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Abstract: Since facial expressions are a key modality in human 
communication, the automated analysis of facial images for the estimation of 
the displayed expression is central in the design of intuitive and human friendly 
human–computer interaction systems. In existing approaches, over-formalised 
description of knowledge concerning the human face and human expressions, 
as well as failures of the image and video processing components, often lead to 
misclassification. In this paper, we propose the utilisation of extended fuzzy 
rules for the more flexible description of knowledge, and the consideration of 
uncertainty and lack of confidence in the process of feature extraction from 
image and video. The two are combined using a flexible possibilistic rule 
evaluation structure, leading to more robust overall operation. The proposed 
approach has been implemented as an extension to an existing expression 
analysis system and conclusions from comparative study have been drawn. 

Keywords: facial expression recognition; facial feature extraction; information 
fusion. 
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1 Introduction 

Interpersonal communication is for the most part completed via the face. The face is the 
mean to identify a colleague or friend, to assist interpretation of what has been said via 
lip reading, and to understand someone’s emotional state and intentions on the basis of 
the shown facial expression. Despite common belief, social psychology research has 
shown that conversations are usually dominated by facial expressions, and not spoken 
words, indicating the speaker’s predisposition towards the listener. Mehrabian indicated 
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that the linguistic part of a message, that is the actual wording, contributes only for 7% to 
the effect of the message as a whole; the paralinguistic part, that is how the specific 
passage is vocalised, contributes for 38%, while facial expression of the speaker 
contributes for 55% to the effect of the spoken message (Mehrabian, 1968). This implies 
that the facial expressions form the major modality in human communication. 

Facial expressions are generated by contractions of facial muscles; these result in 
temporally deformed prominent facial features such as eyelids, eyebrows and lips, often 
indicated by wrinkles. Hence, one can model a particular expression as a set of given 
concurrent deformations. In this framework, facial expression intensities may be 
measured by determining the geometric deformation of the particular facial features and 
examining their relation to the ones depicted in the priori represented expressions; barring 
situations of extreme or acted expressions, in most circumstances more than one of these 
representations may be close enough to the actual measurements. An overview of the 
methodologies used for automatic analysis of facial expression can be found in  
(Fasel and Luettin, 2003). A usual approach to measuring deformation, fortified by the 
fact that there are inter-personal variations of facial action amplitude, is to refer to the 
neutral-expression face of a given person. 

In addition to issues related to expression representation, an important parameter of 
this approach is the effectiveness of the image processing procedures. In actual situations, 
such as processing visual data from talk shows, many kinds of noise may hinder  
feature extraction: subjects turning their heads or moving their hands may lead to feature 
occlusion, or bad and uneven lighting may hamper edge- or colour-based feature 
extraction algorithms. As a result, the appearance and deformation of one or more 
features may not be available for a given frame of a video sequence; worse yet, an 
erroneous deformation estimate may be unknowingly fed into the knowledge 
representation infrastructure. 

In these circumstances, the easiest (and safest) way for an expression recogniser to 
get around would be to provide no label for the given sequence. However, the lack of 
evidence for a particular feature being deformed, when this feature is used in the 
representation of an expression, should not always be considered as absence of this 
feature: it may be attributed to a mistake of the image processing algorithms or to the fact 
that the feature may not be essential for the representation of the particular expression.  
A flexible recogniser should be able to handle the absence of information or evidence and 
incorporate it into the final estimate. 

In this paper, we quantify the uncertainty generated during the image processing for 
feature extraction phase through validation of the results against a set of anthropometric 
criteria and propose a methodology based on which fuzzy rules containing knowledge on 
expression analysis and estimation can be evaluated in an uncertain environment.  
The structure of the paper is as follows: In Section 2, we briefly review expression 
representation as proposed by psychologists and explain how these are ported to 
expression analysis practice by computer scientists. Continuing, in Section 3, we explain 
how information required to evaluate rule antecedents can be extracted from still facial 
images, and how uncertainty in the image processing steps can be both minimised and 
measured. Section 4 discusses the evaluation of the fuzzy rules representing the mapping 
between measure features and estimated expression, given the uncertainty contained in 
the input provided by the image processing steps of Section 3. Section 5 lists results from 
the application of the proposed approach to an annotated database of static and moving 
facial images. A more conventional approach with rule evaluation that disregards input 
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uncertainty is also applied on the same data and conclusions are drawn through 
comparisons. Finally, Section 6 lists our concluding results. 

2 Preliminaries 

In the 1990s, automatic facial expression analysis research gained much interest – thanks 
mainly to progress in the related fields such as image processing (face detection, tracking 
and recognition) and the increasing availability of relatively cheap computational power 
(Fasel and Luettin, 2003). In one of the groundbreaking and most publicised works,  
Mase and Pentland (1991) used measurements of optical flow to recognise facial 
expressions. In the following, Lanitis et al. (1997) used a flexible shape and appearance 
model for face identification, pose recovery and facial expression recognition. Black and 
Yacoob (1997) proposed local parameterised models of image motion to recover  
non-rigid facial motion, which was used as input to a rule-based basic expression 
classifier. Local optical flow was the basis of Rosenblum’s (1996) work, utilising a radial 
basis function network for expression classification. Regarding feature-based techniques, 
Donato et al. (1999) tested different features for recognising facial AUs and inferring the 
facial expression in the frame. Oliver et al. (1997) tracked the lower face to extract mouth 
shape information and fed them to an HMM, recognising again only universal 
expressions. 

The obvious goal for expression analysis applications is to assign category labels that 
identify expressional states. However, labels as such are very poor descriptions, 
especially, since humans use a daunting number of labels to describe expression. 
Therefore, we need to incorporate a more transparent, as well as continuous 
representation, that matches closely our conception of what expression are or, at least, 
how they are displayed and perceived. Activation–emotion space (Cowie et al., 2001) is a 
representation that is both simple and capable of capturing a wide range of significant 
issues in expression. It rests on a simplified treatment of two key themes. 

• Valence. The clearest common element of emotional and expressional states is that 
the person is materially influenced by feelings that are ‘valenced’, i.e., they are 
centrally concerned with positive or negative evaluations of people, or things or 
events; the link between emotion, expression and valencing is widely agreed. 

• Activation level. Research has recognised that emotional and expressional states 
involve dispositions to act in certain ways. A basic way of reflecting that theme turns 
out to be surprisingly useful. States are simply rated in terms of the associated 
activation level, i.e., the strength of the person’s disposition to take some action 
rather than none. 

The axes of the activation–evaluation space reflect those themes. The vertical axis shows 
activation level, the horizontal axis evaluation. A basic attraction of that arrangement is 
that it provides a way of describing emotional and expressional states which is more 
tractable than using words, but which can be translated into and out of verbal 
descriptions. Translation is possible because emotion-related words can be understood, at 
least to a first approximation, as referring to positions in activation–emotion space. 
Various techniques lead to that conclusion, including factor analysis, direct scaling and 
others (Whissel, 1989). 
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A surprising amount of emotional discourse can be captured in terms of  
activation–emotion space. Perceived full-blown emotions are not evenly distributed in 
activation–emotion space; instead they tend to form a roughly circular pattern. From that 
and related evidence, work presented in Plutchik (1980) shows that there is a circular 
structure inherent in emotionality. In this framework, identifying the centre as a natural 
origin has several implications. Emotional strength can be measured as the distance from 
the origin to a given point in activation–evaluation space. The concept of a full-blown 
expression can then be translated roughly as a state where emotional and expressional 
strength has passed a certain limit. An interesting implication is that strong expressions 
are more sharply distinct from each other than weaker expressions with the same 
emotional orientation. A related extension is to think of primary or basic expressions as 
cardinal points on the periphery of an expression circle. Plutchik has offered a useful 
formulation of that idea, the ‘emotion wheel’; the emotion wheel is presented in Figure 1. 

Figure 1 The activation–emotion space 

 

In the framework of MPEG-4 standard, parameters have been specified for Face and 
Body Animation (FBA) by defining specific Face and Body nodes in the scene graph; the 
initial goal of FBA definition is the animation of both realistic and cartoonist characters. 
Thus, MPEG-4 has defined a large set of parameters and the user can select subsets of 
these parameters according to the application. MPEG-4 specifies 84 feature points on the 
neutral face, which provide spatial reference for Facial Animation Parameter (FAP) 
definition; these feature points are presented in Tekalp and Ostermann (2000). FAPs are 
defined through the comparison of distances between pairs of feature points on the 
observed and the neutral face. Most of the techniques for facial animation are based on 
the well-known system for describing “all visually distinguishable facial movements”, 
FACS. FACS is an anatomically oriented coding system, based on the definition of 
‘Action Units’ (AU) of a face that cause facial movements. An Action Unit could 
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combine the movement of two muscles or work in the reverse way, i.e., split into several 
muscle movements. The FACS model has inspired the derivation of facial animation and 
definition parameters in the framework of the ISO MPEG-4 standard (Tekalp and 
Ostermann, 2000). In particular, the Facial Definition Parameter (FDP) and the Facial 
Animation Parameter set were designed in the MPEG-4 framework to allow the 
definition of a facial shape and texture through FDPs, thus eliminating the need for 
specifying the topology of the underlying geometry, and the animation of faces through 
FAPs, thus reproducing expressions, emotions and speech pronunciation (see Table 1). 

3 Feature extraction 

Besides expression representation, an important parameter of the expression analysis 
process is the effectiveness of the image processing procedures. Automatic analysis 
systems usually require good input to avoid misclassification or errors, which is  
often ensured by the use of specific environment conditions such as in Pantic and 
Rothkrantz (2000a, 2000b). In actual situations, such as processing visual data from talk 
shows, many kinds of noise may hinder feature extraction: subjects turning their heads, or 
moving their hands may lead to feature occlusion or bad and uneven lighting may hamper 
edge- or colour-based feature extraction algorithms. As a result, the appearance and 
deformation of one or more features may not be available for a given frame of a video 
sequence; worse yet, an erroneous deformation estimate may be unknowingly provided as 
input to the subsequent expression analysis and classification procedures. 

In this work, we utilise our recent work in feature extraction methods described in 
Ioannou et al. (2005). Precise facial feature extraction is performed resulting in a set of 
masks, i.e., binary maps indicating the position and extent of each facial feature. The left, 
right, top and bottom-most coordinates of the eye and mouth masks, the left right and top 
coordinates of the eyebrow masks as well as the nose coordinates, are used to define the 
feature points. For the nose and each of the eyebrows, a single mask is created. On the 
other hand, since the detection of eyes and mouth can be problematic in low-quality 
images, a variety of methods is used, each resulting in a different mask. In total, we  
have four masks for each eye, three for the mouth and one for each one of the eyebrows. 
The methodologies applied in the extraction of these masks include. 

• A feed-forward back propagation neural network trained to identify eye and non-eye 
facial area. The network has 13 inputs; for each pixel on the facial region the NN 
inputs are luminance Y, chrominance values Cr and Cb and the ten most important 
DCT coefficients (with zigzag selection) of the neighbouring 8 × 8 pixel area. 

• A second neural network, with similar architecture to the first one, trained to identify 
mouth regions. 

• Luminance based masks, which identify eyelid and sclera regions. 

• Edge-based masks. 

• A region growing approach based on standard deviation. 
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Since, as we already mentioned, the detection of a mask using any of these applied 
methods can be problematic, all detected masks have to be validated against a set of 
criteria; of course, different criteria are applied to masks of different facial features.  
Each one of the criteria examines the masks in order to decide whether they have 
acceptable size and position for the feature they represent. This set of criteria consist of 
relative anthropometric measurements, such as the relation of the eye and eyebrow 
vertical positions, which when applied to the corresponding masks produce a value in the 
range [0,1] with zero denoting a totally invalid mask; in this manner, a validity 
confidence degree is generated for each one of the initial feature masks. For example, two 
criteria that can be used for the validation of the eye masks are the following: 

1 2 6
eye 1 1

0.49
c d dM = − −  (1) 

and 

2 4
eye

5

| |1c dM
d

= −  (2) 

where 1 2
eye eye and c cM M  are the confidence degrees acquired through the application of each 

validation criterion on an eye mask. The former of the two criteria is based on  
Young (1993), where the ration of eye width over bipupil breadth is reported as constant 
and equal to 0.49. In almost all cases these validation criteria, as well as the other criteria 
utilised in mask validation, produce confidence values in the [0,1] range. In the rare cases 
that the estimated value exceeds the limits, it is set to the closest extreme value, 0 for 
negative values and one for values exceeding one. The features measured for the 
application of the two example criteria are explained in Table 2. 

Table 1 FAPs vocabulary for archetypal expression description 

Joy F3, F4, F5, F6, F7, F12, F13, F19, F20, F21, F22, F33, F34, F41, F42, F53, F54 
Sadness F19, F20, F21, F22, F31, F32, F33, F34, F35, F36 
Anger F4, F5, F16, F18, F19, F20, F21, F22, F31, F32, F33, F34 , F35, F36, F37, F38 
Fear F3, F4, F5, F8, F9, F10, F11, F19, F20, F21, F22, F31, F32, F33, F34, F35, F36, F37, F38 
Disgust F3, F4, F5, F8, F9, F10, F11, F19, F20, F21, F22, F33, F34, F55, F56, F57, F58, F59, F60 
Surprise F3, F5, F6, F7, F10, F11, F19, F20, F21, F22, F31, F32, F33, F34, F35, F36, F37, F38, F53, F54 

Table 2 Eye mask features used in the process of mask validation 

d6 Bipupil breadth 
d2 Eye width 
d4 Distance of eye’s middle vertical coordinate and eyebrow’s middle vertical coordinate 
d5 Eyebrow width 
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For the features for which more than one mask has been detected using different 
methodologies, the multiple masks are then to be fused together to produce a final mask. 
The choice for mask fusion, rather than simple selection of the mask with the greatest 
validity confidence, is based on the observation that the methodologies applied in the 
initial masks’ generation produce different error patterns from each other, since they rely 
on different image information or exploit the same information in fundamentally different 
ways. Thus, they provide independent information on the location on the mask; 
combining information from independent sources has the property of alleviating a portion 
of the uncertainty present in the individual information components. In other words, the 
final masks that are acquired via mask fusion are accompanied by lesser uncertainty than 
each one of the initial masks. 

The fusion algorithm is based on a Dynamic Committee Machine structure that 
combines the masks based on their validity confidence, thus producing a final mask 
together with the corresponding estimated confidence (Krog and Vedelsby, 1995; 
Dietterich, 2000). As already explained, this confidence degree is always higher than the 
degree of any of the considered initial masks. A final, more refined, confidence value can 
be acquired when also taking into account the temporal information from the video 
sequence. The final confidence for each feature mask is based on three parameters: 
absolute anthropometric measurements based on Young (1993), face symmetry 
exploitation and examination of the facial feature size constancy over a period of ten 
frames. The outcome of this procedure is a set of final masks along with the final 
confidence of their validity. 

A way to evaluate our feature extraction performance is Williams’ Index (WI) 
(Williams, 1976), which compares the agreement of an observer with the joint agreement 
of other observers. An extended version of WI, which deals with multivariate data, can be 
found in Chalana and Kim (1997). The modified Williams’ Index I’ divides the average 
number of agreements (inverse disagreements, Dj,j′) between the computer (observer 0) 
and n – 1 human observers (j) by the average number of agreements between human 
observers: 

1
0,1

, '
': '

(1 )

2 (1 )
( 1)

n
jn j

j j
j j j j

D
WI

D
n n

=

>

=

−

∑
∑ ∑

 (3) 

and in our case we define the average disagreement between two observers j, j′ as: 

, ' '
1 || ||x x

j j j j
bp

D M M
D

=  (4) 

where  denotes the pixel-wise xor operator, || ||x
jM denotes the cardinality of feature 

mask x constructed by observer j, and Dbp (bipupil breadth) is used as a normalisation 
factor to compensate for camera zoom on video sequences. 

From a dataset of about 50,000 frames, 250 frames were selected at random and the 
19 FPs were manually selected from two observers. WI was calculated using equation (3) 
for each feature and for each frame separately. Distribution of the average WI calculated 
over the two eyes and mouth for each frame is shown in Figure 2, while Figure 3 depicts 
the average WI calculated on the two eyebrows. 
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Figure 2 Williams index distribution (average on eyes and mouth) 

 

Figure 3 Williams index distribution (average on left and right eyebrows) 

 

These feature masks are used to extract the Feature Points (FPs) considered in the 
definition of the FAPs used in this work. Each FP inherits the confidence level of the 
final mask from which it derives; for example, the four FPs (top, bottom, left and right) 
of the left eye share the same confidence as the left eye final mask. Continuing, FAPs can 
be estimated via the comparison of the FPs of the examined frame to the FPs of a frame 
that is known to be neutral, i.e., a frame which is accepted by default as one displaying no 
facial deformations. For example, FAP F37 is estimated as: 
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37 4.5 3.11 4.5 3.11|| || || ||n nF FP FP FP FP= − − −  (5) 

where ,n
i iFP FP  are the locations of feature point i on the neutral and the observed face, 

respectively, and ||FPi – FPj|| is the measured distance between feature points i and j. 
Obviously, the uncertainty in the detection of the feature points propagates in the 
estimation of the value of the FAP as well. Thus, the confidence in the value of the  
FAP, in the above example, is estimated as 

37 4.5 3.11min( , )c c cF FP FP=  (6) 

On the other hand, some FAPs may be estimated in different ways. For example, FAP F31 
is estimated as: 

1
31 3.1 3.3 3.1 3.3|| || || ||n nF FP FP FP FP= − − −  (7) 

or as 
2

31 3.1 9.1 3.1 9.1|| || || || .n nF FP FP FP FP= − − −  (8) 

As argued above, considering both sources of information for the estimation of the value 
of the FAP alleviates some of the initial uncertainty in the output. Thus, for cases in 
which two distinct definitions exist for an FAP, the final value and confidence for the 
FAP are as follows: 

1 2

.
2

i i
i

F FF +
=  (9) 

The amount of uncertainty contained in each one of the distinct initial FAP calculations 
can be estimated by 

1 11 c
i iE F= −  (10) 

for the first FAP and similarly for the other. The uncertainty present after combining the 
two can be given by some t-norm operation on the two: 

1 2( , )i i iE t E E=  (11) 

The Yager t-norm with parameter w = 5 gives reasonable results for this operation: 
1 21 min(1, ((1 ) (1 ) ) ).w w w

i i iE E E= − − + −  (12) 

The overall confidence value for the final estimation of the FAP is then acquired as 

1 .c
i iF E= −  (13) 

While evaluating the expression profiles, FAPs with greater uncertainty must influence 
less the profile evaluation outcome; thus each FAP must include a confidence value.  
This confidence value is computed from the corresponding FPs, which participate in the 
estimation of each FAP. 

Finally, FAP measurements are transformed to antecedent values xj for the fuzzy rules 
using the fuzzy numbers defined for each FAP, and confidence degrees c

jx  are inherited 
from the FAP: 
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c c
j ix F=  (14) 

where Fi is the FAP based on which antecedent xj is defined. 

4 Possibilistic rule evaluation 

In the process of exploiting the knowledge contained in the fuzzy rule base and the 
information extracted from each frame in the form of FAP measurements, with the aim to 
analyse and classify facial expressions, a series of issues has to be tackled: 

• FAP degrees need to be considered in the estimation of the overall result 

• the case of FAPs that cannot be estimated, or equivalently are estimated with a low 
degree of confidence, needs to be considered 

• the activation of contradicting rules needs to be considered. 

A conventional approach to the evaluation of fuzzy rules of the form 

1 2IF , ,...,  THEN nx x x y  (15) 

is as follows (Klir and Yuan, 1995): 

1 2( , ,..., )ny t x x x=  (16) 

where t is a fuzzy t-norm, such as the minimum 

1 2 1 2( , ,..., ) min( , ,..., )n nt x x x x x x=  (17) 

the algebraic product 

1 2 1 2( , ,..., )n nt x x x x x x= ⋅ ⋅ ⋅  (18) 

the bounded sum 

1 2 1 2( , ,..., ) 1n nt x x x x x x n= + + + + −  (19) 

and so on. Another well-known approach in rule evaluation is described in Lee and 
Takagi (1993) and utilises a weighted sum instead of a t-norm in order to combine 
information from different rule antecedents: 

1 1 2 2 .n ny w x w x w x= + + +  (20) 

Both approaches are well studied and established in the field of fuzzy automatic control. 
Still, they are not adequate for the case of facial expression estimation: their main 
disadvantage is that they assume that all antecedents are known, i.e., that all features are 
measured successfully and precisely. In the case of facial expression estimation, as was 
explained in Section 3, FAPs may well be estimated with a very low confidence, or not 
estimated at all, owing to low video quality, speech interference, occlusion, noise and so 
on. Thus, a more flexible rule evaluation scheme is required, which is able to incorporate 
such uncertainty as well. 

Moreover, the second one of the conventional approaches, owing to the summation 
form, has the disadvantage of possibly providing a highly activated output even in the 
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case that an important antecedent is known to be missing; obviously it is not suitable for 
the case examined in this paper, where the non-activation of an FAP automatically 
implies that the expression profiles that require it are not activated either. Therefore, the 
flexible rule evaluation scheme that we propose is in fact a generalisation of the t-norm 
based conventional approach. 

In the t-norm operation described in equation (16), antecedents with lower values 
affect most the resulting value of y, while antecedents with values close to 1 have trivial 
and negligible affect on the value of y. Having that in mind, we can demand that only 
antecedents that are known with a high confidence will be allowed to have low values in 
that operation. More formally, we demand that the degree k(x) to which antecedent x  
is considered in the operation is low, i.e., its complement c(k(x)) is high, only when the 
confidence xc with which the value of x is known is high and the value of x is low. This 
can be expressed as: 

( ( )) ( , ( ))cc k x t x c x=  (21) 

where c is a fuzzy complement. Applying de Morgan’s law we have that the degree to 
which antecedent x is considered is: 

( ) ( ( ), )ck x u c x x=  (22) 

where u is a fuzzy s-norm. It is easy to see that equation (22) satisfies the desired 
marginal conditions: 

• when xc → 1, then c(xc) → 0 and k(x) → x, i.e., the antecedent is considered 
normally, 

• xc → 0, then c(xc) → 1 and k(x) → 1, i.e., the antecedent is not allowed to affect the 
overall evaluation of the rule. 

The formula that provides the overall evaluation assumed in this discussion is the one 
followed by the conventional approach, with the exception that antecedents participate 
with their considered values: 

1 2( ( ), ( ),..., ( )).ny t k x k x k x=  (23) 

It is easy to see that in the case that all antecedents are known with a confidence of one 
the rule will be evaluated in the same way as in the conventional methodology. When,  
on the other hand, all antecedents are known with a confidence of zero, i.e., when no 
information is available, the rule will be evaluated with a degree of one. Thus, the 
activation level of a rule with this approach can be interpreted in a possibilistic manner, 
i.e., it can be interpreted as the degree to which the corresponding output is possible, 
according to the available information; in the literature, this possibilistic degree is 
referred to as plausibility. 

As far as the confidence in the calculated output is concerned, the conventional 
approach always displays a total confidence in the output, which originates from the 
assumption that all inputs are precisely known. In the extended approach followed herein, 
where we accept that one or more of the rule antecedents may be unknown or known with 
a confidence other than one, it does not make sense to always have total confidence in the 
calculated output. Quite the contrary, the calculated output is only complete in 
information when associated with a corresponding degree of confidence. 
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The confidence is determined by the confidence values of the utilised inputs, i.e., by 
the confidence values of the rule antecedents, as follows: 

1 2 .
c c c

c nx x xy
n

+ + +
=  (24) 

The definition of yc in this manner has the desired effect that yc = 0 is equivalent to the 
complete lack of information, as it can only happen when all inputs are known with 
confidence zero; this property is essential in possibilistic reasoning. 

In order to have a complete possibilistic representation of the rule evaluation  
process, together with the plausibility of the expression profile we need to estimate the 
corresponding belief, i.e., the degree to which available evidence suggests that  
the expression profile is present in the considered input. 

The belief should be high when plenty of information is available during the 
evaluation of the rule, and that information suggests that the rule should be activated.  
The amount of information that was available during the evaluation of the rule is 
provided by the calculated confidence value, while the degree to which this information 
suggests that the specific rule should be activated is provided by the activation level. 
Thus, the complete possibilistic representation of the calculated output is provided as: 

Bel ( , )ct y y=  (25) 

Pl .y=  (26) 

The extreme cases are: 

• Bel = Pl = 1, which occurs when y = yc = 1 and implies absolute confidence that the 
specific profile is the one perfectly matching the observed face 

• Bel = Pl = 0, which occurs when y = 0 and implies absolute confidence that the 
specific profile is not one matching the observed face 

• Bel = 0, Pl = 1 which occurs when y = 1, yc = 0 and implies absolute ignorance. 

The case of activation of multiple and incompatible rules of the rule base is not an  
issue for our approach. In that case, it is expected that confidence values will be low, 
which can be interpreted as the case in which, owing to poor performance of the  
image-processing module, more than one possible outputs cannot be ruled out. Still, the 
belief that they are indeed the ones matching the observed face, as reported by  
equation (25), will be low. 

An additional flexible approach, to dealing with situations in which the output of the 
rule evaluation process does not provide a clear and confident output, is the combination 
of the output of the application of facial expression analysis on multiple (almost) 
contiguous frames (Wallace et al., 2004). Once more, the reasoning of the approach is 
that combining information from multiple sources alleviates a portion of the uncertainty 
related to each independent bit of information. 
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5 Experimental results 

The goal of IST project ERMIS is the development of a prototype system for  
human–computer interaction than can interpret its users’ attitude or emotional state,  
e.g., interest, boredom, anger, etc., in terms of their speech and their facial gestures and 
expressions (IST Project: Emotionally Rich Man-Machine Interaction Systems  
(ERMIS), 2001–2003). In this framework, a software prototype of the expert system has 
been developed that is able to automatically categorise facial expressions observed on 
real faces. As far as the knowledge of the system is concerned, facial expression 
information is coded using MPEG-4 FAPs (Raouzaiou et al., 2002) and expressed 
through conventional fuzzy rules (Ioannou et al., 2004). The evaluation of the fuzzy rules 
is also performed in the conventional manner. 

In order to experimentally validate the approach proposed in this paper, we have used 
the software prototype of ERMIS as a test bed. Specifically, we have altered the rule 
evaluation component to the more flexible possibilistic evaluation methodology 
described in Section 4. Of course, the feature extraction module was also edited, as to 
allow for the estimation of the confidence that accompanies the results it produces, as 
described in Section 3. 

Figure 4 presents frame A, one of the frames that lead the original prototype to 
failure. As we can see in Figure 5, where the masks for the eyes detected using the 
various implemented approaches are presented, the utilised methodologies do not provide 
reliable eye region detection. As a consequence, the FAP specifications acquired using 
any of these approaches are unreliable and lead to poor performance of the expression 
classification component. When, on the other hand, we combine these masks, as 
described in Section 3, considering at the same time the confidence in their validity, we 
acquire the greatly improved result presented in Figure 6(a), which, as expected, allows 
the following expression classification process to operate without problems. The most 
important feature points detected on frame A, using the feature masks that resulted from 
the process of the fusion of multiple masks, are presented in Figure 6(b). The original 
prototype did not provide any output owing to the asymmetry in the detection of the eye 
related points, whereas the proposed methodology activates (to a high degree) the 
following three rules, all corresponding to profiles of the archetypal expression of joy. 

Figure 4 Original frame A 
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Figure 5 Masks for the eyes in frame A detected using different methodologies 

 

Figure 6 (a) Final mask for the eyes in frame A and (b) detected feature points on frame A 
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The overall results of the two evaluation approaches (conventional and possibilistic) are 
summarised in Table 3. We can see that although the conventional approach totally fails 
to provide any output, the proposed possibilistic approach both identifies quadrant one as 
the correct output and incorporates the inputs’ uncertainty in the output. 

Table 3 Summary of results 

Quadrant Ground truth Conventional Belief Plausibility 

1 1 0 0,21608 0,3015 
2 0 0 0,06160 0,09135 
3 0 0 0,00238 0,00352 
Neutral 0 0 <0,00001 <0,00001 
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As a different example, let us consider frame B, presented in Figure 7(a). The original 
prototype fails to activate any of the rules in the rule base for this frame as well. As can 
be seen from Figure 7(b) and (c), where the final masks and feature points for the eyes 
and the mouth are presented, this is not a case that can be handled successfully by simply 
considering multiple masks; the resulting masks are again poor estimators of the real 
feature positions. Anthropometric validation of these masks yields a low confidence 
degree (0.6) for the left eye (right eye as we observe the picture) and much lower 
confidence degrees for the mouth (0.4) and right eye (0). Since most FAPs considered in 
the rules of the expert system are defined considering at least one of the eyes and/or the 
mouth, no rule is activated with a high confidence. Still, as the right eye is totally ignored 
and the left eye and mouth are only partially considered, a number of expression profiles 
are indicated as having high plausibility. The gain, when considered to the output of the 
original prototype, is that the system now provides the information that, most probably, 
the observed expression is not a surprise, as the rules corresponding to expression profiles 
of the surprise archetypal expression have very low plausibility values, whereas the 
original prototype did not provide any information as output; in general, the original 
prototype, owing to the lack of optional rule components and the utilisation of a ‘hard’ 
approach in rule evaluation, does not provide any output in cases where asymmetries are 
detected on the face, as in frame B where one eye is estimated to be open and the other 
closed. 

Figure 7 (a) Original frame B; (b) mouth and eyes mask for frame B and (c) detected feature 
points on frame B 
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As a last example, let us consider frame C, presented in Figure 8(a). The original 
prototype fails to provide any output in this frame as well, owing to the poor performance 
of the mouth detection algorithms. As can be seen in Figure 8(b) and (d) none of the 
utilised methodologies can lead to the successful estimation of the mouth region in frame 
C. Moreover, even fusion of the masks cannot overcome the problem, as is made evident 
in Figure 9(a), where the final mask for the mouth is presented. Main feature points 
detected in frame C are presented in Figure 9(b). Owing to the fact that in the considered 
frame sequence the observed person is speaking throughout the recording, all rules have 
been edited as to make all FAPs that are defined using the mouth as optional. Thus, even 
if the detected mask had proper size, shape and location in order to be validated against 
anthropometric criteria (which is not the case of the mask in Figure 9(a)), the unreliable 
FAP estimations it would provide would not be allowed to characterise a profile as 
definitely not present; during speech, all FAPs that are defined using the mouth are 
considered as unreliable owing to the fact that mouth feature point positions  
are determined by phonemes rather than disposition. Rules activated in this case 
correspond to profiles of the disgust, fear and anger archetypal expressions. 

Figure 8 (a) Original frame and (b) and (d) mouth masks detected in frame C 

 

Figure 9 (a) Final mask for the mouth in frame C and (b) main feature points detected in frame C 
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Overall, through these sample frames, we can see that by the proposed approach, where 
imprecision as well as failure of the image processing process are considered, quantified 
and incorporated as information in the evaluation process, and optional antecedents are 
permitted in the rule base, a number of situations can be dealt with; these situations were 
not tractable by an otherwise successful system that did not have these characteristics.  
As a result, even in cases where insufficient information is available for the determination 
of the observed expression, the system is able to provide useful information by at least 
ruling out improbable cases. 

6 Conclusions 

Conventional facial expression analysis and classification systems often employ fuzzy 
rules for the representation of the knowledge utilised by the expert system. On the other 
hand, fuzzy rules and fuzzy expert systems are designed for problems where the input is 
provided in a constant and accurate manner by a set of sensors. In the case of facial 
expression analysis, where fuzzy inputs are the output of the imperfect process of feature 
extraction via image processing, conventional fuzzy rules and conventional rule 
evaluation methodologies are often inadequate and lead to extremely poor performance. 

In this paper, we have chosen to independently apply multiple image processing 
methodologies and fuse their results, thus minimising the uncertainty that is inherent in 
this process. Moreover, we have utilised validation of feature masks against a set of 
anthropometric criteria in order to evaluate the quality of the information provided as 
input to the rule system by the image processing component, thus quantifying the related 
uncertainty; flexible rule evaluation has been proposed as the way to incorporate this 
information in the process of rule evaluation, thus tackling situations in which the 
traditional rule-based approach to facial expression recognition would have failed. 

The final output of the proposed system is possibilistic rather than probabilistic.  
The activation level of a rule corresponds to the plausibility of the rule, thus indicating 
the degree to which available evidence does not contradict the rule. A combination of 
rule activation and confidence corresponds to the belief, thus indicating the degree to 
which available knowledge supports the rule. This is a reasonable feature of a system that 
aims to incorporate uncertainty and lack of confidence in its operation; probabilistic 
systems cannot provide meaningful or even reliable output in the case where insufficient 
input information is available. 

Experimental application of the proposed methodology has indicated, as expected, 
that extended fuzzy rules, consideration of confidence in the process of feature extraction 
and flexible rule evaluation provide for more robust operation in an uncertain 
environment. Thus, the resulting system outperforms its conventional predecessor in 
cases where the image-processing component fails or the observed facial expression does 
not strictly comply to the specified rules by missing some optional characteristic. 

As further extension to this work, we intent to examine the way the analysis of 
different modalities, such as speech, posture and gestures can be combined with facial 
expression analysis towards more accurate estimation of the human disposition. This will 
be pursued, among other ways, in the framework of the HUMAINE Network of 
Excellence (NoE 2004–2007). 
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