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Abstract 
 
In mammography the interesting characteristics of an image are malignant masses, microcalcifications and skin 
thickening, of which the last two are said to be indirect signs of malignancy. The mammograms, as normally 
viewed, display a small percentage of the information they detect and that is due to the minor difference in x-ray 
attenuation between normal glandular tissues and malignant disease. This makes the detection of small 
malignancies difficult. The digital medical image processing uses denoising and image enhancement techniques 
so as to reveal any tumors that may not be obvious and help the oncologist decide. In this paper we employ two 
different methods of image enhancement and compare them in order to decide which one provides better results 
in each mammogram. The first method is called adaptive enhancement algorithm and it measures the correlation 
between wavelet coefficients in successive levels of the analysis so as to decide if the coefficient derives from 
noise or not and then uses non-linear mapping for the enhancement. The second one, which we call typical 
method of enhancement, is a method which uses thresholding for the denoising step, non-linear mapping in order 
to enhance the image and finally filtering to deblur and sharpen the mammogram. 
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1 Introduction 
 
From statistical surveys which have taken place the last years, we have, unfortunately, 
confronted the fact that breast cancer affects one every nine women in the world. In Europe, it 
is the major reason for women mortality who age between 35 and 55. As far as the mortality 
caused by this type of cancer in Greece is concerned, an increase of 53.27% has been noticed 
since 1970, while 4000 new incidents occur every year (Greece Now). The early detection of 
breast cancer is clearly a key ingredient of any strategy designed to reduce breast cancer 
mortality. Due to the large numbers of possible patients and their uniform distribution in 
urban and rural environments, in person precautionary periodic examination of the complete 
population by physicians seems to be impossible. Thus, research is gradually turning towards 
the development of methodologies and tools that can allow this process to happen in an 
automated or networked environment. The goal is not necessarily to provide perfect 



estimations in all cases; rough evaluations but without any false negatives are enough to filter 
out a large portion of the population and make precautionary examinations more easily 
tractable. In this process, computerized systems will be required to examine medical tests, 
such as mammograms, and identify the elements a physician would also look for. As a first 
step, the system needs to be able to discriminate between artificial noise and actual signal, 
before continuing to make an initial evaluation. 
 
Many studies have been carried out in order to satisfy this purpose. The proposed digital 
processing techniques have been applied previously to mammography. The focus of these 
investigations has been to enhance mammographic features while reducing the enhancement 
of noise. This is a complicated matter because it is not easy to discriminate the noise from the 
features of the initial image. The study should keep the balance between the enhancement and 
the denoising of the image so as not to lose any important feature but also make more distinct 
the mammogram itself. That is what we tried to do in both our enhancement methods by 
selecting the most effective parameters. 
 
In this paper, the à trous algorithm, an undecimated wavelet transform, will be introduced and 
two methods of mammograms’ enhancement will follow. The first method, the adaptive 
enhancement algorithm, measures the correlation between wavelet coefficients in successive 
levels of the analysis so as to decide if the coefficient derives from noise or not and then 
makes use of non-linear mapping functions for the enhancement. The second one uses 
thresholding for the denoising step, non-linear mapping functions in order to enhance the 
image and finally high-pass spatial filtering to sharpen the mammogram. 
 
2 Undecimated Wavelet Transform – The À Trous Algorithm 
 
Decimation, which is used in the discrete wavelet transform, generates a shift variant 
transformation and this problem has to be overcome. Some undecimated wavelet transforms 
have been introduced as a solution, i.e. the à trous algorithm (Shensa, 1992). The idea that lies 
beneath this algorithm is to upsample the low-pass filter g and spread it so as to provide space 
in which to put the interpolated values. Then, a filter h is applied which leaves the even points 
fixed and interpolates to get the odd points.  
 
Definition 1 The low-pass filter h is said to be an à trous filter if it satisfies  

( 2.1 ) h2n = δ(n) / √2. 
 
The result of the entire interpolation, as shown in Fig. 1, is thus 
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Figure 1 - Dilation and interpolation of a function ψ(t). 



The à trous algorithm is described by the following equations,  
( 2.3 ) f i+1 = Λ(h ∗f i )   and            f~ i = g ∗h 

where Λk,m=δ(2k-m)=δ2k,m is the decimation operator. 
 
The above relations are not shift invariant and the undecimated version of the algorithm enters 
now. Let Τm be the operation of translation by m: 

( 2.4 ) (Τmf )k ≡ f k-m 

 We are able to see that f~ i is translation variant but if we replace m with 2im we get 
( 2.5 ) [ f~ i(Τ2

i
m f 0)]k = [ f~ i(f 0)]k-m 

thus, translating f 0 by 2im translates octave i by m. 
 
Definition 2 The undecimated f in terms of the decimated transform f~ is 
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The equations that describe the undecimated à trous algorithm are  

( 2.7 ) f i+1 = (Dih) ∗f i     and        if  = (Dig) ∗f i . 
 
3 Adaptive Enhancement Algorithm 
 
The adaptive enhancement algorithm (Brown, 2000) uses the correlation between wavelet 
coefficients at the same spatial position in successive resolution levels in order to discriminate 
between coefficients arising from noise within the image and those arising from signal 
features. Noise is normally spatially localized so in the wavelet domain coefficients due to 
noise are normally weakly correlated with the corresponding ones on successor planes. 
 
The algorithm consists of the following steps: 
Implement a redundant wavelet transform on the image to be enhanced.  
      For each wavelet plane except the last  
      For each position in the image domain  

compute the correlation with the corresponding coefficient on the successor plane.  
From the correlation derive a value which measures the ‘evidence’ that the wavelet 
coefficient is caused by noise.  
Use this evidence value to determine what gain to use. 
Select a mapping function determined by this gain and apply it to the coefficient.  

Finally implement an inverse wavelet transform to construct the enhanced image.  
 

3.1 Computing the Evidence of Noise from the Wavelet Correlation  
 
Given a wavelet coefficient set at resolution n, and its successor in the next highest resolution 
level (n +1), for each position we get :  

( 3.1. ) Corrn = Wn * Wn+1  
We must now scale the set of correlation values because on average wavelet coefficient 
magnitudes decline with increasing resolution level. We compute:  

( 3.2. ) Pcorr = Σ (Corrn * Corrn)     : total power in the correlation values 
( 3.3. ) Pw = Σ (Wn * Wn)               : total power in the nth coefficient set 



The summations are carried out over the full set of wavelet coefficients. The scaled 
correlation values are:  

( 3.4. ) Corr2n = Corrn * √(Pw / Pcorr)  
and the minimum absolute value within the set of scaled correlation values is found: 

( 3.5. ) Corr2min = minimum {|Corr2n|}  
This value is treated as indicating definite noise. For each position a proper evidence value, as 
shown in Table 1, is assigned. 

if (abs(Corr2n) ≥ abs(Wn))  
 E = 0  
else if (abs(Corr2n) = Corr2min)  
 E = 1  
else E = (abs(Wn) - abs(Corr2n)) / (abs(Wn) - Corr2min)  

Table 1 
 
3.2 Adapting the Enhancement Process  
 
For each wavelet coefficient the evidence value determines which mapping function to apply. 
The possible mapping functions fall within an envelope of mapping functions (Fig.2).  
 
When the evidence suggests that the wavelet coefficient is definitely due to noise then the 
mapping function applied is defined by the light solid line. For wavelet coefficient 
magnitudes smaller than |T1| the gain is zero. Above |T2| the gain is unity. For coefficients 
whose absolute magnitude falls between T1 and T2, the gain rises uniformly from 0 to 1. On 
the other hand, if the wavelet coefficient arises from signal features, then the mapping 
function to be applied corresponds to the heavy line. In this case, a maximum gain Gmax is 
applied if the wavelet coefficient value is smaller than |T1|. If the absolute value of the 
wavelet coefficient falls between T1 and T2 then the gain falls uniformly to unity, and beyond 
T2 remains at that value so as to minimise the amplification of already strong edge features. 
 
In the case of an evidence value which is not decisive, a gain value between zero and Gmax is 
used. If the evidence value is above some upper limit then the gain is set to zero. Alternatively 
if the evidence value is below a lower limit the gain is set to Gmax, the maximum gain to be 
applied to this wavelet coefficient set. Linear scaling is applied when the evidence falls 
between Elower and Eupper (Fig. 3). 
 

  
Figure 2 – Envelope of wavelet mapping  
function used by the adaptive algorithm 

Figure 3 - Deriving gain from 
evidence of noise  

 



4 Typical Method of Enhancement 
 
The typical method of enhancement consists of three steps. The first one is denoising using 
thresholds, the second one is enhancement via non-linear mapping functions and finally 
sharpening of the image with the use of high-pass spatial filtering (Stefanou et al., 2005). 
 
4.1 Denoising 
 
The coefficients arising from noise are characterized by high frequency so most denoising 
techniques are methods of low-pass filtering in which channels of higher frequencies are cut 
off while channels of lower ones are enhanced. A simple way of denoising is thresholding 
where the wavelet coefficients whose magnitude are below a given value – the threshold – are 
set to zero. In this paper we use different values of thresholds at each wavelet level, which 
correspond to percentages of the set of coefficients.  
 
4.2 Enhancement 
 
Linear mapping functions, where all wavelet coefficients are multiplied by a certain gain 
value, tend to enhance sharp edges. If a mammogram which contains a single obvious (high 
intensity) microcalcification, for example, is enhanced by a linear operator it will result in 
gross rescaling within the available dynamic range of a display. This problem is solved by a 
simple non-linear method. 
 
A non-linear function is that shown in Fig. 4 and given by (4.1) where Κ1, Κ2>1 so that the 
wavelet coefficients are enhanced. As observed, the function comprises of two linear parts 
with different slopes which correspond to each gain. If Κ1>Κ2 coefficients with small 
magnitudes are amplified, thus weak features of the image are enhanced, while if Κ1<Κ2 sharp 
features are enhanced. Another function is the one appeared in Fig. 5 and described by (4.2). 
This function has two thresholds, therefore, categorizes the coefficients in three groups. The 
last function is described by (4.3) and shown in Fig. 6. The coefficients with magnitude close 
to zero are almost totally suppressed while those with larger magnitude are amplified and, 
thus, enhanced. A linear function is applied to the coefficients with magnitude above T. 
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Figure 4 – Bilinear 
mapping function  

Figure 5 – Twin-threshold 
mapping function 

Figure 6 – Broken 
mapping function 



 
4.3 Restoration 
 
Restoring an image is the way of eliminating the degradation that the image sustains during 
the processing. A type of degradation is the blurring which evokes at the low-pass filtering 
used in the denoising.  
 
The filtering in the spatial coordinates range of the image, which deblurs the image, is 
achieved by a convolution with a n×n matrix:  

( 4.4 ) ∑ ∑
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where f: input image, h: filter function, y: output image. 
 
The basic high-pass spatial filtering is used to sharpen the image by amplifying the high 
frequencies coordinates. The filter should have positive coefficients near the centre and 
negative ones radially, while the sum of the filter coefficients should be zero in order to 
recognize an area with no edges.  
 
5 Conclusion - Results 
 
For a mammogram processed with the typical method at different levels of wavelet analysis 
we have chosen the parameters and function which produced the best results (Fig.7). 

 

  

  
Figure 7 - Initial image (up left), output image of first level of analysis(up right), second 

level of analysis(down left), third level of analysis(down right). 
 



  
Figure 8 – Initial image (left) and output image (right). 

We observe that the typical method produces better results when the analysis is made at the 
first level because it introduces blurring with the increase of the analysis levels. The adaptive 
algorithm is better when the analysis is made at higher levels because it does not blur the 
image. When the previous image is processed with the adaptive enhancement algorithm at the 
second level of the wavelet analysis the following result is produced (Fig. 8).  
 
Another comparison is presented below. 
 

 

 
Figure 9 – Initial image (up), image processed by typical method at 2nd level (down-left) 

and image processed by adaptive algorithm (down-right) 
 
Some other results of the two methods are shown in the next figures. The enhancement caused 
by the typical method at the first level of the analysis is obvious in Fig.10, while the use of the 
adaptive method at the second level produces not enough enhanced results (Fig. 11).  
 



Figure 10 - Initial image (left) and processed by typical method at 1st level (right) 
 

 

Figure 11 - Initial image (left) and processed by adaptive algorithm at 2nd level (right) 
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