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Abstract— Since facial expressions are a key modality in 

human communication, the automated analysis of facial images 
for the estimation of the displayed expression is essential in the 
design of intuitive and accessible human computer interaction 
systems. In most existing rule-based expression recognition 
approaches, analysis is semi-automatic or requires high quality 
video. In this paper we propose a feature extraction system 
which combines analysis from multiple channels based on their 
confidence, to result in better facial feature boundary detection. 
The facial features are then used for expression estimation. The 
proposed approach has been implemented as an extension to an 
existing expression analysis system in the framework of the IST 
ERMIS project. 

 
Index Terms— Facial feature extraction, confidence, multiple 

cue fusion, human computer interaction 

I. INTRODUCTION  
In recent years there has been a growing interest in 

improving all aspects of the interaction between humans and 
computers, providing a realization of the term “affective 
computing” [15]. Humans interact with each other in a 
multimodal manner to convey general messages; emphasis on 
certain parts of a message is given via speech and display of 
emotions by visual, vocal, and other physiological means, 
even instinctively (e.g. sweating) [16].  

Interpersonal communication is for the most part 
completed via the face. Despite common belief, social 
psychology research has shown that conversations are usually 
dominated by facial expressions, and not spoken words, 
indicating the speaker’s predisposition towards the listener. 
Mehrabian indicated that the linguistic part of a message, that 
is the actual wording, contributes only for seven percent to 
the effect of the message as a whole; the paralinguistic part, 
that is how the specific passage is vocalized, contributes for 
thirty eight percent, while facial expression of the speaker 
contributes for fifty five percent to the effect of the spoken 
message [2]. This implies that the facial expressions form the 
major modality in human communication, and need to be 
considered by HCI/MMI systems. 

In most real-life applications nearly all video media have 
reduced vertical and horizontal color resolutions; moreover, 
the face occupies only a small percentage of the whole frame 

and illumination is far from perfect. When dealing with such 
input we have to accept that color quality and video 
resolution will be very poor. While it is feasible to detect the 
face and all facial features, it is very difficult to find the exact 
boundary of each one (eye, eyebrow, mouth) in order to 
estimate its deformation from the neutral-expression frame. 
Moreover it is very difficult to fit a precise model to each 
feature or to employ tracking since high-order frequency 
information is missing in such situations. A way to overcome 
this limitation is to combine the result of multiple feature 
extractors into a final result based on the evaluation of their 
performance on each frame; the fusion method is based on the 
observation that having multiple masks for each feature 
lowers the probability that all of them are invalid since each 
of them produces different error patterns. 

II. EXPRESSION REPRESENTATION 
An automated emotion recognition through facial 

expression analysis system, must deal mainly with two major 
research areas: automatic facial feature extraction and facial 
expression recognition. Thus, it needs to combine low-level 
image processing with the results of psychological studies 
about facial expression and emotion perception.  

Most of the existing expression recognition systems can be 
classified in two major categories: the former includes 
techniques which examine the face in its entirety (holistic 
approaches) and take into account properties such as intensity 
[9] or optical flow distributions and the latter includes 
methods which operate locally, either by analyzing the 
motion of local features, or by separately recognizing, 
measuring, and combining the various facial element 
properties (analytic approaches). A good overview of the 
current state of the art is presented in [4][10].  

In this work we estimate facial expression through the 
estimation of the MPEG FAPs. FAPs are measured through 
detection of movement and deformation of local intransient 
facial features such as mouth, eyes and eyebrows in single 
frames. Feature deformations are estimated by comparing 
their states to some frame, in which the person’s expression is 
known to be neutral. Although FAPs [1] provide all the 
necessary elements for MPEG-4 compatible animation, we 
cannot use them directly for the analysis of expressions from 



 

video scenes, due to the absence of a clear quantitative 
definition framework. In order to measure FAPs in real image 
sequences, we have to define a mapping between them and 
the movement of specific FDP feature points (FPs), which 
correspond to salient points on the human face. 

III. FEATURE EXTRACTION 
An overview of the system is given in Figure 1. Precise 

facial feature extraction is performed resulting in a set of 
masks, i.e. binary maps indicating the position and extent of 
each facial feature. The left, right, top and bottom–most 
coordinates of the eye and mouth masks, the left right and top 
coordinates of the eyebrow masks as well as the nose 
coordinates, to define the considered feature points. For the 
nose and each of the eyebrows, a single mask is created. On 
the other hand, since the detection of eyes and mouth can be 
problematic in low-quality images, a variety of methods are 
used, each resulting in a different mask. In total, we have four 
masks for each eye and three for the mouth. These masks 
have to be calculated in near-real time; the methodologies 
applied in the extraction of these masks include: 
• A feed-forward back propagation neural network trained 

to identify eye and non-eye facial area. The network has 
thirteen inputs; for each pixel on the facial region the NN 
inputs are luminance Y, chrominance values Cr & Cb 
and the ten most important DCT coefficients (with zigzag 
selection) of the neighboring 8x8 pixel area. 

• A second neural network, with similar architecture to the 
first one, trained to identify mouth regions. 

• Luminance based masks, which identify eyelid and sclera 
regions. 

• Edge-based masks. 
• A region growing approach to detect regions of high 

texture based on standard deviation 
 

Expression Recognition

Expression 
Profiles

Distance 
Vector 

Construction

Distances 
of Neutral 

Face

FAP 
Estimation

Facial Expression 
Decision System

recognised 
expression/ 
emotional 

state

Feature Extraction

Face Detection

Face Pose 
Correction

Face 
segmentation into 
feature-candidate 

areas

Mouth boundary 
extraction (3 Masks)

Eye boundary 
extraction (4 Masks)

Nose Detection

Eyebrow Detection

 Validation, 
Weight 

Assignment

 Validation, 
Weight 

Assignment

Final Eye 
Mask

Nose Mask

EyeBrow 
Mask

A
nthropom

etric Evaluation

Final Mouth 
Mask

Feature Points 
(FP) Generation

C
onfidence

M
ask Fusion

Neutral Frame Operations

Face Detection

Eye Template 
Extraction

Mouth shape 
detection

 
Figure 1: System Overview 

 

Since, as we already mentioned, the detection of a mask 
using any of these applied methods can be problematic, all 
detected masks have to be validated against a set of criteria; 
of course, different criteria are applied to masks of different 
facial features. Each one of the criteria examines the masks in 
order to decide whether they have acceptable size and 
position for the feature they represent. This set of criteria 
consist of relative anthropometric measurements, such as the 
relation of the eye and eyebrow vertical positions, which 
when applied to the corresponding masks produce a value in 
the range [0,1] with zero denoting a totally invalid mask; in 
this manner, a validity confidence degree is generated for 
each one of the initial feature masks. A subset of the distances 
used to form the acceptance criteria of the eyes is shown in 
the following example: 

 

1d  Eye width 

2d  Distance of eye’s middle vertical coordinate 
and  eyebrow’s middle vertical coordinate 

3d  Eyebrow width 

4d  Dbp, Bipupil breadth 
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1
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4
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and 
 2

1 2 31c
eyeM d d= −  (0.2) 

where 1

1

c
eyeM  and  2

1

c
eyeM  are the confidence degrees 

acquired trough the application of each validation criterion on 
eye mask 

1eyeM . The former of the two criteria is based on 

[7], where the mean ratio of eye width over bipupil breadth is 
reported as equal to 0.49. In almost all cases these validation 
criteria, as well as the other criteria utilized in mask 
validation, produce confidence values in the [0,1] range. In 
the rare cases that the estimated value exceeds the limits, it is 
set to the closest extreme value, zero for negative values and 
one for values exceeding one. 

For the features for which more than one masks have been 
detected using different methodologies, the multiple masks 
have then to be fused together to produce a final mask. The 
choice for mask fusion, rather than simple selection of the 
mask with the greatest validity confidence, is based on the 
observation that the methodologies applied in the initial 
masks’ generation produce different error patterns from each 
other, since they rely on different image information or 
exploit the same information in fundamentally different ways. 
Thus, combining information from independent sources has 
the property of alleviating a portion of the uncertainty present 
in the individual information components. In other words, the 
final masks that are acquired via mask fusion are 



 

accompanied by lesser uncertainty than each one of the initial 
masks. 

The fusion algorithm is based on a Dynamic Committee 
Machine structure that combines the masks based on their 
validity confidence, producing a final mask together with the 
corresponding estimated confidence [18] for each facial 
feature. Each of those masks represents the best-effort result 
of the corresponding mask-extraction method used. The most 
common problems, especially encountered in low quality 
input images, are connection with other feature boundaries or 
mask dislocation due to noise. If comby  is the combined 
machine output and t the desired output it has been proven in 
the committee machine (CM) theory that the combination 
error comby t− from different machines fi is guaranteed to be 
lower than the average error: 
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In a Static CM, the voting weight for a component is 

proportional to its error on a validation set. In DCMs, (Figure 
2) input is directly involved in the combining mechanism 
through a Gating Network (GN), which is used to modify 
those weights dynamically. 

 
Figure 2: Dynamic Committee Machine Architecture 

 
In our case, the final masks for the left eye, right eye and 
mouth, L Re e m, ,f f fM M M are considered as the machine output 

and the final confidence values of each mask for feature x 
fc

xM are considered as the confidence of each machine. 

Therefore, for feature x, each element x
fm  of the final 

mask x
fM is calculated from the n masks as: 
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Where x
im is the element of mask x

iM , ic,x
fM  the final 

validation value of mask i and ih is used to prevent the masks 

with ( )vd q
< tk kc,x c,x

f qM M⋅  to contribute to the final 

mask. A sufficient value for vdt  is 0.8. The role of the gating 

variable ig is to favor the color-based feature extraction 

methods ( e
1M , m

1M ) in images of high color and resolution. 
In this stage, two variables are taken into account: image 
resolution and color quality; since non-synthetic training data 
for the latter is difficult to acquire, in our first 
implementation, the gating output of variable ig is not trained 
but it is defined manually as follows: 
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where bpD  the bipupil width in pixels and σcr, σcb the 

standard deviation of the Cr, Cb channels respectively inside 
the facial area. It has been found that σcr, σcb in the same 
image is less than -35 10⋅ for good color quality and much 
larger for poor quality images. 
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Figure 3. Original frame (a) and the four  
detected masks for the eyes in frame  
3528 of the “Alyssa” sequence [7] 

 

 
Figure 4. Final mask for the eyes 

 
Figure 5. All detected feature  
points from the final masks 

IV. EXPRESSION ANALYSIS 
The feature masks are used to extract the Feature Points 

(FPs) considered in the definition of the FAPs, used in this 
work. Each FP inherits the confidence level of the final mask 
from which it derives; for example, the four FPs (top, bottom, 
left and right) of the left eye share the same confidence as the 
left eye final mask. Continuing, FAPs can be estimated via 
the comparison of the FPs of the examined frame to the FPs 
of a frame that is known to be neutral, i.e. a frame which is 
accepted by default as one displaying no facial deformations. 
For example, FAP 37F (squeeze_l_eyebrow) is estimated as: 

 37 4.5 3.11 4.5 3.11
n nF FP FP FP FP= − − −  (0.7) 

where n
iFP , iFP  are the locations of feature point i  on the 

neutral and the observed face, respectively, and 

i jFP FP−  is the measured distance between feature 

points i  and j .   
 

 
 

 

Figure 6. MPEG-4 Feature Points (FPs) 
 

Obviously, the uncertainty in the detection of the feature 
points propagates in the estimation of the value of the FAP as 
well. Thus, the confidence in the value of the FAP, in the 
above example, is estimated as  

 37 4.5 3.11min( , )c c cF FP FP=  (0.8) 
On the other hand, some FAPs may be estimated in different 
ways. For example, FAP 31F is estimated as: 

 1
31 3.1 3.3 3.1 3.3

n nF FP FP FP FP= − − −  (0.9) 

or as 
 2

31 3.1 9.1 3.1 9.1
n nF FP FP FP FP= − − −  (0.10) 

As argued above, considering both sources of information for 
the estimation of the value of the FAP alleviates some of the 
initial uncertainty in the output. Thus, for cases in which two 
distinct definitions exist for a FAP, the final value and 
confidence for the FAP are as follows: 

 
1 2

2
i i

i
F FF +

=  (0.11) 

The amount of uncertainty contained in each one of the 
distinct initial FAP calculations can be estimated by 

 1 11 c
i iE F= −  (0.12) 

for the first FAP and similarly for the other. The uncertainty 
present after combining the two can be given by some t -
norm operation on the two: 

 1 2( , )i i iE t E E=  (0.13) 
The Yager t -norm with parameter w=5 gives reasonable 
results for this operation: 

 ( )( )1 21 min 1, (1 ) (1 )
ww w

i i iE E E= − − + −  (0.14) 

The overall confidence value for the final estimation of the 
FAP is then acquired as 

 1c
i iF E= −  (0.15) 

While evaluating the expression profiles, FAPs with 
greater uncertainty must influence less the profile evaluation 
outcome, thus each FAP must include a confidence value. 
This confidence value is computed from the corresponding 
FPs which participate in the estimation of each FAP. 

Finally, FAP measurements are transformed to antecedent 
values jx  for the fuzzy rules using the fuzzy numbers defined 



 

for each FAP, and confidence degrees c
jx  are inherited from 

the FAP: 
 c c

j ix F=  (0.16) 

where iF  is the FAP based on which antecedent jx  is 
defined. More information about the used expression profiles 
can be found in [3][8]. 

V. EXPERIMENTAL RESULTS 
Facial feature extraction can be seen as a subcategory of 

image segmentation, i.e. image segmentation into facial 
features. Zhang [20] reviewed a number of simple 
discrepancy measures of which, if we consider image 
segmentation as a pixel classification process, only one is 
applicable here: the number of misclassified pixels on each 
facial feature. While manual feature extraction do not 
necessarily require expert annotation, it is clear in especially 
in low-resolution images manual labeling introduces an error. 
It is therefore desirable to obtain a number of manual 
interpretations in order to evaluate the inter-observer 
variability. A way to compensate for the latter is Williams’ 
Index (WI) [6], which compares the agreement of an observer 
with the joint agreement of other observers. An extended 
version of WI which deals with multivariate data can be 
found in [19]. The modified Williams’ Index divides the 
average number of agreements (inverse disagreements, Dj,j’) 
between the computer (observer 0) and n-1 human observers 
(j) by the average number of agreements between human 
observers:  

1
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2 1
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n n D

=
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−

∑

∑ ∑
  (0.17)  

and in our case we define the average disagreement between 
two observers j,j’ as: 

, ' '
1 x x

j j j j
bp

D M M
D

= ©   (0.18) 

where ©  denotes the pixel-wise xor operator, x
jM denotes 

the cardinality of feature mask x constructed by observer j, 
and bpD (bibupil width) is used as a normalization factor to 

compensate for camera zoom on video sequences. 
From a dataset of about 50000 frames, 250 frames were 

selected at random and were manually labeled from two 
observers. Distribution of WI is shown in Figure 7. At a value 
of 0, the computer mask is infinitely far from the observer 
mask. When the index is larger than 1, the computer 
generated mask disagrees less with the observers than the 

observers disagree with each other. TABLE 1 summarizes the 
results. For the eyes and mouth WI has been calculated for the 
both the final mask and each of the intermediate masks. xWI  

denotes WI for single mask x and fWI is the WI for the 

final mask for each facial feature; xWI denotes the average 

WI for mask x calculated over all test frames. Figure 7 
illustrates the WI distribution on the test frames, calculated on 
each frame as the average WI of all the final feature masks. 

 

 

Figure 7 
Williams Index distribution 
(average on eyes and mouth) 

 

Figure 8 
Williams Index distribution 

(average on left and right eyebrows) 

VI. CONCLUSIONS 
Automatic recognition of FAPs is a difficult problem, and 

relatively little work has been reported [21]. Within the 
ERMIS [5] framework the majority of collected data have 
had the aforementioned quality problems; sometimes one has 
to compromise between quality and the use of intrusive 
equipment. In both the study of emotional cues and HCI 
video quality has to be sacrificed. The procedure we have 
described can exploit anthropometric knowledge [7] to 
evaluate a set of extracted features based on different 
techniques in order to improve overall performance. Early 
tests on both low and high quality video from the ERMIS 
database have been very promising: the algorithm can 
perform fully unattended FAP extraction and self-recovers in 
cases of false detections. The system runs currently in 
MATLAB and the performance is in the order of a few 
seconds per frame.  

 



 

 
TABLE 1 

RESULT SUMMARY 

 Mask 
# xWI    fWI  

f

x

WI

WI
 σ2 

% of frames where 

f xWI WI>  

 

WI  

in frames where  

f xWI WI<  

WI   

in frames where 

f xWI WI>  

Left Eye         
NN1  0.6771 1.287 0.103 74.2 0.697 0.885 

 1 0.7016 1.216 0.056 78.8 0.731 0.868 
 2 0.8219 1.029 0.027 82.4 0.770 0.887 
 4 0.7416 1.131 0.057 76.2 0.811 0.847 
 3 0.8708 

0.8388 

0.979 0.026 44.3 0.812 0.867 
Right Eye         

NN1  0.8008 1.093 0.020 75.2 0.672 0.946 
 1 0.7185 1.243 0.084 81.4 0.674 0.929 
 2 0.7740 1.140 0.021 58.2 0.836 0.883 
 3 0.6504 1.346     0.028 84.5 0.632 0.920 
 4 0.8939 

0.8756 

0.982 0.02 48.4 0.778 0.996 
Mouth         

 1 0.7632 1.051 0.046 59.2 0.752 0.772 
 2 0.8231 0.963 0.038 44.8 0.721 0.852 
 3 0.5703 

0.7803 
1.446 0.204 96.9 0.510 0.793 

Eyebrows         
left   1.0340      

right   1.0139      

xWI  denotes WI for single mask x and fWI is the WI for the final mask for each facial feature.  
1NN denotes the eye mask derived from the eye detection neural network output 
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