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Abstract. Fuzzy Description Logic§fuzzy DLs) have been pro- which identify the operators allowed in that logic. Major DLs are
posed as a language to describe structured knowledge with vaguke so-called logicALC [13] and is used as a reference language
concepts. A major theoretical and computational limitation so far iswhenever new concepts are introduced in DE&OZN (D), which

the inability to deal withGeneral Concept Inclusion(§sClIs), which is the logic behind the ontology description language OWL DL and
is an important feature of classical DLs. In this paper, we address thiSHZF (D), which is the logic behind OWL LITE, a slightly less ex-
issue and develop a calculus for fuzzy DLs with GCls. pressive language than OWL DL (see [9]). A DL can be seen as a
restricted First Order Language with unary and binary predicates. For
the sake of our purpose we deal here witliC, whose syntax and

1 INTRODUCTION semantics is described in Table 1, (aterpretationZ = (A%, %)

Description LogicgDLs) [2] are a logical reconstruction of the so- has domainA* and maps concepts into subsetsof, maps roles
called frame-based knowledge representation languages, with trito subsets oA” x A and maps individuals into elementsaf).
aim of providing a simple well-established Tarski-style declarativeAn ALC knowledge bases defined as a palt = (7, .A), where
semantics to capture the meaning of the most popular features & is called aTBoxand.A an ABox 7 is a finite set ofgeneral
structured representation of knowledge. Nowadays, DLs have gaindclusion axiomgGCls for short) of the formC' T D and A is
even more popularity due to their application in the context of the2 finite set ofconceptand role assertionsof the forma : C' and
Semantic Weles the theoretical counterpart of OWL DL (the W3C (a,b) : R, respectively. For exampl€ could contain an axioms of
standard for specifying ontologies, see [9] for details). the formHappyFather C JhasChild.Female, and.A an assertion
Fuzzy DLs[15, 18, 23, 24] extend classical DLs by allowing of the formTom : HappyFather. An interpretationZ satisfies7
to deal withfuzzy/vague/imprecise concepisch as “Candia is a if C* C D for all GCls in7, thenZ is called anodelof 7, and
creamy white rose with dark pink edges to the petals”, “Jacarand satisfiesA if a* € C7 ((a*,b") € R”) for all concept (role)
is a hot pink rose”, and “Calla is a very large, long white flower on assertions ind. ThenZ is called a model ofd. An interpretation
thick stalks”. Such concepts involve so-calletzzyor vague con-  satisfies anALC KB £ =(7, A) if it satisfies bothA and7'; then
cepts like “creamy”, “dark”, “hot”, “large” and “thick”, for whicha  Z is called amodelof . A conceptC' is subsumed bg conceptD,
clear and precise definition is not possible. written C' C D, with respect to (w.r.t.Y, if for all modelsZ of 7, it
The problem to deal with imprecise concepts has been addressé@lds thatC* C D*. An ABox A is consistentinconsistentw.r.t. a
several decades ago by Zadeh [25], which gave birth in the meantBox 7 if there exists (does not exist) a modebf 7, that is also a
while to the so-calleduzzy set and fuzzy logic theoapd a huge ~model of A. Finally, 3 entailsan ALC assertionp, written X = ¢,
number of real life applications exists. Despite the popularity ofif €ach model ot is a model of.
fuzzy set theory, relative little work has been carried out in extending=uzzy DLs basics.Fuzzy DLs [18] extend classical DLs by allow-
DLs towards the representation of imprecise concepts, notwithstandng to deal with fuzzy/imprecise concepts. The main idea underly-
ing DLs can be considered as a quite natural candidate for such an ejg fuzzy DLs is that an assertianC, stating that the constat
tension[1,3,4,5,6,11, 12, 14,15, 16, 17, 18, 20, 21, 22, 23, 24, 26]s an instance of concef, rather being interpreted as either true
A major theoretical and computational limitation so far of fuzzy or false, will be mapped to a truth value € [0, 1]g (the rationals
DLs is the inability to deal wittGeneral Concept Inclusion&Cls), in the unit interval[0, 1]). The intended meaning is thatindicates
which is an important feature of classical DLs; e.g., GCls are necto which extent & is aC’. From a syntax point of view, concepts,
essary to represent domain and range constraints. In this paper, wesles, individuals and concept inclusion axioms are as4@cC. In
address this issue and develop a calculus for fuzzy DLs with GCls. place of assertions, we hafiezzy assertionfl8], which are of the
In the next section, we briefly recall basic concepts of DLs andform (a<in), wherea is an assertionp € [0, 1]g andix< is one
fuzzy DLs, while in Section 3 we present a sound and complete calef > <, >, <. For instance{a:C' > n) allows to state that individ-

culus dealing with GCls. Section 4 concludes. ual a is an instance of concept at least to degree. Similarly for
role assertions. A-uzzy Knowledge Bas& = (7,.A), is as for
2 PRELIMINARIES the crisp case, except that nowis a set of fuzzy assertions rather

than assertions only. From a semantics point of viefyzay inter-
DLs basics.DLs [2] are a family of logics for representing struc- pretationZ = (A”,-7) has domaimA”, but now maps a concept
tured knowledge. Each logic is identified by a name made of labels{ into a functionC*: A* — [0, 1] and a roleR into a function
T Nan , —— RT: AT x AT — [0,1]q. Ford € A%, C*(d) gives us the de-
) I'\'Sa;'lo_r‘l?é'ma;nd,j":gg:;i gsné‘;‘:éi'tégsﬁctn?:spisa gree ofd being an instance of the conce@t (similarly for roles).
The semantics is summarized in Table 1. A fuzzy interpretdfion
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Table 1. ALC and fuzzyALC.

Concepts
Syntax Classical Semantics Examples
c,D — T | (top concept) TZ = AT
L | (bottom concept) 1% = 0
A | (atomic concept) AT [N Human
CcnD | (conceptconjunction) (cinc)r = aifTney?t Human M Male
CcuD | (conceptdisjunction) (C,uc)r = i Tucy? Nice LIRich
—C | (concept negation) ()% = AT\C? —Male
JR.C' | (existential quantification)| (3R.C)* = {z|3y(z,y,€)RE Ay € CI%» Jhas_child.Blond
VR.C _ (universal quantification) || (VR.C)% {z | Vy.(z,y,€)R* = y € C*} || Vhas_child.Human
Fuzzy Semantics
TZ(x) = 1 (CLuC)f(@) = max(Ci¥(x), Co7 (x))
17(z) = 0 (=C)* (z) = =C*()) . .
AT (z) e [0,1]g (3R.C)”" (=) = sup,caz{min(R"(z,y),C"(y))}
(C1NC)E(z) = min(Ci7(z), Cat(x)) (VR.C)% (z) = infyeAI{max(l — R%(z,y),C%(v))}

C C D € T, thenZ is called amodelof 7, and it satisfies a
fuzzy ABox A if CT(a®)>an (RE (a®, b%)>an), for each(a : C=an)
({(a,b) : Rxin)) in A. ThenZ is called amodelof A. A fuzzy ALC
KB X = (7, .A) is consistent if there exists a modebf A and7 .

Given a fuzzy KBX, and a fuzzy assertion (resp. a GCIC' C
D), we say that entailsvy (resp.C’ C D), denoted® = ¢ (resp.
¥ E C C D), ifeach model ot is a model ofy (resp.C C D). Fi-
nally, givenX and a fuzzy assertiam, it is of interest to compute’s
best lower and upper truth value bounds. Teatest lower bound
of a w.r.t. ¥ (denotedglb(X, o)) is glb(X, ) = sup{n | & E
(o > n)} wheresup ) = 0. Similarly, theleast upper bounaf «
w.r.t. X (denotedub(X, o)) islub(3, ) = inf{n | ¥ E (o < n)}
whereinf () = 1. Determining theylb is called theBest Truth Value
Bound(BTVB) problem. Basic inference problems are: (i) Check if
a fuzzy KB isconsistenti.e. has a model. (ii) Check i® subsumes
Cwrt X, i.e.X E C C D. (ii) Check if a is instance ofC to
degree> n, i.e.X |= (a:C > n) (Similarly for the other relations
<, > and<). (iv) Determinegib(%, a:C).

Itis also well known that GCls are used to express important features
like: (i) The domainof a role R is conceptC'. This can be expressed
by means of the GCIHR.T C C. (ii) The rangeof a role R is
conceptC'. This can be expressed by means of the GCL. VR.C

5. (iii) ConceptC, and concepf:, aredisjoint This can be expressed
by means of the GCIC; M C, CT.1.5 Such features appear in the
OWL DL [9] and hence also in the fuzzy OWL DL language [16].
In the following we will present a calculus for fuzzg£C with both
GCls and cyclic axioms.

3 DEALING WITH GCls IN FUZZY DLs

Suppose that we have an individualand a concepC. Then, for
any fuzzy interpretatio, Vn. € [0,1]g either CZ(a®) < n or
C*(a*) > n holds”. Furthermore, ifZ = C C D, then either
C*(a®) < nor D*(a®) > n. From this observation, the following
can be shown.

We recall that all the inference problems can be reduced to th&roposition 1 7 |= C' C D iff for all n € [0, 1], eitherZ |= (a :

consistency problem [18]: (i) Concerning the entailment problem

C<nyorZ |=(a:D >n),foralla.

it can be verified that it can be reduced to the inconsistency prob-

lem: (T, A) = (a > nyiff (T, AU {(a < n)}) is inconsistent,
and similarly for the other relations,, > and <; (ii) Concerning
the BTVB problem, it holds thaub(X, a:C) = 1 — glb(X, a:—C),
i.e. thelub can be determined through th& (and vice-versa). Fur-
thermore, the computation of thgb can be determined by rely-
ing on a finite number of entailment tests. First, for= (7, .A),
we defineX* = {0,0.5,1} U {n | (axn) € A} andN* =
XAU{l —n|ne XA} Thenglb(Z,a:C) = max{n | n € N*
andX = (a > n)}. (i) Concerning the subsumption problem, we
have thats = C C D iff ¥ = (T, {{a:C > n),(a:D < n)}),
with n € {n1,n2}, n1 € (0,0.5] andng € (0.5,1] (e.g., we may
choosen; = 0.25,n2 = 0.75), is not consistent. So, the subsump-
tion problem can reduced to the consistency problem as well.

This suggests that the models of a TBAaX can be cap-
tured in the form of mutually exclusive ABoxes. For exam-
ple, if 7 {Ci C D;,C: C Dy}, then for any
n, the four alternatives are (f(a:C:1 < n), (a:C2 < n)}; (i)
{{a:Cy < n),{a:D2 > n)}; (i) {{(a:D1 > n),(a:C2 < n)};
and (iv) {(a:D1 > n),{(a:D2 > n)}. Note that this is a generali-
sation of crisp DLs where for any crisp model= (A%, -) of 7,
we have thatd € AZ.d e ((=Cy U Dy) M (=Cs U Dy))”. Please
note that thisnternalized[2] concept cannot be used in fuzzy DLs
since a GCI of the formC' C D is not equivalent to the concept
—C'UD. Hence, in order to decide the consistency &f & (7, A),
for each individuala that exists inA, or might be created by the
reasoning algorithm, we have to create ABoxes, wherek is the

In all previous approaches to fuzzy DLs [18, 6, 14] decision proce-NUmber of GCls that exist iff. _ _ o
dures for the consistency, the entailment and the BTVB problem are HOWeVer, it is practically impossible to devise a terminating rea-
given for various DL languages, but with restrictions on the form of S°"'N9 algorithm that uses Proposition 1 to handle GCls and cyclic
concept inclusion axioms in a TBAK. More preciselyZ was con- ~ aXioms as we cannot realistically apply it to allc [0, 1]o. Fortu-
sidered to baimple i.e. cyclic axioms are not allowed, while concept Nately, we can restrict theseto afinite set of values. Indeed, from
inclusions were restricted to those of the fomi= D. whereA is an the previous section, it turns out that the good candidate is the set

_— 1 A . . . . .

atomicconcept. Both GCls and cyclic axioms are considered imporZY ™ - In [18, 19] itis shown that if a fuzzyl LC ABox is consistent,

tant for the classical case and, thus, should be provided in the fuzz}ahen there exists a model where the membership degrees used to build
variant as well. For instance, cyclic definitions allow us to consider® model are restricted to those that exist in the ABox. For instance,

definitions such as

5 Note that the top concep ) is not an atomic concept, hence range restric-
tions indeed are GCls.

6 Note thatC' C —D is not a proper disjoint axiom in fuzzy LC.

7 Similarly, eitherCZ (a®) < n or CT(a®) > n.

Human C JhasParent.Human
GeometricElement C VhasPart.GeometricElement .



in order to satisfy{ (a:C' > n)}, we setC” (a”) = n, while to sat-
isfy {(a:C > n)}, we setC%(a”) = n + e, for a sufficiently smalll
e € [0, 1]g.

In the following, we assume that an ABad has beennor-
malized i.e. fuzzy assertions of the fornfa:C > n) are re-
placed by(a:C > n + ¢) and those of the form{a:C < n), by
(a:C < n —¢). Please note that in a normalized fuzzy KB we al-
low the degree to range ir-¢, 1 + €] in place of|[0, 1]g. It can be

proved that the process of normalization is satisfiability preserving.

Proposition 2 LetX = (7,.A) be a fuzzy knowledge base. Then
is satisfiable if and only if its normalized variant is satisfiable.

3.1 Afuzzy tableau for fuzzy ALC

We have seen that the inference problems in fuzzy DLs can be re-

Proof: [Sketch] For thef direction if ' = (S, £,&,V) is a fuzzy

tableau for:, we can construct a fuzzy interpretatidr=(A%, %)
that is a model of4 and7 as follows:

AT =S af =V(a),aoccursind  AZ(s) = L(s,A)foralls € S
TI(s)=L(s,T), LT(s) = L(s, L), foralls€S
RZ(s,t) = E(R, (s, t)) forall (s,t) € Sx S

To prove thatZ is a model of4 and7’, we can show by induction on
the structure of concepts thé((s, C)xn implies CZ (s)n for all
s € S. Together with properties 12, 13, Proposition 1, the fact that we
can restrict our attention to the degreesNi and the interpretation
of individuals and roles, this implies thatis a model of7, and that
it satisfies each fuzzy assertion.ih

For the converse, if =(AZ,.T) is a model of%, then a fuzzy
tableaul”’ = (S, £, &, V) for £ can be defined as follows:

duced to the consistency checking problem. Similar to crisp DLs, our

tableaux algorithm checks the consistency of a fuzzy KB by trying S= AT
to build a fuzzy tableau, from which it is immediate either to build a
model in case KB is consistent or to detect that the KB is inconsis-

E(R,(s,t)) = RZ(s,t) L(5,C)=C%(s) V(a)=aT

It is easy to show thdf is a fuzzy tableau foE. ad

tent. The fuzzy tableau we present here can be seen as an extension
of the tableau presented in [8], and is inspired by the one presente®.2  An algorithm for constructing a fuzzy tableau

in [14]. Without loss of generality, we assume that all concéptse
in negation normal form{NNF) [7], i.e. negations occur in front of
atomic concepts onﬁ/Jn the following,> € {>, <}, while we also
usext~ to denote theeflectionof i<, e.g. ifod =<, then<™ =>.

Definition 1 GivenX = (7, .A), letRys, be the set of roles occurring
in 3 and letsub(X) be the set of named concepts appearingirA
fuzzy tableaul” for X is a quadruple §, £, £, V) such that:Sis a
set of elements; : S x sub(X) — [0, 1]g maps each element and

concept, to a membership degree (the degree of the element being an

instance of the concept), aftl: Ry, x 25%5 — [0, 1]g maps each

In order to decide the consistency Bf= (7, .A) a procedure that
constructs a fuzzy tabled@ufor 3 has to be determined. Like the tab-
leaux algorithm presented in [8], our algorithm worksommpletion-
forestssince an ABox might contain several individuals with arbi-
trary roles connecting them. Due to the presence of general or cyclic
terminologies, the termination of the algorithm is ensured by the use
of blocking where an expansion is terminated when individuals on
the same path are asserted to belong to the same concepts.

Definition 2 LetX = (7, .A) be a fuzzy KB. A completion-foreBt

role of R, and pair of elements to the membership degree of the pa"for 3> is a collection of trees whose distinguished roots are arbitrar-

being an instance of the role, and : 14 — S maps individuals
occurring in A to elements irs. For all s,t € S, C, E € sub(X),
andR € Ry, T has to satisfy:

. L(s,L)=0andL(s, T)=1foralls €S,

If L(s,~C)n, thenl(s,C)<"1 —n.

. L(s,CME)>n,thenl(s,C) >nandL(s,E) > n

If L(s,CUE) <n,thenl(s,C) <nandL(s, E) <n.

If L(s,CUE) >n,thenl(s,C) >norL(s, F)

If L(s,C M E) <n,thenl(s,C) <norL(s,FE)

. L(s,VR.C) > n, then&(R, (s,t)) < 1—norL(tC) >n
forallt € S.

. If L(s,3R.C) < n,thenE(R, (s,t)) < nor L(t,C) < nforall
tesS.

. If L(s,3R.C) > mn, then there exists € S such that

E(R, (s,t)) >nandL(t,C) > n.

If L(s,YR.C) < mn, then there exist& € S such that

E(R,(s,t)) > 1 —nandL(t,C) < n.

If C C D e T, theneitherl(s,C) < n—ecor L(s,D) > n, for

all s € Sandn € N4,

If (a:Cxin) € A, thenL(V(a), C)<in.

If ((a,b):Ran) € A, thenE(R, (V(a), V(b)))xn.

> >n
< <n

NouswNp

10.
11.

12.
13.

Proposition 3 ¥ = (7, A) is consistent iff there exists a fuzzy tab-
leau for¥.

8 A fuzzy ALC concept can be transformed into an equivalent one in NNF<

ily connected by edges. Each nadés labelled with a sef’(z) =
{{C,1,n)}, whereC € sub(X),x € {>,<}andn € [—¢, 1+ €.
Each edge(z, y) is labelled with a set’((z,y)) = {(R,>q,n)},
where R € Ry are roles occurring inX. Two triples (C, >, n)
((R,>,n)) and(C, <, m) ((R, <, m)) are conjugatedf n > m.

If nodesx andy are connected by an edge, y) with (R, >, n) €
L({z,y)), theny is called anR:«,,-successoof z andz is called an
Ryan-predecessoof y. Lety be anR>,-successor of, the edge
(x,y) is conjugatedwith triples (R, <, m) if n > m. Similarly,
we can extend it to the cases Bk ,,-successor. A node is an R-
successor (respR-predecessor) aj if it is an Ry, -successor (resp.
Ry -predecessor) of) for some roleR. As usualancestotis the
transitive closure oforedecessor

A noder is directly blockedff none of its ancestors are blocked, it
is not a root node, and it has an ancestipsuch thatC(z) C L(y).
In this case, we say directly blocksz. A nodez is blockediff it is
directly blocked or if one of its predecessor is blocked.

A nodez is said to contain alashiff there exist two conjugated
triples in £(z) or one of the following triples exists withifi(x): (i)
(L, >,n), forn > 0; (i) (T, <,n), forn < 1; (i) (C, <, —e); (iv)
(C,>,1+ ¢€). The notion of L({z, y)) contains a clash’ is defined
similarly.

The algorithm initializes a forestF to contain (i) a root
node z}, for each individuala; occurring in A, labelled with
L(x}) such that{(C;,a,n)} C L(x}) for each fuzzy assertion
ai:Cixan) € A, and (i) an edge(z, =), for each fuzzy asser-

by pushing negations inwards using a combination of the De Morgan lawdion ((a:, a;):R;><an) € A, labelled with L((zh,x))) such that

and the equivalences3R.C = VR.-C, -VR.C' = 3R.-C.

{(Ri,>x,n)} C L({(zh,z})). F is then expanded by repeatedly



Table 2. Tableaux expansion rules

Rule Description Rule Description
=) ifl. (=C,x,n) € L(z),and (3>) 1. (JR.C,>,n) € L(z), = is not blocked,
2. {(C,<7,1—n) ¢ L(x) B 2.z has noR>,-successoy with (C, >, n) € L(y)
then L(z) — L(z)U{(C,x~,1—n)} then zreate a ngw nodewith L((z,y)) = {(R,>,n)},
= b Z) n ]
(N>) ifl. (CinNC2,>,n) € L(z)and ] ) ={( % )
> 2 {(C1, >, (Cay > m)} Z L(x) (V<) ifl. (VR.C,<,n) € L(z), z is not blocked,
then L(z) — L(z) U{(C1,>,n),(C2,>,n)} 2. xhasnoR>,_,-successoy with (C, <, n) € L(y)
) then create a new nodewith £L({z,y)) = {(R,>,1 —n)},
(Ug) ifl. (C1UCa,<,n) € L(z) and L(y) = {{C,<,m)},
2. {{C1,5,n),(C2, <, n)} € L(2) ,
then L(z) — L(x) U {(C1,<,n), (C2,<,n)} (V>) ifl. (VR.C,>,n) € L(z),
) 2.z has anR-successoy with (C, >,n) ¢ L(y) and
(Us) ifl. (C1UC2,>,n) € L(x)and 3. (R,<,1—n)is conjugated with the edge, y)
2. {(C1,2,n),(Co,>2,m)}NL(x) =10 then L(y) — L(y) U {(C,>,n)},
then L(z) — L(x) U {C} for some )
C e {(C1, %), (Ca, 2,m)} (B<) 1 (BRC,<,n) € L(w),
) 2.z has anR-successoy with (C, <,n) ¢ L(y) and
(Mg) ifL (Ci1nC2, <, n)L(x)and 3. (R, <,n) is conjugated with the edge:, v

2. {{C1,<,n),(C2, <,n)}NL(x) =0
then L(z) — L(z)U {C} for some
C e {{C1,<,n),(C2,<,n)}

then  L(y) — L(y) U{(C, <,n)},

ifl. CCDeTand
2. {(C,<,n—e€),(D,>n)}NL(z)=0forn e NA
then L(z) — L(z)U {E} for some

E e {<C,S,TL*E>,<D,2,TL>}

applying the completion rules from Table 2. The completion forestvhich contains a clash, while in the latter case we update the label

is complete when, for some nogddedge(x, v)), L(z) (L({x,y)))

L(z%) with £(z*) = {(C, >,0.3+¢), (D, <,0.3), (D, >,0.3+¢)}

contains a clash, or none of the completion rules in Table 2 are apwhich also contains a clash. No complete, clash-free forest can be

plicable. The algorithm stops when a clash occurs; it answers *

obtained, thus the algorithm answers with ‘inconsistent’.

is consistent’ iff the completion rules can be applied in such a way

that they yield a complete and clash-free completion forest, &hd

is inconsistent’ otherwise.

From Table 2, we can see that for an arbitrary fuzzy assertion of th

form (a: D <in) either valuen or its complement — n appear in the
expansion of a node whereD € L(z). The finite property of the
membership degrees makes blocking possible in our algorithm.

Example 1 Let us show how the blocking condition
works on the cyclic fuzzy KBY = ({HotPinkRose L
InextGen.HotPinkRose}, {(a:HotPinkRose > 0.6)}). ¥ is sat-
isfiable andV4 = {0,0.5,1}U{0.4,0.6}. We start with a root node
x%, with label £(z*) = {(HotPinkRose,>,0.6)}. By applying
rule (C) to nodez®, to HotPinkRose C JdnextGen.HotPinkRose
with, e.g.,,n = 0.6, and E = (JnextGen.HotPinkRose, >,n),
we update the label(xz®) with £(z®) = {(HotPinkRose, >
,0.6), (GnextGen.HotPinkRose, >,0.6)}. Continuing with node
z®, we apply rule(3>) to (3nextGen.HotPinkRose, >,0.6), cre-
ate a new edgeéz®, y1) with £((z%,y1)) = {(nextGen, >,0.6)}
and L£(y1) = {(HotPinkRose,>,0.6)}. By continuing with
node y; exactly as for noder,, after applying rule (C), we
update the labell(y:) with £(y1) = {(HotPinkRose, >
,0.6), (3nextGen.HotPinkRose, >,0.6) }. Now,y; is annextGen-
successor oft” and L(y1) = L(z*) and, thus,y, is directly
blocked.

Example 2 We show thatt = ({C C D}, {{a:C > 0.3),
(a:D < 0.3)}) is inconsistent. We first normalizg into ¥ =
({C C D}, {{a:C > 0.3+¢€),{a:D < 0.3)}), for a smalle > 0,
e.g.e = 0.01. N* = {0,0.5,1} U {0.3,0.3 + ¢,0.7 — €,0.7}.
We start with a root node® and £(z*) = {(C,>,0.3+¢),(D, <
,0.3)}. By applying rule(C) to nodez®, to C C D with, e.g.,n =
0.3+4¢ we get two branches, depending on the ‘choicEaf {(C, <

Proposition 4 (Termination) For each fuzzyA£C KB X, the tab-
leau algorithm terminates.

Proof: [Sketch] Termination is a result of the properties of the ex-
pansion rules, as in the classical case [8]. More precisely we have the
following observations. (i) The expansion rules never remove nodes
from the tree or concepts from node labels or change the edge la-
bels. (ii) Successors are only generated by the fijeandv<. For

any node and for each concept these rules are applied at-most once.
(iii) Since nodes are labelled with nonempty subsets.@f{>), ob-
viously there is a finite number of possible labellings for a pair of
nodes. Thus, the condition of blocking will be applied in any path of
the tree and consequently any path will have a finite length. O

Proposition 5 (Soundness)If the expansion rules can be applied to
an fuzzyALC KB ¥ such that they yield a complete and clash-free
completion-forest, thel has a fuzzy tableau for.

Proof: [Sketch] LetF be a complete and clash-free completion-
forest constructed by the tableaux algorithm ¥arA fuzzy tableau
T = (S L,&,V) can be defined as follows:

{z | = is anode inF, andz is not blockegd,
0,forallz € S,
1,forallz € S,
max[(C, >, n;)], for all  in F not blocked,
1 — L(z, A), for all z in F not blocked,
with (=A, >, n) € L(x),
{max[(R, >,n,)] |
1.yisanR>,, -successor of or

_ 2(R,>,n;) € L((z, z)) andy blocksz},

xy, Wherexy is a root node

V(a;) =

wheremax returns the maximum degreeout of the set of triples of

,0.3+e—e¢), (D, >,0.3+¢€)}. Inthe former case, we update the la- the form(A, >, n;), or 0 if no such triple exists. It can be shown that

bel £(z%) with £(z) = {(C, >,0.3+¢), (D, <,0.3), (C, <,0.3)}

T is a fuzzy tableau foE. |



Proposition 6 (Completeness)Consider a fuzzyALC KB X. If & [2]
has a fuzzy tableau, then the expansion rules can be applied in such
a way that the tableaux algorithm yields a complete and clash-free[3]
completion-forest foE.

Proof: [Sketch] LetT = (S, L, &, V) be a fuzzy tableau foE. Us- 4]
ing T, we trigger the application of the expansion rules such that
they yield a completion-foresk that is both complete and clash-free.
Similarly to [8] we can define a mappingwhich maps nodes of

to elements of5, and guide the application of the non-deterministic (6]
rulesC, L> andf<. Our method slightly differs from the one used

in crisp DLs [8] in the following way. Using the membership degree [7]
of a node to a concept, found in the fuzzy tableau, we create artificial
triples that are tested against conjugation with the candidate triples[8]
that the non-deterministic rule can insert in the completion-forest.
The triples that don’t cause a conjugation can be added. The modi-
fied rules, which are used to guide such an expansion, are presented
in Table 3. The modified rules together with the termination property [°]
ensure the completeness of the algorithm. |

(5]

Table 3. Thel’, u’z andﬁ’S rules [10]
(= ifl. CC D e T,xisnotindirectly blocked and
2. {(C,<,n—e),(D,>n)}NL(x)=0forn e NA [11]
then L(z) — L(z) U{E}forsomeE € {{(C,<,n —¢),
(D, >,n)}, not conjugated witHC, >, L(w(x), C))
or(D, <, L(n(x), D))
(LWy) ifl. (C1uC,>,n) € L(z),zis notindirectly blocked, and [12]
B 2. {(C1,>,n),{(Ca, >, n)}NL(x) =0
then L(z) — L(z) U {C} forsomeC € {(C1, >,n),
(Co,>,n)} not conjugated witHC1, <, L(w(z), C1)) [13]
or (Ca, <, L(w(z), C2))
(M) ifl. (C1NCy, <, n) € L(z), z is not indirectly blocked, and 4]
B 2. {(C1,<,n), (Co, <, m)}NL(z) =0
then L(z) — L(z) U {C} forsomeC € {(C1, <,n), [15]
(Ca, <,n)} not conjugated WitC1, >, £(w(x), C1))
or(Cz, >, L(m(z), C2))
4 CONCLUSIONS [16]

Fuzzy DLs extend crisp DLs to deal with vague concepts. None of
the work on fuzzy DLs so far presented a correct and complete call?]
culus for cyclic TBoxes and general concept inclusions, which are
important features of current crisp DL systems. We overcome to this
limitation by providing a tableau for fuzzyA£C with GCls. [18]
Major topics for future research are indeed the extension of the
fuzzy tableau algorithm to expressive DL languages such as fuzzy°l
SHIF(D) or SHOIN (D) [21] and the development of a sys-
tem supporting this language. In the former case, such algorithm

can be based directly on the ones presented for the f§2zand  [20]
SHIN DLs [14, 15] and the rules for nominals, f6tHOZN [10]
and for fuzzySHOZN [16]. 21]
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