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Abstract. In the Semantic Web context information would be retrieved,
processed, shared, reused and aligned in the maximum automatic way
possible. Our experience with such applications in the Semantic Web has
shown that these are rarely a matter of true or false but rather procedures
that require degrees of relatedness, similarity, or ranking. Apart from the
wealth of applications that are inherently imprecise, information itself is
many times imprecise or vague. For example, the concepts of a “hot”
place, an “expensive” item, a “fast” car, a “near” city, are examples of
such concepts. Dealing with such type of information would yield more
realistic, intelligent and effective applications. In the current paper we
extend the OWL web ontology language, with fuzzy set theory, in order
to be able to capture, represent and reason with such type of information.

1 Introduction

In the Semantic Web vision [1], information and knowledge would be structured
in a machine understandable and processable way. To this extend Semantic Web
agents would be able to (semi)automatically carry out complex tasks assigned by
humans in a meaningful (semantic) way. For example, they would be able to carry
out a “holiday organization”, an “item purchase”, “doctor appointment” [1] and
many more. Such tasks reflect every day procedures, which contain a wealth of
imprecise and vague information. For example a task of “holiday organization”
could look something like: a “hot” place, with “many” attractions, or a “doctor
appointment” could involve concepts like “close enough”, “not too early” and
many more. In order to accurately represent such type of information current
ontology languages need to be extended with proper mathematical frameworks
that intend in capturing such kind of information.

Such types of assignments (tasks) should be carried out in the maximum
automatic way possible, where information and knowledge would be retrieved
from databases, processed, shared and exchanged. In order to fulfill such pre-
conditions, semantic web applications should reach a high level of interoper-
ability, scalability and modularity. To achieve such goals special procedures like
information retrieval, alignment or ontology partitioning are used in the context



of semantic web. A more careful look to these procedures would reveal that they
involve a high level of uncertainty and imprecision. This is a result of both the
facts that information is sometimes imprecise or vague but also of the nature of
these applications. For example it is almost impossible to automatically match
two concepts to degrees 1 or 0 or even in a semi-automatic alignment processes,
two concepts might not be completely compatible, i.e. to a degree of 1, thus
speaking of confidence degrees [2]. The need for covering uncertainty in the Se-
mantic Web context has been stressed out in literature many times the last
years [3–5]. It has been pointed out that dealing with such information would
improve Semantic Web applications like, portals [6], multimedia application in
the semantic web [7, 8], e-commerce applications [9], situation awareness and in-
formation fusion [4], rule languages [5, 3], medicine and diagnosis [10], geospatial
applications [11] and many more.

Knowledge in the SW is usually structured in the form of ontologies [12].
This has led to considerable efforts to develop a suitable ontology language,
culminating in the design of the OWL Web Ontology Language [13]. The OWL
language consists of three sub-languages of increasing expressive power, namely
OWL Lite, OWL DL and OWL Full. OWL Lite and OWL DL are, basically
very expressive description logics; they are almost equivalent to the SHIF(D+)
and SHOIN (D+) DLs. OWL Full is clearly undecidable because it does not
impose restrictions on the use of transitive properties. Although the above DL
languages are very expressive, they feature expressive limitations regarding their
ability to represent vague and imprecise knowledge.

In the current paper we will extend the OWL web ontology language with
fuzzy set theory, which is a mathematical framework for covering vagueness
[14], thus getting fuzzy OWL (f-OWL). We will also investigate several issues
that arise from such an extension. More precisely, we will also extend the DL
SHOIN , in order to provide reasoning for f-OWL, present a mapping from f-
OWL entailment to f-SHOIN satisfiability and at last provide a preliminary
investigation on querying capabilities for f-SHOIN ABoxes.

2 The Fuzzy SHOIN DL

In this section we introduce the DL f-SHOIN (we will discard datatypes, as
it is considered an ongoing research effort for fuzzy DLs). As usual we have an
alphabet of distinct concept names (C), role names (R) and individual names
(I). f-SHOIN -roles and f-SHOIN -concepts are defined as follows:

Definition 1. Let RN ∈ R be a role name and R an f-SHOIN -role. f-SHOIN -
roles are defined by the abstract syntax: R ::= RN | R−. The inverse relation
of roles is symmetric, and to avoid considering roles such as R−−, we define a
function Inv which returns the inverse of a role, more precisely Inv(R) := RN−

if R = RN and Inv(R) := RN if R = RN−. The set of f-SHOIN concepts is
the smallest set such that

1. every concept name C ∈ CN is an f-SHOIN -concept,



2. if o ∈ I then {o} is an f-SHOIN -concept,
3. if C and D are f-SHOIN -concepts, R an f-SHOIN -role, S a simple f-
SHOIN -role 3 and p ∈ N, then (C tD), (C uD), (¬C), (∀R.C), (∃R.C),
(≥ pS) and (≤ pS) are also f-SHOIN concepts.

A fuzzy TBox is a finite set of fuzzy concept axioms. Let A be a concept
name, C an f-SHOIN -concept. Fuzzy concept axioms of the form A v C are
called fuzzy inclusion introductions; fuzzy concept axioms of the form A ≡ C are
called fuzzy equivalence introductions. Note that how to deal with fuzzy general
concept inclusion axioms [16] still remains an open problem in fuzzy concept
languages. A fuzzy RBox is a finite set of fuzzy role axioms. Fuzzy role axioms
of the form Trans(RN), where RN is a role name, are called fuzzy transitive
role axioms; fuzzy role axioms of the form R v S are called fuzzy role inclusion
axioms. A fuzzy ABox is a finite set of fuzzy assertions. A fuzzy assertion [17]
is of the form 〈a : C./n〉, 〈(a, b) : R./n〉, where ./ ∈ {≥, >,≤, <}, or a 6 .= b, for
a, b ∈ I. We call assertions defined by≥, > positive assertions, while those defined
by ≤, < negative assertions. A fuzzy knowledge base Σ is a triple 〈T ,R,A〉, that
contains a fuzzy TBox, RBox and ABox, respectively. A pair of assertions is
called conjugated if they impose contradicting restrictions. For example, for φ a
classical DL assertion, the pair of assertions 〈φ ≥ n〉 and 〈φ < m〉, with n ≥ m
contradict to each other. Observe that since an ABox can contain an unlimited
number of positive assertion without forming a contradiction we need a special
procedure to compute which is the best lower and upper truth-value bounds of
a fuzzy assertion. A procedure for that purpose was provided in [17].

The semantics of fuzzy DLs are provided by a fuzzy interpretation [17]. A
fuzzy interpretation is a pair I = 〈∆I , ·I〉 where the domain ∆I is a non-empty
set of objects and ·I is a fuzzy interpretation function, which maps an individual
name a to elements of aI ∈ ∆I and a concept name A (role name R) to a
membership function AI : ∆I → [0, 1] (RI : ∆I ×∆I → [0, 1]). Intuitively, an
object (pair of objects) can now belong to a degree from 0 to 1 to a fuzzy concept
(role). Moreover, fuzzy interpretations are extended to interpret arbitrary f-
SHOIN -concepts and roles, with the aid of the fuzzy set theoretic operations.
The complete semantics are the following:

{o}I(a) = 1 if a ∈{oI} ⊥I(a) = 0 >
I
(a) = 1

(C uD)I(a) = t(CI(a), DI(a)), (C tD)I(a) = u(CI(a), DI(a)), (¬C)I(a) = c(CI(a))
(∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b))
(∀R.C)I(a) = infb∈∆I J (RI(a, b), CI(b))
(≥ nR)I(a) = supb1,...,bn∈∆I tn

i=1R
I(a, bi)

(≤ nR)I(a) = infb1,...,bn+1∈∆I un+1
i=1 c(RI(a, bi))

where c represent a fuzzy complement, t a fuzzy intersection, u a fuzzy union
and J a fuzzy implication [14]. Most of these semantics appear in [18]. Some
3 A role is called simple if it is neither transitive nor has any transitive sub-roles.

Restricting roles that participate in number restrictions only to simple ones, is crucial
in order to get a decidable logic [15].



remarks regarding nominals are in place. Note that we choose not to fuzzify
nominal concepts. The reason for this choice is that concepts of the form {o} do
not represent any real life concept which pertains some specific meaning. Thus,
such concepts cannot represent imprecise or vague information. Please also note
that at the extreme points of 0 and 1 the semantics of fuzzy interpretations
coincide with those of crisp interpretations.

An f-SHOIN -concept C is satisfiable iff there exists some fuzzy interpreta-
tion I for which there is some a ∈ ∆I such that CI(a) = n, and n ∈ (0, 1].
A fuzzy interpretation I satisfies a fuzzy TBox T iff ∀a ∈ ∆I , AI(a) ≤
CI(a) for each A v C ∈ T and AI(a) = CI(a) for each A ≡ C ∈ T . This
is the usual way subsumption is defined in the context of fuzzy sets [14]. A
fuzzy interpretation I satisfies a fuzzy RBox R iff ∀a, c ∈ ∆I , RI(a, c) ≥
supb∈∆I{t(RI(a, b), RI(b, c))} for each Trans(R) ∈ R, ∀〈a, b〉 ∈ ∆I×∆I , RI(a, b) ≤
SI(a, b) for each R v S ∈ R, and ∀〈a, b〉 ∈ ∆I × ∆I , (R−)I(b, a) = RI(a, b)
for each R ∈ R. Given a fuzzy interpretation I, I satisfies 〈a : C ≥ n〉
(〈(a, b) : R ≥ n〉) if CI(aI) ≥ n (RI(aI , bI) ≥ n), while I satisfies a 6 .= b if
aI 6= bI . The satisfiability of fuzzy assertions with ≤, > and < is defined anal-
ogously. A fuzzy interpretation satisfies a fuzzy ABox A if it satisfies all fuzzy
assertions in A. In this case, we say I is a model of A. If A has a model then
we say that it is consistent. At last, a fuzzy knowledge base Σ is satisfiable iff
there exists a fuzzy interpretation I which satisfies all axioms in Σ. Moreover,
Σ entails an assertion 〈φ./n〉, written Σ |= 〈φ./n〉, iff any model of Σ also sat-
isfies the fuzzy assertion. The problems of entailment and subsumption can be
reduced to fuzzy knowledge base satisfiability [17].

3 Reasoning in f-SHOIN

Reasoning in DLs is usually performed with tableaux decision procedures [19].
Such procedures try to prove the consistency of an Abox A, by attempting to
construct a model for it. Since concepts that appear in A might by complex,
such algorithms apply expansion rules, that decompose the initial concept, to
sub-concepts, until no rule is applicable or an evident contradiction is reached.
Proceeding that way leads to the creation of a model for A, which has a forest
or graph-like shape [16, 20]. That forest structure is a collection of trees, where
nodes correspond to objects in the model, and edges to certain relations that
connect two nodes. Each node x is labelled with the set of objects that it belongs
to (L(x)), and each edge 〈x, y〉 with a set of roles that connect two nodes x, y
(L(〈x, y〉)). In the fuzzy case, since now we have fuzzy assertion, we extend
these mappings to also include the membership degree that a node belongs to
a concept as well as the type of inequality that holds for the fuzzy assertion,
thus speaking of membership triples. For example a fuzzy assertion of the form
〈a : C ≥ n〉 is represented as L(a) = {〈C,≥, n〉} in the tree.

In [21] a tableaux decision procedure for deciding consistency of fKD-SHIN
ABoxes is presented. The fKD-SHIN language is obtained from f-SHIN by
using specific operators for performing the fuzzy set theoretic operations. More



precisely fuzzy complement is performed by the equation, c(a)=1-a, fuzzy in-
tersection by, t(a,b)=min(a,b), fuzzy union by, u(a,b)=max(a,b) and fuzzy im-
plication by J (a, b) = max(1 − a, b). Since we argue that nominals should not
be fuzzyfied, this algorithm, together with the results obtained in [20] for crisp
SHOIN , can be extended to provide a tableaux procedure for fKD-SHOIN .
The only additional rules that are needed are those which would ensure that pos-
itive assertion with concepts {o} would be equal to one, and negative ones equal
to zero. Such types of rules are depicted in Table 1. Regarding implementation
issues we have implemented a fuzzy reasoner for the fKD-SI language, based on
the direct tableaux rules in [8], and we started the extension of the algorithm
to cover the fKD-SHIN language. Please note that how to reason with other
norm operations in fuzzy DLs remains an open problem.

Table 1. The new expansion rules for fKD-SHOIN

Rule Description Rule Description
{o}B if 1. 〈{o}, B, n〉 ∈ L(x), and {o}C if 1. 〈{o}, C, n〉 ∈ L(x), and

2. 〈{o}, B, 1〉 6∈ L(x) 2. 〈{o}, C, 0〉 6∈ L(x)
then L(x) ∪ {〈{o}, B, 1〉} then L(x) ∪ {〈{o}, C, 0〉}

B ∈ {≥, >}, C ∈ {≤, <}

4 Fuzzy OWL

In this section, we present a fuzzy extension of OWL DL by adding degrees to
OWL facts; we call our extension f-OWL.

As mentioned in section 1, OWL is an ontology language that has recently
been a W3C recommendation. As with f-DLs, also in f-OWL, the extension
is focused on OWL facts, resulting in fuzzy facts, and the semantics of the
extended language. The extension of the direct model-theoretic semantics of f-
OWL are provided by a fuzzy interpretation, which in the absence of data types
and the concrete domain is the same as the one introduced in section 2. An
f-OWL interpretation can be extended to give semantics to fuzzy concept and
individual-valued Property descriptions. Since the equivalence of f-OWL class
descriptions [13] with f-SHOIN is evident, we don’t address them here again.
The reader is referred to [22] and to section 2 for the semantics of them.

Now we would like to focus more on the semantics of f-OWL Axioms. These
are summarized in Table 2. We would like to point out that omitting a degree
from an individual axiom is equivalent to specifying a value of 1. From a seman-
tics point of view, an f-OWL axiom of the first column of Table 2, is satisfied
by a fuzzy interpretation I iff the respective equation of the third column is
satisfied. A fuzzy ontology O, is a set of f-OWL axioms. We say that a fuzzy
interpretation I is a model of O iff it satisfies all axioms in O.

There are some remarks regarding Table 2. Firstly, the equation of the domain
axiom is a simplification of the equation, supb∈∆I t(RI(a, b), 1) ≤ CI

i (a), while



Table 2. Fuzzy OWL Axioms

Abstract Syntax DL Syntax Semantics

(Class A partial C1 . . . Cn) A v C1 u . . . u Cn AI(a) ≤ t(CI1 (a), . . . , CIn (a))

(Class A complete C1 . . . Cn) A ≡ C1 u . . . u Cn AI(a) = t(CI1 (a), . . . , CIn (a))

(EnumeratedClass A o1 . . . on) A ≡ o1 t . . .t on AI(a) = 1 if a ∈ {oI
1, . . . , oI

n}, AI(a)=0 otherwise

(SubClassOf C1, C2) C1 v C2 CI1 (a) ≤ CI2 (a)

(EquivalentClasses C1 . . . Cn) C1 ≡ . . . ≡ Cn CI1 (a) = . . . = CIn (a)

(DisjointClasses C1 . . . Cn) Ci 6= Cj , 1 ≤ i < j ≤ n t(CI1 (a), CIj (a)) = 0 1 ≤ i < j ≤ n

(SubPropertyOf R1, R2) R1 v R2 RI1 (a, b) ≤ RI2 (a, b)

(EquivalentProperties R1 . . . Rn) R1 ≡ . . . ≡ Rn RI1 (a, b) = . . . = RIn(a, b)

ObjectProperty(R super(R1) ... super(Rn) R v Ri RI(a, b) ≤ RIi (a, b)

domain(C1) ... domain(Ck) ∃R.> v Ci RI(a, b) ≤ CIi (a)

range(C1) ... range(Ch) > v ∀R.Ci RI(a, b) ≤ CIi (b)

[Symmetric] R ≡ R− RI(a, b) = (R−)I(a, b)

[Functional] > v6 1R ∀a ∈ ∆I infb1,b2∈∆I u(R(a, b1), R(a, b2)) ≥ 1

[InverseFunctional] > v6 1R− ∀a ∈ ∆I infb1,b2∈∆I u(R−(a, b1), R−(a, b2)) ≥ 1

[Transitive]) Trans(R) supb∈∆I t(RI(a, b), RI(b, c)) ≤ RI(a, c)

Individual(o type(C1) [./ degree(m1)] . . . type(Cn) [./ degree(mn)] o : Ci./mi, 1 ≤ i ≤ n CIi (oI)./mi, mi ∈ [0, 1], 1 ≤ i ≤ n

value(R1, o1) [./ degree(k1)] . . . value(R`, o`)) [./ degree(k`)] (o, oi) : Ri./ki,1 ≤ i ≤ ` RIi (oI , oIi )./ki, ki ∈ [0, 1], 1 ≤ i ≤ `

Sameindividual(o1 . . . on) o1 = . . . = on oI1 = . . . = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj , 1 ≤ i < j ≤ n oIi 6= oIj , 1 ≤ i < j ≤ n

of the range axiom of the equation infb∈∆I J (RI(a, b), CI
i (b)) = 1. Finally, the

semantics of disjoint classes result by the fact that the axiom C 6≡ D is equivalent
to the subsumption relation, C u D v ⊥. Fuzzyfing this last equation we get
that ∀a ∈ ∆I .t(CI(a), DI(a)) ≤ ⊥I(a) = 0. This equation reflects our intuition
behind disjointness, which says that two concepts are disjoint if and only if they
have no common object in any interpretation. Keep in mind that the translation
to the subsumption axiom C v ¬D does not always hold in the fuzzy case.

Table 3. Abstract Syntax of f-OWL

individual ::= ‘Individual(’ [ individualID] {annotation}
{‘type’( type ‘)’ [membership]} {value [membership] } ‘)’

membership ::= ineqType degree
ineqType ::= ‘>=’ | ‘>’ | ‘<=’ | ‘<’
degree ::= ‘degree(’ real-number-between-0-and-1-inclusive ‘)’

We conclude this section by providing the syntactic changes that need to
take place in the OWL language in order to assert the membership degree of an
individual to a fuzzy concept to a specific degree that ranges from 0 to 1. The
abstract syntax of the extended language is depicted in Table 3. Observe that
the only syntactic change involves the addition of a membership degree, that
ranges from 0 to 1, in the definition of f-OWL facts. If such a value is omitted
then it is assumed to be equal to 1, i.e. total membership.



5 From f-OWL entailment to f-SHOIN satisfiability

In [22] a translation from OWL entailment to DL satisfiability was provided. In
this section we will study the reduction in the case of f-OWL and f-DLs.

Translating f-OWL DL class descriptions into f-SHOIN is a straightforward
task, since f-OWL DL class descriptions are almost identical to that of f-SHOIN
concept descriptions. The complete translation is described in [22]. Also in the
current paper we have more or less provided the DL counterpart of the OWL
class axioms (see Table 2). The only difference from [22], is in the disjointness
axioms, which are translated to C uD v ⊥, rather than, C v ¬D, for reasons
explained in the previous section.

Table 4. From f-OWL facts to f-DL fuzzy assertions

OWL fragment F Translation F(F )
Individual(x1 ./ n1...xp ./ np) F(a : x1)./n1, ...,F(a : xn)./np for a new
a:type(C) V(C)
a:value(R x) (a, b) : R, F(b : x) for b new
a:o a = o

The most complex part of the translation is the translation of individual
axioms because they can be stated with respect to anonymous individuals [22].
In [22] two translations where provided, one for OWL DL and one for OWL
Lite. This is because the translation of OWL DL uses nominals, which OWL
Lite does not support. Closely inspecting the abstract syntax of fuzzy individual
axioms, from Table 2, and the translations in [22], would reveal that the OWL
Lite reduction serves better our needs in f-OWL DL, too. This is because now we
also have membership degrees. The translation is illustrated in Table 4, where
V represents the mapping from f-OWL class descriptions to f-SHOIN concept
descriptions.

Table 5. From entailment to unsatisfiability

Axiom A Transformation G(A)
C v D {〈x : C ≥ n〉, 〈x : D < n〉}
∃C > v ¬C
Trans(R) {〈x : ∃R.(∃R.{y}) ≥ n〉, 〈x : ∃R.{y} < n〉}
R v S {〈x : ∃R.{y} ≥ n〉, 〈x : ∃S.{y} < n〉}
〈a : C./n〉 〈a : C¬./n〉
〈(a, b) : R./n〉 〈(a, b) : R¬./n〉
¬./ is the contrapositive of ./, e.g. if ./ =≥, ¬./ =<

Finally we need to reduce f-SHOIN entailment to f-SHOIN unsatisfiabil-
ity. Since we used the OWL Lite reduction for individual axioms, we additionally
need to reduce two more entailment axioms. The complete reduction is depicted
in Table 5. There are some remarks regarding Table 5. The notation ∃C, also



called the non-emptiness construct, represent the satisfiability problem [22]. In
the entailment problems of concept and role subsumption and transitive role
axiom, where a membership degree n appears, it suffices to check for the unsat-
isfiability of the system for two randomly selected data values from the intervals
(0, 0.5] and (0.5, 1], as it is shown in [17]. At last, observe how easy and straight-
forward is the reduction of the entailment of role assertions to unsatisfiability,
in our case. In fact, since fuzzy DLs are just a generalization of crisp DLs, this
reduction also holds in the crisp case, if we consider degrees 0 and 1. As for the
case of f-OWL Lite, which corresponds to the DL f-SHIF(D+), and does not
support nominals, we can simply replace nominal concepts {y}, in Table 5, with
a new concept B that does not appear elsewhere in the KB.

6 Querying the Fuzzy Semantic Web

After building an ontology, with the aid of the OWL ontology language, it would
feel natural to be able to perform complex queries, or retrieval tasks, over the
ABox defined. This is achieved by the use of so called conjunctive queries, which
take the form of the formula ∃x1...xn(q1 ∧ ... ∧ qn) where q1, ..., qn are concept
or role terms [24]. In classical DLs, we face the unpleasant phenomenon that if
a tuple of the KB does not satisfy the exact constraints of the query, issued by
the user, then it is not included in the result. This is due to the fact that the KB
engineer made some specific choices about the membership or non-membership
of an individual to certain concepts when building the knowledge base.

In contrast, fuzzy KBs provide us with an interesting feature by which we
can overcame the above deficiency. Instead of specifing the exact membership
degrees that an individual (pair of individuals) should belong to a concept (role),
one could leave such constraints unspecified. The result would be to retrieve
every tuple of the knowledge base that participates in the assertions to any
degree. Then interpreting the conjunctions as fuzzy intersections, we can provide
a ranking of tuples and present the user with an initial set of the most relevant
information. Subsequently the user can choose if more results should be fetched.
This is a very interesting feature of f-DLs, since ranking is considered a very
crucial feature in every information retrieval application [7]. Please note that
how to answer such types of queries in fuzzy KBs is an open research issue.

7 Related Work

Much work towards combining fuzzy DLs has been carried out the last decade.
The initial idea was presented by Yen in [25], where a structural subsumption
algorithm was provided in order to perform reasoning and the DL used a sub-
language of the basic DL ALC. Several approaches extending the DL language
ALC were latter presented in [17, 26, 27] where reasoning was based on tableaux
rules. In [26, 27] an additional constructor called membership manipulator was
added for defining new fuzzy concepts from already defined ones. Approaches
towards more expressive DLs, are presented in [28], [29] and [18] where the DLs



are ALCQ, ALC(D) and SHOIN (D+), respectively. The former approach also
includes fuzzy quantifiers. In [28] and [18], only the semantics were provided
while in [29] also reasoning, based on an optimization technique. As far as we
know the most expressive f-DLs presented till now, which also cover reasoning,
are fKD-SI [8] and fKD-SHIN [21]. In the current paper we fully cover the f-
OWL language and provide investigations for the translation method, querying
and syntax extensions.

8 Conclusions

Representing and reasoning with uncertainty is expected to play a significant role
in future ontology based applications. Uncertainty is a factor that is apparent
in many real life applications and domains [11, 10, 4, 7]and dealing with it can
provide means for more expressive and realistic knowledge based systems [9,
6]. To this end we have provided a fuzzy extension to the OWL web ontology
language. We have provided the semantics and abstract syntax of fuzzy OWL,
as well as a reduction technique from f-OWL to the f-SHOIN DL. The last
reduction aims at providing reasoning support for f-OWL ontologies. At last we
show that f-SHOIN can support query services that go beyond the classical
ones, by providing ranking degrees to the result of a query.
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