according to compactness; (d) selection of anomalies according to area + compactness 

(a) (b) 

(c) (d) 
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The use of a neural network classifier can also be investigated to provide fast and 
accurate results regarding the presence and shape of anomalies. The fast detector of 

masses in computer-aided 
mammographies presented in [11], 
uses a RBFNN (Radial Basis 
Function Neural Network) as a 
classifier (Fig. 5.2) in conjunction 
with three decision criteria to avoid 
false diagnoses. The classifier’s 
inputs are the first histogram 
moments, namely mean, variance, 
and the higher-order statistics, 
namely skewness and kurtosis (see 
Appendix A).  
 
 
 
 
 
 
 

 

The cork quality classification system presented in [9], uses a Fuzzy-Neural netwrok 
methodology for classifying corks. The utility of fuzzy sets ([38],[39]) lies in their 
ability to model the uncertain or ambiguous data to often encountered in cork 
classification problem. Finally, an MLP (Multi Layer Perceptron) classifier is used 
with a back-propagation training algorithm, which incorporates concepts from fuzzy 
sets at the training stage. 
 
Such NN and FS approaches could be also used in our problem in a more robust 
feature classification set-up, rather than the pixel classification scheme developed in 
this thesis. 

Fig. 5.2 The RBFNN classifier 
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APPENDIX A  HISTOGRAM PROPERTIES 
 

Features for Histogram Analysis 

 
The histogram of an image with gray levels in [0,L-1] is a discrete function 
p r n

nk k( ) = , where rk is the kth gray level, nk is the number of pixels in the image 

with tat gray level, n is the total number of pixels in the image, and k = 0,1,2...L-1. 
 
Under the ergodicity assumption p rk( ) provides an estimate of the probability of 
occurrence of gray level rk. A plot of this function for all values of k can provide a 
crude description of image’s appearance. Four simple examples are shown in Fig. 
A.1. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (d) 

Fig. A.1 (a) dark image; (b) bright image; (c) low contrast image; (d) high 
contrast image 

(b) 

(a) 

(c) 



 56 

 
 
It’s obvious that the spread of values and the shape of the gray level distribution 
provide useful information about the content of an image. In order to quantify this 
information, several features can be extracted. The most often used features are 
presented in the following. 
 
• Mean 
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A measure for average brightness of an image 
 
• Standard Deviation 
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A measure of spread about the mean. The standard deviation since it is calculated 
from “squared deviations” (deviation from the mean value) is more sensitive to a few 
extreme observations than is the mean. 
 
For a normal distribution (which is generally the case), SD  provides useful 
information about the gray level distribution: 
  
 • About 68% of data lies within one standard deviation of the mean. 
 • About 95% of data lies within two standard deviations of the mean. 
 • Almost all data lies within three standard deviations of the mean.  
 
• Median 
 
Median is that pixel amplitude for which one half of the pixels are equal or smaller in 
amplitude and one half is greater in amplitude. 
 
• Skewness 
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Fig. A.2 Histogram shapes according to their skewness 
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A distribution is skewed if one of its tails is longer than the other, as illustrated in Fig. 
A.2. Positive skew means a long tail in the positive direction. Negative skew means a 
long tail in the negative direction. Zero skew means symmetric distribution. 
 
• Kurtosis 
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Kurtosis is based on the size of a distribution’s tails,as shown in Fig. A.3. 
Distributions with relatively large tails (sharp-peaked) are called “leptokurtic”; those 
with small tails (flat topped) are called “platykurtic”. A distribution with the same 
kurtosis as the normal distribution is called “mesocurtic”. In order to distinguish 
between the three cases the following rule is valid 
 
  • SK = 0  mesokurtic 
  • SK > 0  leptokurtic 
  • SK < 0  platykuric 
 
• Energy 
 

    [ ]S P bN
b

L

=
=

−

∑ ( ) 2

0

1

 

 
• Entropy 
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Raising SE  characterizes flat-topped distributions, while decreasing SE  characterizes 
sharp-peaked distributions. 
 
• Peak 
 
Peak is the pixel amplitude corresponding to the most commonly occurring pixel 
amplitude in the area. 
 

Fig. A.3 Histogram shapes according to their kurtosis 
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APPENDIX B  OTHER DETECTION APPROACHES 
 
Several other approaches towards the detection and localization of drusen are 
presented in this appendix. 

B.1 Detection Based on Gradient Information 

The schematic diagram of this approach is shown in Fig. B.1. 

 
 
 
B.1.1 Illumination model compensation 
 
Illumination model compensation is performed by border averaging and 
homomorphic filtering, as described in 4.1.  
 
B.1.2 Enhancement 
 
The background areas are supposed to be uniform in intensity, so the presence of 
edges signifies areas of drusen or vessels. Although, we are not interested in vessels, 
it would be useful to have a gross discrimination of background and non-background 
regions. Thus, we use a simple operator that enhances possible edges and suppresses 
background,which is based on input from a Sobel and an averaging operator. Sobel is 
responsible for providing information on edges’ location, while the averaging mask 
generates a smooth estimate of background, as illustrated in Fig. B.2. The 
enhancement operator is 
 

avgeenheg *).1(*. −+= , where 
 
.* :  point-to-point operator  
enh: result of Sobel operator (edges) 
avg: result of averaging operator (estimate of background) 
 

  Cut-off frequency and ?l - ?h  
        for High pass filter 

Homomorphic 
filtering 

 Sobel operator and 
normalization in [0...1] 
 New operator for  

further enhacement  
  g = e.*enh +   
 (1-e).*avg 
 

Sobel operator 
 

Adaptive 
Thresholding
: 

Illumination 
Model 
Compensation Enhancement Segmentation and 

adaptive thresholding  

init   g 

Hough 
transform 
 

 Detection 

 

 

enh 

   e 

avg 

 Averaging operator 
 

Fig. B.1 Algorithm  
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B.1.3 Segmentation and adaptive thresholding 
 
The result of previous operations is an image with a more uniform background than 
before and emphasized edges, as illustrated in Fig. B.3-(a). Another Sobel operator is 
applied that detects less edges, since the actual background is more homogenous, as 
shown in Fig. B.3-(b). False negatives are mostly generated from non-uniform areas, 
located inside large blobs, and pixels belonging to vessels. 
 
Correct segmentation is a difficult task, since many drusen-candidate edges exist. A 
adaptive thresholding scheme is employed to separate actual drusen and remove most 
of  the remained vessels. It requires two parameters: a local threshold value and a 
global one. The algorithm is described below: 
 
• Find local maxima within specified areas (e.g. 10x10) 

(a) (b) 

(c) 
Fig. B.2 (a) original image; (b) application of Sobel operator; (c) application of 
average mask 
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• Select maxima higher than local threshold 
• Multiplicate them with global threshold 
 
 
B.1.4 Detection 
 
Drusen are generally circular or ellipsoid or have a non-canonical shape. Thus, the 
detection cannot be based on a certain shape such as cirle or ellipse. Nevertheless, we 
tried to test the standard Hough transform with a small modification on resulting 
images. 
 
Following parameters are used for circle detection using Hough Transform: 
 
1. Size of  square window to search for local maxima 
 
 2. Minimum number of updates for a maximum to be used. The minimum number is 
determined from UpdateLimit and the radius  corresponding  to  the current band: 
 
 updateLimit * 2.0 * Pi * radius 
 
3. Min & Max Radius of  Circles to be detected 
 
 4. Size of square window to search for global Maxima within all bands of Hough 
transform 
 
 
B.1.5 Conclusion  
 
The major disadvantage of this approach is the inability to enhance the borders of 
large drusen.  These borders are usually smooth and do not generate strong edges after 
the Sobel operation. As a consequence, the adaptive thresholding scheme is not 
capable of segmenting large drusen although it does work well for smaller drusen. 
This scheme also fails in generating closed contours (Fig. B.3–(c)), because of 
brightness variation in edges detected by Sobel (Fig. B.3–(b)). The results are 
improved by using the Hough transform (Fig. B.3–(d)) for detecting the actual 
anomalies. After regulating the required parameters, the transform becomes elastic in 
open or broken contours and succeeds in detecting many anomalies. However, the 
parameter regulation is a hard-to-perform and the algorithm’s results are not always 
satisfactory. Many small drusen are not detected and false negatives are present, 
because of false contours generated during previous steps. 
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Fig. B.3 (a) Result of applied operator; (b) image after Sobel operator; (c) adaptive 
thresholding; (d) Hough Transform 

(a) (b) 

(c) (d) 
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B.2 Otsu thresholding scheme 
 
During our experimentation with different thresholding schemes we tried the 
following approach based on Otsu thresholds. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Homomorphic filtering is an inseparable step of our case-study. Global Otsu 
thresholding is applied to remove parts of the background that surrounds 
abnormalities. A more refined segmentation is needed, in order to separate drusen and 
detect them correctly. We apply the Otsu thresholding scheme in small windows. Our 
purpose is to segment anomalies without being misleaded by remaining bright areas 
of  the background, which owe their existence to global non-uniform illumination. 
 
 The result is almost satisfactory for images with many and large drusen (Fig. B.5 –
(a),(b)). Such drusen are bright and easy to segment when processing image in small 
blocks. However, as shown in Fig. B.5-(c),(d), when few and vague drusen are 
present the result is dissapointing. Many background areas are mistaken as macular 
degeneration symptoms, since they look a bit brighter than usual.  
 
 
 
 
 
 
 
 
 
 
 
 

  Cut-off frequency and ?l - ?h  
        for High pass filter 

Homomorphic 
filtering 

Global 
thresholding 
(Otsu) 
 

Local thresholding 
using Otsu’s 
algorithm  

Illumination Model 
Compensation 

enh 

Fig. B.4 Otsu thresholding scheme 



 63 

 
 

 
 

B.3 Template matching and Curvature estimation 
 
An advantage of examining the biomedical images at hand is the knowledge acquired 
for structures of certain size and orientation that must be detected. The existence of 
certain shapes to be localized makes template-matching tempting. In addition, 
linearity or circularity of structures is useful for distinguishing objects of interest. In 
our case, many drusen look circular as opposed to vessels that look linear. 
 
In this approach we attempted to extract drusen or vessels based on their shape. 
Directional filters, like Kirsch and Nevatia-Babu [2], were used in order to achieve 
this goal. Unfortunately, brightness variation of the background and non-canonical 
shapes of objects prevented the deviation of good results. For the same reason another 

Fig. B.5  Images before and after application of Otsu thresholding scheme 

(b) (a) 

(c) (d) 
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idea based on curvature estimation failed. This technique is briefly described in the 
following. 
 
We use the Sobel operator to approximate curvature. After running two orthogonal 
directional derivatives (vertical-horizontal masks) two vectors are generated – call 
them DX and DY. We derive line magnitude )( 22 DYDXsqrtm += , and the 

orientation image )tan( DX
DYao = . Subsequently we use these measures in the 

following way, to estimate where strong (thresholdable) lines can be identified. We 
compute the variance of the orientation image and use the Sobel magnitude and the 
Sobel orientation-variance images. The variance image is directly correlated to 
curvature and the magnitude image indicates where line strength is located. If we use 
a threshold on both images, the areas of high curvature (high variance) AND areas of 
high magnitude will fit our criteria of drusen detection as opposed to vessel detection. 
 
 
 
 
 
 
 
 



 65 

APPENDIX C  NUMERICAL FEATURES FOR CLASSIFICATION 
OF DRUSEN 
 
Finding numerical descriptors of shape is a difficult task, since there are dozens of 
possible size parameters that can be calculated. A shape descriptor is actually a 
combination of these parameters that finally form a dimensionless expression. 
Although common combinations are few, there exist an inconsistency in naming 
conventions. By using the conventions given in [3], we provide the formulas of few 
shape descriptors and definitions of some parameters. 
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Area
Formfactor

⋅
=

π
  

 
 

2

4
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Area
Roundness

⋅
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π

 

 
 

rMinDiamete
rMaxDiamete
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ConvexArea
Area

Solidity =  

 
 

rMaxDiamete

Area
sCompactnes









=
π
4

 

 
 

RectangleBounding
NetArea

Extent =  

Area: 
Object’s area in pixels 
 
Perimeter: 
Actual perimeter of object 
 
Convex Perimeter: 
 Perimeter of polygonal approximation of object’s 
boundary 
 
Convex Area: 
Area include in previous polygon 
 
Max-Min Diameter: 
Maximum (minimum) chord inside convex 
polygon 
 
Net Area: 
Object’s area without counting internal “holes” 
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