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Abstract—Characterization fuzzy in term “fuzzy rule base” is 
currently referred to the ability to define rule antecedents using 
fuzzy numbers. On the other hand, when it comes to the 
knowledge described by the rules and to the information 
contained in rule antecedents, absolute accuracy is assumed. 
With the emergence of a vast variety of applications of rule based 
systems, where antecedents are not provided by sensors but 
rather by complicated processing modules, more efficient rules 
and rule evaluation structures are needed, that are able to 
describe knowledge in more intuitive manner and cope with 
uncertainty in the assumed input. In this paper we propose 
extended fuzzy rules that allow for optional antecedents and 
provide a methodology for the possibilistic evaluation of both 
conventional and extended fuzzy rules in the presence of 
uncertainty. The work has been successfully applied in a real life 
problem, for which conventional fuzzy rules and fuzzy rule 
evaluation were inadequate. 

 

I. INTRODUCTION  
Fuzzy rules and fuzzy rule base systems have been used 
extensively in the past in the design and implementation of 
expert systems, as they provide for a very intuitive way for 
expert users to formalize knowledge that can be then utilized 
to drive an automated intelligent system. The result is systems 
that can process complex inputs in a very short time and 
respond accordingly. 

In cases where response time is critical, systems based on 
fuzzy rules are often considered as the obvious choice. 
Measurements received from sensors are mapped to high level 
linguistic variables, which are then used in order to provide for 
a quick approximation of the optimal response. The only 
required assumptions are that the optimal response is a 
continuous function of the considered inputs, the knowledge 
described by the fuzzy rules is correct and of course that the 
inputs are available. 

Although these seem to be as reasonable and relaxed 
assumptions, cases exist in two out of these three assumptions 
cannot be met: 
• If some inputs can be characterized as optional in certain 

cases, expert users typically have to either ignore that fact 
or totally disregard their existence, as the conventional 

fuzzy rule format does not allow for optional rule 
antecedents. 

• When the inputs of an expert system are obtained as the 
output of another system, as is, for example, a video 
processing system, these inputs might be in some cases 
unavailable or uncertain. 
In this paper, driven by a real life problem where the two 

abovementioned situations are observed, thus making 
conventional rule base systems inadequate, we extend fuzzy 
rule format and propose a novel fuzzy rule evaluation model 
that provides for the consideration of uncertain input. 
Specifically, in section II we discuss conventional rule format 
and present an extended fuzzy rule format that allows for 
optional rule antecedents. In section III we present our 
methodology for fuzzy rule evaluation under uncertainty; we 
explain how this evaluation model produces results that have a 
possibilistic nature, which also helps tackle the issue of 
concurrent activation of contradicting rules. Finally, in section 
IV we briefly present the real life problem that initially led us 
to this work and further served as the experimental test bed for 
the presented methodology, and in section V we present our 
concluding remarks. 

II. KNOWLEDGE REPRESENTATION. 

Expert systems are knowledge based systems that try to 
emulate the consulting or decision making operation of a 
human expert. An essential issue in their design and operation 
is the representation of the knowledge they contain in an 
intuitive and human friendly format, so that human experts 
can easily describe the knowledge or examine and validate it 
after it has been automatically generated or refined by the 
system through supervised or unsupervised training. 

Fuzzy rule base systems are expert systems that typically 
contain knowledge in the form of rules such as the following: 

 1 2IF , , ...,  THEN nx x x y  (1.1) 

where y  is the consequent of the rule and 1 2, , ..., nx x x  are the 
antecedents of the rule. The antecedents typically follow the 
form: 



 

 :  IS i i ix f X  (1.2) 

where if  is a measurable feature and iX  is a fuzzy number 
quantifying the measurement. Similarly, the consequent 
follows the form: 

 :  IS y o Y  (1.3) 
where o  is the output case described by the rule and Y  is a 
fuzzy number quantifying the output. For example, a rule that 
could be contained in a fuzzy rule base system is the 
following: 

 

IF temprature IS high_temp 

AND humidity IS high_hum 

THEN it_feels_hot IS true

 (1.4) 

In this case, the count n  of rule antecedents is 2n = , the 
measurable feature 1f  of the first antecedent is the 

temperature, the fuzzy number 1X  quantifying the 
temperature is ‘high_temp’, the output case o  described by 
the rule is ‘it_feels_hot’, the  fuzzy number Y  quantifying the 
output is ‘true’ and so on. This rule is characterized in the 
literature as a fuzzy rule due to the fact that the quantification 
of the measurable features if  by fuzzy numbers iX  is not 
crisp, i.e. it contains degrees. For example, as can be seen 
from Figure 1, a temperature measurement between twenty 
seven and thirty degrees will be quantified as high_temp to a 
degree other than zero or one. 

 
Figure 1. high_temp fuzzy number 

 
The knowledge itself, on the other hand, as described by the 

rule, is not at all fuzzy; the rule describes that high 
temperature and high humidity result in a hot feeling, but 
cannot express, for example, that high temperature alone could 
have the same result, and thus that high humidity is an 
optional component with the sole result of intensifying the 
feeling. A first step towards tackling this problem is presented 
in [5], where degrees of importance are assigned to different 
rule antecedents. The solution, though, is not complete, as in 
order for complete absence of the optional antecedent not to 
make impossible the activation of the rule with degree 1, the 
importance of the antecedent needs to be set to 0; by doing 
this the antecedent is affectively removed from the rule and is 
not considered even when it is present. 

Term “weighted fuzzy rule” is also met in the literature, but 
it does not refer to weighting of rule antecedents, which could 
be seen as an approach to tackling this problem. It rather refers 
to assigning degrees of confidence to the rule as a whole in the 
case of a rule that contains doubted knowledge, as is often the 

case with rules that have been automatically generated through 
some unsupervised data mining procedure.  

Of course, conventional fuzzy rules could also handle such 
a constraint with a number of tricks, all of which have serious 
limitations and drawbacks: 

Trick 1: The optional component can be removed from the 
rule. In this case the rule successfully describes that a 
measurement of high temperature alone is enough to 
determine a hot feeling. On the other hand, in the cases that a 
measurement of high humidity is also available, this rule will 
ignore this important information bit, similarly to using the 
rule structure of [5] and assigning importance 0 to the 
antecedent. 

Trick 2: Two independent rules can be included in the rule 
base: one containing only the temperature as an antecedent 
and one containing both the temperature and the humidity as 
antecedents and providing a higher output estimation. This has 
the drawbacks that  
• it results in a more complex rule based system, 
• rules are trained independently and possibly in different 

ways when incorporated in a learning neurofuzzy structure, 
• depending on the training methodology followed, the rules 

could be competitive to each other despite the fact that they 
describe quite similar situations and 

• this representation makes it more complicated and less 
intuitive for an expert to create or examine and verify the 
rules. 
The case considered herein, i.e. the case of optional but not 

negligible antecedents, can be described successfully and in a 
very intuitive manner using rules of the form: 

 

IF temprature IS high_temp 

THEN it_feels_hot IS true 

MORE SO IF humidity IS high_hum

 (1.5) 

Thus, in this work we extend the conventional fuzzy rule 
format of (1.1) as follows: 

 1 2 1 2IF , ,...,  THEN  MORE SO IF , ,...,n n n mx x x y x x x+ + (1.6) 

where 1 2, , ...,n n mx x x
+ +

 correspond to the optional 

components of the rule and, similarly to 1 2, , ..., nx x x , are of 
the form: 

 :  IS i i ix f X  (1.7) 

III. POSSIBILISTIC RULE EVALUATION 

In the temperature example provided in the previous section, 
measurement 1f  of the temperature is assumed to be available 
with absolute precision, so that the membership function of 
Figure 1 can be applied. Although this is a reasonable 
assumption for sensor driven fuzzy systems, systems that are 
driven by complex, imprecise and uncertain output cannot be 
assumed to fulfill it.  

In many real life problems, such as facial expression 
estimation that we present in section IV, a number of delicate 
issues has to be considered, such as: 



 

• the case of antecedent values that cannot be estimated,  
• the case of antecedents estimated with a low degree of 

confidence and 
• the activation of contradicting rules. 

A conventional approach to the evaluation of fuzzy rules of 
the form described in equation (1.1) is as follows: 

 1 2( , , ..., )ny t x x x=  (1.8) 
where t  is a fuzzy t -norm, such as the minimum  
 1 2 1 2( , , ..., ) min( , , ..., )n nt x x x x x x=  (1.9) 
the algebraic product  
 1 2 1 2( , , ..., ) ...n nt x x x x x x= ⋅ ⋅ ⋅  (1.10) 
the bounded sum  
 1 2 1 2( , , ..., ) ... 1n nt x x x x x x n= + + + + −  (1.11) 

and so on. Another well known approach in rule evaluation is 
described in [4] and utilizes a weighted sum instead of a t -
norm in order to combine information from different rule 
antecedents: 

 1 1 2 2 ... n ny w x w x w x= + + +  (1.12) 
Both approaches are well studied and established in the 

field of fuzzy automatic control. Still, they are not adequate 
for the case of problems such as facial expression estimation: 
their main disadvantage is that they assume that all 
antecedents are known, i.e. that all features 1f  are measured 
successfully and precisely. In the case of facial expression 
estimation, on the other hand, feature points may well be 
estimated with a very low confidence, or not estimated at all, 
due to low video quality, speech interference, occlusion, noise 
and so on; similar problems can of course be met in various 
other complex rule based systems. Thus, a more flexible rule 
evaluation scheme that is able to incorporate this uncertainty is 
required for such cases.  

Moreover, the second one of the conventional approaches, 
due to the summation form, has the disadvantage of possibly 
providing a highly activated output even in the case that an 
important antecedent is known to be missing; obviously it is 
not suitable for the case of problems of the type examined in 
this paper; for example, the non activation of a facial 
animation parameter automatically implies that the expression 
profiles that require it are not activated either. Therefore, the 
ideal rule evaluation scheme should in fact be a generalization 
of the t -norm based conventional approach of equation (1.8). 

A. Possibilistic Evaluation of Required Antecedents 

In the t -norm operation described in equation (1.8), 
antecedents with lower values affect most the resulting value 
of y , while antecedents with values close to one have trivial 
and negligible affect on the value of y . Having that in mind, 
we can demand that only antecedents that are known with a 
high confidence will be allowed to have low values in that 
operation. More formally, we demand that the degree ( )k x  to 
which antecedent x  is considered is low when the confidence 

cx  with which the value of x  is known is high and the value 

of x  is low;  depending on the type of application,  the degree 

of confidence cx may be either provided directly by the sensor 
or, most probably, estimated via some step of input validation 
against known criteria [8]. This can be expressed as: 

 ( )( ) ( )cc k x x c x= ∩  (1.13) 
where c  is a fuzzy complement. Applying de Morgan’s law 
we have that the degree to which antecedent x  is considered 
is: 

 ( ) ( )ck x c x x= ∪  (1.14) 
It is easy to see that equation (1.14) satisfies the desired 

marginal conditions:  
• when 1cx → , then ( ) 0cc x →  and ( )k x x→ , i.e. the 

antecedent is considered normally, while  
• when 0cx → , then ( ) 1cc x →  and ( ) 1k x → , i.e. the 

antecedent is not allowed to affect the overall evaluation of 
the rule; the formula that provides the overall evaluation 
assumed in this discussion is the one followed by the 
conventional approach, with the exception that antecedents 
participate with their considered values: 
 ( )1 2( ), ( ), ..., ( )ny t k x k x k x=  (1.15) 
It is easy to see that in the case that all antecedents are 

known with a confidence of 1 the rule will be evaluated in the 
same way as in the conventional methodology. When, on the 
other hand, all antecedents are known with a confidence of 
zero, i.e. when no information is available, the rule will be 
evaluated with a degree of 1. Thus, the activation level of a 
rule with this approach can be interpreted in a possibilistic 
manner, i.e. it can be interpreted as the degree to which the 
corresponding output is possible, according to the available 
information; in the literature, this possibilistic degree is 
referred to as plausibility [3]. 

As far as the confidence in the calculated output is 
concerned, in the conventional approach we either always 
assume total confidence in the output, which originates from 
the assumption that all inputs are precisely known. In the 
extended approach followed herein, where we accept that one 
or more of the required rule antecedents may be unknown or 
known with a confidence other than zero, it does not make 
sense to always assume total confidence in the computed 
activation level. Quite the contrary, the calculated activation 
level is only complete in information when associated with a 
corresponding degree of confidence. 

The confidence is determined by the confidence values of 
the utilized inputs, i.e. by the confidence values of the rule 
antecedents, as follows: 

 1 2 ...c c c
c nx x x

y
n

+ + +
=  (1.16) 

The definition of cy  in this manner has the desired effect 

that 0cy =  is equivalent to the complete lack of information; 
this property is essential in possibilistic reasoning [3]. 



 

B. Consideration  of Optional Antecedents 

The abovementioned approach is sufficient for the 
evaluation not only of rules of the conventional form 
described in equation (1.1), but also for the evaluation of the 
first part of the extended rules described in equation (1.5). As 
far as the evaluation of the contribution of the remaining of the 
rule is concerned, it should not be allowed to effect the overall 
confidence, which should only be affected by the confidence 
in the mandatory antecedents of the rule. On the other hand, 
when it comes to the level of activation of the rule, i.e. to the 
plausibility of the corresponding expression profile, the 
detection of an optional antecedent, to any degree and with 
any confidence, should not be allowed to lessen the activation 
level calculated at the absence of that antecedent. Thus, 
optional antecedents operate as weak modifiers [3], only 
augmenting the calculated activation level. Of course, an 
optional antecedent should only be allowed to have a high 
affect on the calculated activation level if the antecedent has a 
high value and is known with a high confidence. More 
formally, the degree ( )l x  to which the optional antecedent x  
should be considered can be estimated as  

 ( ) ( , )cl x t x x=  (1.17) 
The detection of optional antecedent x  should augment the 

activation level calculated using the mandatory antecedents as 
follows: 

 ( )' , ( )y H y l x=  (1.18) 
where H  is a parameterized weak modifier [3]; modifier H  
is applied to the first argument y , and parameter ( )l x  is used 
in such a manner that when it assumes high values the affect 
of the modifier is maximized. In this work we have considered 
the following parameterized weak modifier for the evaluation 
of the developed methodology: 

 
1

1( , ) bH a b a +=  (1.19) 
In order to consider multiple optional components, the 

corresponding weak modifiers are applied sequentially to the 
calculated activation level.  

Summarizing, the activation level y  and confidence level 
cy  for the evaluation of an extended rule, i.e. for a rule 

following the form of equation (1.6), are as follows: 
 my y=  (1.20) 

 ( )
1

1 ( )
1 il x

i iy y +
−

= , , 1, .., 1i m m n= − +  (1.21) 

 ( ) ( , )c

i i il x t x x=  (1.22) 

 ( )1 2( ), ( ), ..., ( )n ny t k x k x k x=  (1.23) 

 ( ) ( )ck x c x x= ∪  (1.24) 

 1 2( , , ..., )c c c c

ny t x x x=  (1.25) 

C. On the possibilistic nature of the evaluation 

When using the conventional rule evaluation methodology of 
(1.8), it is not rare to obtain crisp results by selecting the rule 

that was activated to the highest degree and ignoring the rest. 
This means that the conventional interpretation of the 
evaluation of the fuzzy rule has a probabilistic nature. This can 
be seen more clearly for the fact that: 
• the rule with the highest activation is considered most 

probable than the others and 
• cases where two rules are activated to almost equal degrees 

are not considered “clear” as both rules are considered 
almost equally probable. 
On the other hand, it is worth noting that the output of a 

fuzzy rule base system, although has a probabilistic flavor, 
cannot be used as a formal probability measure as it does not 
meet the axiomatic probability definition. For example, the 
sum of the activation of contradicting rules is not guaranteed 
to be less than unity. Similarly, we cannot claim that the 
output of the proposed possibilistic rule evaluation meets all 
the formal requirements to be named possibilistic. Still, it is 
clear that it has a possibilistic nature. 

Thus, the activation level of the rule has a possibilistic 
interpretation and corresponds to the plausibility of the rule. In 
order, of course, to have a complete possibilistic 
representation of the rule evaluation, together with the 
plausibility of the rule we need to estimate the corresponding 
belief, i.e. the degree to which available evidence suggests that 
the output case described by the rule is verified by the 
available input.  

The belief measure should be high when sufficient 
information is available during the evaluation of the rule, and 
that information verifies the output case described by the rule. 
The amount of information that is available during the 
evaluation of the rule is provided by the calculated confidence 
value, while the degree to which this information verifies the 
output case described by the rule is provided by the activation 
level. Thus, the complete possibilistic representation of the 
calculated output is provided as: 

 ( , )cBel t y y=  (1.26) 

 cPl y=  (1.27) 
The case of activation of multiple and contradicting rules of 

the rule base is not an issue for this approach. In that case, it is 
expected that confidence values will be low, which can be 
interpreted as the case in which, due to poor input, more than 
one possible output cases cannot be ruled out. Still, the belief 
that they a indeed be activated, as reported by equation (1.26), 
will be low. 

IV. EXPERIMENTAL TEST BED 

The goal of IST project ERMIS is the development of a 
prototype system for human computer interaction than can 
interpret its users' attitude or emotional state, e.g., interest, 
boredom, anger, etc. in terms of their speech and their facial 
gestures and expressions [9]. In this framework, a software 
prototype of the expert system has been developed that is able 
to automatically categorize facial expressions observed on real 
faces. The proposed extended rule model and possibilistic rule 
evaluation have been incorporated into this prototype.  



 

In order to utilize extended fuzzy rules, or even the 
conventional fuzzy rule format, in describing the knowledge 
about human expressions that is needed by the system in 
estimating the expression of the user starting from raw media 
input such as static images or video sequences in a Man 
Machine Interaction (MMI) context, we have first described 
the six archetypal expressions (joy, sadness, anger, fear, 
disgust, surprise) in a symbolic manner, using easily and 
robustly estimated tokens; Facial Animation Parameter (FAP) 
representations, as explained in [8], make good candidates for 
describing quantitative facial motion features. The use of these 
parameters serves several purposes such as compatibility with 
the MPEG-4 standard and increase of the range of the 
described expressions; archetypal expressions occur rather 
infrequently and in most cases expressions are expressed 
through variation of a few discrete facial features related with 
particular FAPs. 

Table 1. FAP IDs and names 
FAP Full name of FAP FAPFull name of FAP 
F3 open_jaw F4 lower_t_midlip 
F5 raise_b_midlip F6 stretch_l_cornerlip 
F7 stretch_r_cornerlip F8 lower_t_lip_lm 
F9 lower_t_lip_rm F10 raise_b_lip_lm 
F11 raise_b_lip_rm F12 raise_l_cornerlip 
F13 raise_r_cornerlip F16 push_b_lip 
F18 Depress_chin F19 close_t_l_eyelid 
F20 close_t_r_eyelid F21 close_b_l_eyelid 
F22 close_b_r_eyelid F31 raise_l_i_eyebrow 
F32 raise_r_i_eyebrow F33 raise_l_m_eyebrow 
F34 raise_r_m_eyebrow F35 raise_l_o_eyebrow 
F36 raise_r_o_eyebrow F37 squeeze_l_eyebrow 
F38 Squeeze_r_eyebrow F41 lift_l_cheek 
F42 lift_r_cheek F53 stretch_l_cornerlip_o 
F54 Stretch_r_cornerlip_o F55 lower_t_lip_lm_o 
F56 lower_t_lip_rm_o F57 raise_b_lip_lm_o 
F58 raise_b_lip_rm_o F59 raise_l_cornerlip_o 
F60 raise_r_cornerlip_o   
 
Based on elements from psychological studies [1][2][6][7], 

we have described the six archetypal expressions using 
MPEG-4 FAPs; the list of utilized FAPs for each one of the 
archetypal expressions forms the expression vocabulary and is 
illustrated in Table 2 while FAP names corresponding to FAP 
IDs of  Table 2 are reported in  Table 1. FAP names have 
been chosen to be descriptive, in order to facilitate manual 
specification and examination of the rule base; for example 
FAP F13 with name “raise_r_cornerlip” corresponds to the 
raising of the right corner of the lip. In general, these 
expressions can be uniformly recognized across cultures and 
are therefore invaluable in trying to analyze the users' 
emotional state. 

As a general rule, one can define six general expression 
categories, each characterized by an archetypal expression; 
within each of these categories, intermediate expressions are 
described by different emotional intensities, as well as minor 
variations in expression details. From the processing point of 
view, expressions belonging to the same category can be 

represented using the same FAPs as in the case of the 
archetypal expression, but using different intensities. This 
leads to the generation of various expression profiles, each one 
describing different levels of activation of the expression 
vocabulary FAPs; each expression profile is represented using 
a distinct extended fuzzy rule. 

Table 2. FAPs vocabulary for archetypal expression 
description  

Joy F3, F4, F5, F6, F7, F12, F13, F19, F20, F21, F22, F33, F34, 
F41, F42, F53, F54 

Sadness F19, F20, F21, F22, F31, F32, F33, F34, F35, F36  
Anger F4, F5, F16, F18, F19, F20, F21, F22, F31, F32, F33, F34 , 

F35, F36, F37, F38 
Fear F3, F4, F5, F8, F9, F10, F11, F19, F20, F21, F22, F31, F32, 

F33, F34, F35, F36, F37, F38  
Disgust F3, F4, F5, F8, F9, F10, F11, F19, F20, F21, F22, F33, F34, 

F55, F56, F57, F58, F59, F60 
Surprise F3, F5, F6 , F7, F10, F11, F19, F20, F21, F22, F31, F32, 

F33, F34, F35, F36, F37, F38, F53, F54 
 
On the other hand, the process of image processing of facial 

images leads to the measurement of some or all of these FAPs, 
in different scales and ranges. Thus, each FAP is quantified 
using different fuzzy numbers, in order to acquire the 
antecedents required for the evaluation of the fuzzy rules; each 
expression profile is represented using a distinct fuzzy rule. 
Each FAP may theoretically be quantified using a different 
fuzzy number for each rule in which it participates; in practice 
only a few fuzzy numbers are used for each FAP and are 
shared among rules, which greatly simplifies the generation 
and inspection of the rule base by human experts. For 
example, FAP F42 (lift_r_cheek) is quantified using only fuzzy 
numbers “raised” and “not_raised”, while FAP F3 (open_jaw) 
is quantified using fuzzy numbers “high”, “medium”, “low” 
and “neutral”.  

Definition of the ranges of the FAPs is based on 
anthropometric data and specification of the optional 
antecedents of rules is based on the aforementioned 
psychological studies. Thus, for example, FAPs F35 and F36 are 
optional in most extended rules corresponding to profiles of 
the archetypal expression of fear. 

As can be seen from the sample frame presented in Figure 
2, feature points are not always identified successfully. In 
Figure 2, for example, all FAPs related to the mouth will be 
misestimated. Problems like this made the original version of 
the prototype, which was using the conventional rule 
evaluation methodology unable to handle the case and often 
provided random or obviously erroneous responses, 
insufficient. The updated version, equipped with the extended 
fuzzy rule structure and possibilistic fuzzy rule evaluation 
described in this work, never fails to produce meaningful 
output. Even in cases that the detected features are insufficient 
for any assumption on the use expression, the model 
successfully describes this lack of input through the high 
plausibility and low belief measures; in this way consequent 
processes that rely on the output of the fuzzy expert system are 



 

advised to disregards the evaluation of the specific frames and 
the error is not further propagated. 

 

 
Figure 2. A sample frame 

V. CONCLUSIONS 
We have started this paper by proposing an extended format 

for fuzzy rules that allows for optional rule antecedents. This 
format provides for a more simple and intuitive handling of 
optional antecedents, than the possible solutions when using 
the conventional fuzzy rule format.  

Continuing, we have examined the case when one or more 
of the antecedents of a fuzzy rule are either unknown or 
known with some confidence other than 1. We have proposed 
a flexible rule evaluation model that considers the confidence 
with which measured inputs are known.  

This model, together with the estimation of the degree of 
activation of the rule, also provides a measure of the 
confidence in the considered input; the two measures 
combined constitute a possibilistic rule evaluation, as both 
belief and plausibility are provided. 

The proposed fuzzy rule formal and flexible rule evaluation 
methodology have been used in the development of a fuzzy 
rule base system for the automatic analysis of raw video and 
audio input for the estimation of facial expressions. Although 
traditional fuzzy rules were not sufficient for this problem, 
where rule antecedents are often not available or computed 
with low certainty, the proposed approach has been proven to 
be successful. 

Of course, we do not believe that the considered example is 
the only possible field of application for the proposed 
possibilistic fuzzy rule evaluation methodology. Quite the 
contrary, we believe that it could be considered for all fuzzy 
rule base systems that receive their input from some imperfect 
processing system. As future work, we intend to investigate 
the application of the proposed methodology in the design and 
implementation of other systems that are driven by an 
unsupervised video processing methodology, as is for example 
the matching of abstract object models in a knowledge base to 
features automatically extracted from low quality images or 
video sequences. 
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