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Abstract. Fuzzy Description Logics(fuzzy DLs) have been pro-
posed as a language to describe structured knowledge with vague
concepts. A major theoretical and computational limitation so far is
the inability to deal withGeneral Concept Inclusions(GCIs), which
is an important feature of classical DLs. In this paper, we address this
issue and develop a calculus for fuzzy DLs with GCIs.

1 INTRODUCTION

Description Logics(DLs) [2] are a logical reconstruction of the so-
called frame-based knowledge representation languages, with the
aim of providing a simple well-established Tarski-style declarative
semantics to capture the meaning of the most popular features of
structured representation of knowledge. Nowadays, DLs have gained
even more popularity due to their application in the context of the
Semantic Web, as the theoretical counterpart of OWL DL (the W3C
standard for specifying ontologies, see [9] for details).

Fuzzy DLs[15, 18, 23, 24] extend classical DLs by allowing
to deal with fuzzy/vague/imprecise conceptssuch as “Candia is a
creamy white rose with dark pink edges to the petals”, “Jacaranda
is a hot pink rose”, and “Calla is a very large, long white flower on
thick stalks”. Such concepts involve so-calledfuzzyor vague con-
cepts, like “creamy”, “dark”, “hot”, “large” and “thick”, for which a
clear and precise definition is not possible.

The problem to deal with imprecise concepts has been addressed
several decades ago by Zadeh [25], which gave birth in the mean-
while to the so-calledfuzzy set and fuzzy logic theoryand a huge
number of real life applications exists. Despite the popularity of
fuzzy set theory, relative little work has been carried out in extending
DLs towards the representation of imprecise concepts, notwithstand-
ing DLs can be considered as a quite natural candidate for such an ex-
tension [1, 3, 4, 5, 6, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26].

A major theoretical and computational limitation so far of fuzzy
DLs is the inability to deal withGeneral Concept Inclusions(GCIs),
which is an important feature of classical DLs; e.g., GCIs are nec-
essary to represent domain and range constraints. In this paper, we
address this issue and develop a calculus for fuzzy DLs with GCIs.

In the next section, we briefly recall basic concepts of DLs and
fuzzy DLs, while in Section 3 we present a sound and complete cal-
culus dealing with GCIs. Section 4 concludes.

2 PRELIMINARIES

DLs basics.DLs [2] are a family of logics for representing struc-
tured knowledge. Each logic is identified by a name made of labels,
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which identify the operators allowed in that logic. Major DLs are
the so-called logicALC [13] and is used as a reference language
whenever new concepts are introduced in DLs,SHOIN (D), which
is the logic behind the ontology description language OWL DL and
SHIF(D), which is the logic behind OWL LITE, a slightly less ex-
pressive language than OWL DL (see [9]). A DL can be seen as a
restricted First Order Language with unary and binary predicates. For
the sake of our purpose we deal here withALC, whose syntax and
semantics is described in Table 1, (aninterpretationI = (∆I , ·I)
has domain∆I and maps concepts into subsets of∆I , maps roles
into subsets of∆I×∆I and maps individuals into elements of∆I).
An ALC knowledge baseis defined as a pairΣ = 〈T ,A〉, where
T is called aTBox andA an ABox. T is a finite set ofgeneral
inclusion axioms(GCIs for short) of the form,C v D andA is
a finite set ofconceptand role assertionsof the forma : C and
(a, b) : R, respectively. For exampleT could contain an axioms of
the formHappyFather v ∃hasChild.Female, andA an assertion
of the formTom : HappyFather. An interpretationI satisfiesT
if CI ⊆ DI for all GCIs inT , thenI is called amodelof T , and
it satisfiesA if aI ∈ CI (〈aI , bI〉 ∈ RI) for all concept (role)
assertions inA. ThenI is called a model ofA. An interpretation
satisfies anALC KB Σ =〈T ,A〉 if it satisfies bothA andT ; then
I is called amodelof Σ. A conceptC is subsumed bya conceptD,
writtenC v D, with respect to (w.r.t.)T , if for all modelsI of T , it
holds thatCI ⊆ DI . An ABoxA is consistent(inconsistent) w.r.t. a
TBox T if there exists (does not exist) a modelI of T , that is also a
model ofA. Finally, Σ entailsanALC assertionφ, writtenΣ |= φ,
if each model ofΣ is a model ofφ.

Fuzzy DLs basics.Fuzzy DLs [18] extend classical DLs by allow-
ing to deal with fuzzy/imprecise concepts. The main idea underly-
ing fuzzy DLs is that an assertiona:C, stating that the constanta
is an instance of conceptC, rather being interpreted as either true
or false, will be mapped to a truth valuen ∈ [0, 1]Q (the rationals
in the unit interval[0, 1]). The intended meaning is thatn indicates
to which extent ‘a is aC ’. From a syntax point of view, concepts,
roles, individuals and concept inclusion axioms are as forALC. In
place of assertions, we havefuzzy assertions[18], which are of the
form 〈α./n〉, whereα is an assertion,n ∈ [0, 1]Q and./ is one
of ≥,≤, >,<. For instance,〈a:C ≥ n〉 allows to state that individ-
ual a is an instance of conceptC at least to degreen. Similarly for
role assertions. AFuzzy Knowledge Base, Σ = 〈T ,A〉, is as for
the crisp case, except that nowA is a set of fuzzy assertions rather
than assertions only. From a semantics point of view, afuzzy inter-
pretationI = (∆I , ·I) has domain∆I , but now maps a concept
C into a functionCI : ∆I → [0, 1]Q and a roleR into a function
RI : ∆I × ∆I → [0, 1]Q. For d ∈ ∆I , CI(d) gives us the de-
gree ofd being an instance of the conceptC (similarly for roles).
The semantics is summarized in Table 1. A fuzzy interpretationI
satisfies a fuzzy TBoxT if ∀x ∈ ∆I .CI(x) ≤ DI(x) for all



Table 1. ALC and fuzzyALC.

Concepts
Syntax Classical Semantics Examples

C, D −→ > | (top concept) >I = ∆I

⊥ | (bottom concept) ⊥I = ∅
A | (atomic concept) AI ⊆ ∆I Human

C uD | (concept conjunction) (C1 u C2)
I = C1

I ∩ C2
I Human u Male

C tD | (concept disjunction) (C1 t C2)
I = C1

I ∪ C2
I Nice t Rich

¬C | (concept negation) (¬C)I = ∆I \ CI ¬Male
∃R.C | (existential quantification) (∃R.C)I = {x | ∃y.〈x, y,∈〉RI ∧ y ∈ CI} ∃has child.Blond
∀R.C (universal quantification) (∀R.C)I = {x | ∀y.〈x, y,∈〉RI ⇒ y ∈ CI} ∀has child.Human

Fuzzy Semantics
>I(x) = 1
⊥I(x) = 0
AI(x) ∈ [0, 1]Q
(C1 u C2)

I(x) = min(C1
I(x), C2

I(x))

(C1 t C2)
I(x) = max(C1

I(x), C2
I(x))

(¬C)I(x) = ¬CI(x))
(∃R.C)I(x) = supy∈∆I {min(RI(x, y), CI(y))}
(∀R.C)I(x) = infy∈∆I {max(1− RI(x, y), CI(y))}

C v D ∈ T , thenI is called amodelof T , and it satisfies a
fuzzy ABoxA if CI(aI)./n (RI(aI , bI)./n), for each〈a : C./n〉
(〈(a, b) : R./n〉) inA. ThenI is called amodelofA. A fuzzyALC
KB Σ = 〈T ,A〉 is consistent if there exists a modelI of A andT .

Given a fuzzy KBΣ, and a fuzzy assertionψ (resp. a GCIC v
D), we say thatΣ entailsψ (resp.C v D), denotedΣ |= ψ (resp.
Σ |= C v D), if each model ofΣ is a model ofψ (resp.C v D). Fi-
nally, givenΣ and a fuzzy assertionα, it is of interest to computeα’s
best lower and upper truth value bounds. Thegreatest lower bound
of α w.r.t. Σ (denotedglb(Σ, α)) is glb(Σ, α) = sup{n | Σ |=
〈α ≥ n〉} wheresup ∅ = 0. Similarly, theleast upper boundof α
w.r.t.Σ (denotedlub(Σ, α)) is lub(Σ, α) = inf{n | Σ |= 〈α ≤ n〉}
whereinf ∅ = 1. Determining theglb is called theBest Truth Value
Bound(BTVB) problem. Basic inference problems are: (i) Check if
a fuzzy KB isconsistent, i.e. has a model. (ii) Check ifD subsumes
C w.r.t. Σ, i.e. Σ |= C v D. (iii) Check if a is instance ofC to
degree≥ n, i.e. Σ |= 〈a:C ≥ n〉 (Similarly for the other relations
≤, > and<). (iv) Determineglb(Σ, a:C).

We recall that all the inference problems can be reduced to the
consistency problem [18]: (i) Concerning the entailment problem,
it can be verified that it can be reduced to the inconsistency prob-
lem: 〈T ,A〉 |= 〈α ≥ n〉 iff 〈T ,A ∪ {〈α < n〉}〉 is inconsistent,
and similarly for the other relations≤, > and<; (ii) Concerning
the BTVB problem, it holds thatlub(Σ, a:C) = 1 − glb(Σ, a:¬C),
i.e. thelub can be determined through theglb (and vice-versa). Fur-
thermore, the computation of theglb can be determined by rely-
ing on a finite number of entailment tests. First, forΣ = 〈T ,A〉,
we defineXA = {0, 0.5, 1} ∪ {n | 〈α./n〉 ∈ A} andNA =
XA ∪ {1− n | n ∈ XA}. Thenglb(Σ, a:C) = max{n | n ∈ NA

andΣ |= 〈α ≥ n〉}. (iii) Concerning the subsumption problem, we
have thatΣ |= C v D iff Σ = 〈T , {〈a:C ≥ n〉, 〈a:D < n〉}〉,
with n ∈ {n1, n2}, n1 ∈ (0, 0.5] andn2 ∈ (0.5, 1] (e.g., we may
choosen1 = 0.25, n2 = 0.75), is not consistent. So, the subsump-
tion problem can reduced to the consistency problem as well.

In all previous approaches to fuzzy DLs [18, 6, 14] decision proce-
dures for the consistency, the entailment and the BTVB problem are
given for various DL languages, but with restrictions on the form of
concept inclusion axioms in a TBoxT . More precisely,T was con-
sidered to besimple, i.e. cyclic axioms are not allowed, while concept
inclusions were restricted to those of the formA v D, whereA is an
atomicconcept. Both GCIs and cyclic axioms are considered impor-
tant for the classical case and, thus, should be provided in the fuzzy
variant as well. For instance, cyclic definitions allow us to consider
definitions such as

Human v ∃hasParent.Human
GeometricElement v ∀hasPart.GeometricElement .

It is also well known that GCIs are used to express important features
like: (i) The domainof a roleR is conceptC. This can be expressed
by means of the GCI,∃R.> v C. (ii) The range of a roleR is
conceptC. This can be expressed by means of the GCI,> v ∀R.C
5. (iii) ConceptC1 and conceptC2 aredisjoint. This can be expressed
by means of the GCI,C1 u C2 v⊥.6 Such features appear in the
OWL DL [9] and hence also in the fuzzy OWL DL language [16].
In the following we will present a calculus for fuzzyALC with both
GCIs and cyclic axioms.

3 DEALING WITH GCIs IN FUZZY DLs

Suppose that we have an individuala and a conceptC. Then, for
any fuzzy interpretationI, ∀n ∈ [0, 1]Q eitherCI(aI) < n or
CI(aI) ≥ n holds 7. Furthermore, ifI |= C v D, then either
CI(aI) < n orDI(aI) ≥ n. From this observation, the following
can be shown.

Proposition 1 I |= C v D iff for all n ∈ [0, 1]Q, eitherI |= 〈a :
C < n〉 or I |= 〈a : D ≥ n〉, for all a.

This suggests that the models of a TBoxT can be cap-
tured in the form of mutually exclusive ABoxes. For exam-
ple, if T = {C1 v D1, C2 v D2}, then for any
n, the four alternatives are (i){〈a:C1 < n〉, 〈a:C2 < n〉}; (ii)
{〈a:C1 < n〉, 〈a:D2 ≥ n〉}; (iii) {〈a:D1 ≥ n〉, 〈a:C2 < n〉};
and (iv) {〈a:D1 ≥ n〉, 〈a:D2 ≥ n〉}. Note that this is a generali-
sation of crisp DLs where for any crisp modelI = (∆I , ·I) of T ,
we have that∀d ∈ ∆I .d ∈ ((¬C1 tD1) u (¬C2 tD2))

I . Please
note that thisinternalized[2] concept cannot be used in fuzzy DLs
since a GCI of the formC v D is not equivalent to the concept
¬C tD. Hence, in order to decide the consistency of aΣ = 〈T ,A〉,
for each individuala that exists inA, or might be created by the
reasoning algorithm, we have to create2k ABoxes, wherek is the
number of GCIs that exist inT .

However, it is practically impossible to devise a terminating rea-
soning algorithm that uses Proposition 1 to handle GCIs and cyclic
axioms as we cannot realistically apply it to alln ∈ [0, 1]Q. Fortu-
nately, we can restrict thesen to afinite set of values. Indeed, from
the previous section, it turns out that the good candidate is the set
NA. In [18, 19] it is shown that if a fuzzyALC ABox is consistent,
then there exists a model where the membership degrees used to build
the model are restricted to those that exist in the ABox. For instance,

5 Note that the top concept(>) is not an atomic concept, hence range restric-
tions indeed are GCIs.

6 Note thatC v ¬D is not a proper disjoint axiom in fuzzyALC.
7 Similarly, eitherCI(aI) ≤ n or CI(aI) > n.



in order to satisfy{〈a:C ≥ n〉}, we setCI(aI) = n, while to sat-
isfy {〈a:C > n〉}, we setCI(aI) = n+ ε, for a sufficiently small
ε ∈ [0, 1]Q.

In the following, we assume that an ABoxA has beennor-
malized, i.e. fuzzy assertions of the form〈a:C > n〉 are re-
placed by〈a:C ≥ n+ ε〉 and those of the form〈a:C < n〉, by
〈a:C ≤ n− ε〉. Please note that in a normalized fuzzy KB we al-
low the degree to range in[−ε, 1 + ε]Q in place of[0, 1]Q. It can be
proved that the process of normalization is satisfiability preserving.

Proposition 2 Let Σ = 〈T ,A〉 be a fuzzy knowledge base. ThenΣ
is satisfiable if and only if its normalized variant is satisfiable.

3.1 A fuzzy tableau for fuzzyALC
We have seen that the inference problems in fuzzy DLs can be re-
duced to the consistency checking problem. Similar to crisp DLs, our
tableaux algorithm checks the consistency of a fuzzy KB by trying
to build a fuzzy tableau, from which it is immediate either to build a
model in case KB is consistent or to detect that the KB is inconsis-
tent. The fuzzy tableau we present here can be seen as an extension
of the tableau presented in [8], and is inspired by the one presented
in [14]. Without loss of generality, we assume that all conceptsC are
in negation normal form(NNF) [7], i.e. negations occur in front of
atomic concepts only.8 In the following,./ ∈ {≥,≤}, while we also
use./− to denote thereflectionof ./, e.g. if./ =≤, then./− =≥.

Definition 1 GivenΣ = 〈T ,A〉, letRΣ be the set of roles occurring
in Σ and letsub(Σ) be the set of named concepts appearing inΣ. A
fuzzy tableauT for Σ is a quadruple (S, L, E , V) such that:S is a
set of elements,L : S× sub(Σ) → [0, 1]Q maps each element and
concept, to a membership degree (the degree of the element being an
instance of the concept), andE : RΣ × 2S×S → [0, 1]Q maps each
role ofRΣ and pair of elements to the membership degree of the pair
being an instance of the role, andV : IA → S maps individuals
occurring inA to elements inS. For all s, t ∈ S, C,E ∈ sub(Σ),
andR ∈ RΣ, T has to satisfy:

1. L(s,⊥) = 0 andL(s,>) = 1 for all s ∈ S,
2. If L(s,¬C)./n, thenL(s, C)./−1− n.
3. If L(s, C u E) ≥ n, thenL(s, C) ≥ n andL(s, E) ≥ n.
4. If L(s, C t E) ≤ n, thenL(s, C) ≤ n andL(s, E) ≤ n.
5. If L(s, C t E) ≥ n, thenL(s, C) ≥ n or L(s, E) ≥ n.
6. If L(s, C u E) ≤ n, thenL(s, C) ≤ n or L(s, E) ≤ n.
7. If L(s,∀R.C) ≥ n, thenE(R, 〈s, t〉) ≤ 1 − n or L(t, C) ≥ n

for all t ∈ S.
8. If L(s,∃R.C) ≤ n, thenE(R, 〈s, t〉) ≤ n or L(t, C) ≤ n for all
t ∈ S.

9. If L(s,∃R.C) ≥ n, then there existst ∈ S such that
E(R, 〈s, t〉) ≥ n andL(t, C) ≥ n.

10. If L(s,∀R.C) ≤ n, then there existst ∈ S such that
E(R, 〈s, t〉) ≥ 1− n andL(t, C) ≤ n.

11. If C v D ∈ T , then eitherL(s, C) ≤ n− ε or L(s,D) ≥ n, for
all s ∈ S andn ∈ NA.

12. If 〈a:C ./n〉 ∈ A, thenL(V(a), C)./n.
13. If 〈(a, b):R./n〉 ∈ A, thenE(R, 〈V(a),V(b)〉)./n.

Proposition 3 Σ = 〈T ,A〉 is consistent iff there exists a fuzzy tab-
leau forΣ.

8 A fuzzy ALC concept can be transformed into an equivalent one in NNF
by pushing negations inwards using a combination of the De Morgan laws
and the equivalences¬∃R.C ≡ ∀R.¬C, ¬∀R.C ≡ ∃R.¬C.

Proof: [Sketch] For theif direction if T = (S,L, E ,V) is a fuzzy
tableau forΣ, we can construct a fuzzy interpretationI =(∆I , ·I)
that is a model ofA andT as follows:

∆I = S aI = V(a), a occurs inA AI(s) = L(s, A) for all s ∈ S
>I(s) = L(s,>),⊥I(s) = L(s,⊥), for all s ∈ S
RI(s, t) = E(R, 〈s, t〉) for all 〈s, t〉 ∈ S× S

To prove thatI is a model ofA andT , we can show by induction on
the structure of concepts thatL(s, C)./n impliesCI(s)./n for all
s ∈ S. Together with properties 12, 13, Proposition 1, the fact that we
can restrict our attention to the degrees inNA and the interpretation
of individuals and roles, this implies thatI is a model ofT , and that
it satisfies each fuzzy assertion inA.

For the converse, ifI =(∆I , ·I) is a model ofΣ, then a fuzzy
tableauT = (S,L, E ,V) for Σ can be defined as follows:

S = ∆I E(R, 〈s, t〉) = RI(s, t) L(s, C) = CI(s) V(a) = aI

It is easy to show thatT is a fuzzy tableau forΣ. 2

3.2 An algorithm for constructing a fuzzy tableau

In order to decide the consistency ofΣ = 〈T ,A〉 a procedure that
constructs a fuzzy tableauT for Σ has to be determined. Like the tab-
leaux algorithm presented in [8], our algorithm works oncompletion-
forestssince an ABox might contain several individuals with arbi-
trary roles connecting them. Due to the presence of general or cyclic
terminologies, the termination of the algorithm is ensured by the use
of blocking, where an expansion is terminated when individuals on
the same path are asserted to belong to the same concepts.

Definition 2 LetΣ = 〈T ,A〉 be a fuzzy KB. A completion-forestF
for Σ is a collection of trees whose distinguished roots are arbitrar-
ily connected by edges. Each nodex is labelled with a setL(x) =
{〈C, ./, n〉}, whereC ∈ sub(Σ), ./ ∈ {≥,≤} andn ∈ [−ε, 1 + ε].
Each edge〈x, y〉 is labelled with a setL(〈x, y〉) = {〈R, ./, n〉},
whereR ∈ RΣ are roles occurring inΣ. Two triples 〈C,≥, n〉
(〈R,≥, n〉) and〈C,≤,m〉 (〈R,≤,m〉) areconjugatedif n > m.

If nodesx andy are connected by an edge〈x, y〉with 〈R, ./, n〉 ∈
L(〈x, y〉), theny is called anR./n-successorof x andx is called an
R./n-predecessorof y. Let y be anR≥n-successor ofx, the edge
〈x, y〉 is conjugatedwith triples 〈R,≤,m〉 if n > m. Similarly,
we can extend it to the cases ofR≤n-successor. A nodex is anR-
successor (resp.R-predecessor) ofy if it is anR./n-successor (resp.
R./n-predecessor) ofy for some roleR. As usual,ancestoris the
transitive closure ofpredecessor.

A nodex is directly blockediff none of its ancestors are blocked, it
is not a root node, and it has an ancestory such thatL(x) ⊆ L(y).
In this case, we sayy directly blocksx. A nodex is blockediff it is
directly blocked or if one of its predecessor is blocked.

A nodex is said to contain aclashiff there exist two conjugated
triples inL(x) or one of the following triples exists withinL(x): (i)
〈⊥,≥, n〉, for n > 0; (ii) 〈>,≤, n〉, for n < 1; (iii) 〈C,≤,−ε〉; (iv)
〈C,≥, 1 + ε〉. The notion of ‘L(〈x, y〉) contains a clash’ is defined
similarly.

The algorithm initializes a forestF to contain (i) a root
node xi

0, for each individualai occurring in A, labelled with
L(xi

0) such that{〈Ci, ./, n〉} ⊆ L(xi
0) for each fuzzy assertion

〈ai:Ci ./ n〉 ∈ A, and (ii) an edge〈xi
0, x

j
0〉, for each fuzzy asser-

tion 〈(ai, aj):Ri ./ n〉 ∈ A, labelled withL(〈xi
0, x

j
0〉) such that

{〈Ri, ./, n〉} ⊆ L(〈xi
0, x

j
0〉). F is then expanded by repeatedly



Table 2. Tableaux expansion rules

Rule Description
(¬) if 1. 〈¬C, ./, n〉 ∈ L(x), and

2. 〈C, ./−, 1− n〉 6∈ L(x)
then L(x) → L(x) ∪ {〈C, ./−, 1− n〉}

(u≥) if 1. 〈C1 u C2,≥, n〉 ∈ L(x) and
2. {〈C1,≥, n〉, 〈C2,≥, n〉} 6⊆ L(x)

then L(x) → L(x) ∪ {〈C1,≥, n〉, 〈C2,≥, n〉}

(t≤) if 1. 〈C1 t C2,≤, n〉 ∈ L(x) and
2. {〈C1,≤, n〉, 〈C2,≤, n〉} 6⊆ L(x)

then L(x) → L(x) ∪ {〈C1,≤, n〉, 〈C2,≤, n〉}

(t≥) if 1. 〈C1 t C2,≥, n〉 ∈ L(x) and
2. {〈C1,≥, n〉, 〈C2,≥, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for some
C ∈ {〈C1,≥, n〉, 〈C2,≥, n〉}

(u≤) if 1. 〈C1 u C2,≤, n〉L(x) and
2. {〈C1,≤, n〉, 〈C2,≤, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for some
C ∈ {〈C1,≤, n〉, 〈C2,≤, n〉}

Rule Description
(∃≥) if 1. 〈∃R.C,≥, n〉 ∈ L(x), x is not blocked,

2. x has noR≥n-successory with 〈C,≥, n〉 ∈ L(y)
then create a new nodey with L(〈x, y〉) = {〈R,≥, n〉},

L(y) = {〈C,≥, n〉},

(∀≤) if 1. 〈∀R.C,≤, n〉 ∈ L(x), x is not blocked,
2. x has noR≥1−n-successory with 〈C,≤, n〉 ∈ L(y)

then create a new nodey with L(〈x, y〉) = {〈R,≥, 1− n〉},
L(y) = {〈C,≤, n〉},

(∀≥) if 1. 〈∀R.C,≥, n〉 ∈ L(x),
2. x has anR-successory with 〈C,≥, n〉 6∈ L(y) and
3. 〈R,≤, 1− n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈C,≥, n〉},

(∃≤) if 1. 〈∃R.C,≤, n〉 ∈ L(x),
2. x has anR-successory with 〈C,≤, n〉 6∈ L(y) and
3. 〈R,≤, n〉 is conjugated with the edge〈x, y〉

then L(y) → L(y) ∪ {〈C,≤, n〉},

(v) if 1. C v D ∈ T and
2. {〈C,≤, n− ε〉, 〈D,≥, n〉} ∩ L(x) = ∅ for n ∈ NA

then L(x) → L(x) ∪ {E} for some
E ∈ {〈C,≤, n− ε〉, 〈D,≥, n〉}

applying the completion rules from Table 2. The completion forest
is complete when, for some nodex (edge〈x, y〉), L(x) (L(〈x, y〉))
contains a clash, or none of the completion rules in Table 2 are ap-
plicable. The algorithm stops when a clash occurs; it answers ‘Σ
is consistent’ iff the completion rules can be applied in such a way
that they yield a complete and clash-free completion forest, and ‘Σ
is inconsistent’ otherwise.

From Table 2, we can see that for an arbitrary fuzzy assertion of the
form 〈a:D./n〉 either valuen or its complement1−n appear in the
expansion of a nodex whereD ∈ L(x). The finite property of the
membership degrees makes blocking possible in our algorithm.

Example 1 Let us show how the blocking condition
works on the cyclic fuzzy KB,Σ = 〈{HotPinkRose v
∃nextGen.HotPinkRose}, {〈a:HotPinkRose ≥ 0.6〉}〉. Σ is sat-
isfiable andNA = {0, 0.5, 1}∪{0.4, 0.6}. We start with a root node
xa, with label L(xa) = {〈HotPinkRose,≥, 0.6〉}. By applying
rule (v) to nodexa, to HotPinkRose v ∃nextGen.HotPinkRose
with, e.g.,n = 0.6, andE = 〈∃nextGen.HotPinkRose,≥, n〉,
we update the labelL(xa) with L(xa) = {〈HotPinkRose,≥
, 0.6〉, 〈∃nextGen.HotPinkRose,≥, 0.6〉}. Continuing with node
xa, we apply rule(∃≥) to 〈∃nextGen.HotPinkRose,≥, 0.6〉, cre-
ate a new edge〈xa, y1〉 with L(〈xa, y1〉) = {〈nextGen,≥, 0.6〉}
and L(y1) = {〈HotPinkRose,≥, 0.6〉}. By continuing with
node y1 exactly as for nodexa, after applying rule (v), we
update the labelL(y1) with L(y1) = {〈HotPinkRose,≥
, 0.6〉, 〈∃nextGen.HotPinkRose,≥, 0.6〉}. Now,y1 is annextGen-
successor ofxa and L(y1) = L(xa) and, thus,y1 is directly
blocked.

Example 2 We show thatΣ = 〈{C v D}, {〈a:C > 0.3〉,
〈a:D ≤ 0.3〉}〉 is inconsistent. We first normalizeΣ into Σ =
〈{C v D}, {〈a:C ≥ 0.3 + ε〉, 〈a:D ≤ 0.3〉}〉, for a smallε > 0,
e.g. ε = 0.01. NA = {0, 0.5, 1} ∪ {0.3, 0.3 + ε, 0.7 − ε, 0.7}.
We start with a root nodexa andL(xa) = {〈C,≥, 0.3 + ε〉, 〈D,≤
, 0.3〉}. By applying rule(v) to nodexa, toC v D with, e.g.,n =
0.3+εwe get two branches, depending on the ‘choice ofE ∈ {〈C,≤
, 0.3+ε−ε〉, 〈D,≥, 0.3+ε〉}’. In the former case, we update the la-
belL(xa) withL(xa) = {〈C,≥, 0.3+ε〉, 〈D,≤, 0.3〉, 〈C,≤, 0.3〉}

which contains a clash, while in the latter case we update the label
L(xa) withL(xa) = {〈C,≥, 0.3+ε〉, 〈D,≤, 0.3〉, 〈D,≥, 0.3+ε〉}
which also contains a clash. No complete, clash-free forest can be
obtained, thus the algorithm answers with ‘inconsistent’.

Proposition 4 (Termination) For each fuzzyALC KB Σ, the tab-
leau algorithm terminates.

Proof: [Sketch] Termination is a result of the properties of the ex-
pansion rules, as in the classical case [8]. More precisely we have the
following observations. (i) The expansion rules never remove nodes
from the tree or concepts from node labels or change the edge la-
bels. (ii) Successors are only generated by the rules∃≥ and∀≤. For
any node and for each concept these rules are applied at-most once.
(iii) Since nodes are labelled with nonempty subsets ofsub(Σ), ob-
viously there is a finite number of possible labellings for a pair of
nodes. Thus, the condition of blocking will be applied in any path of
the tree and consequently any path will have a finite length. 2

Proposition 5 (Soundness)If the expansion rules can be applied to
an fuzzyALC KB Σ such that they yield a complete and clash-free
completion-forest, thenΣ has a fuzzy tableau forΣ.

Proof: [Sketch] LetF be a complete and clash-free completion-
forest constructed by the tableaux algorithm forΣ. A fuzzy tableau
T = (S,L, E ,V) can be defined as follows:

S = {x | x is a node inF , andx is not blocked},
L(x,⊥) = 0, for all x ∈ S,
L(x,>) = 1, for all x ∈ S,
L(x, C) = max[〈C,≥, ni〉], for all x in F not blocked,
L(x,¬A) = 1− L(x, A), for all x in F not blocked,

with 〈¬A,≥, n〉 ∈ L(x),
E(R, 〈x, y〉) = {max[〈R,≥, ni〉] |

1. y is anR≥ni
-successor ofx or

2.〈R,≥, ni〉 ∈ L(〈x, z〉) andy blocksz},
V(ai) = xi

0, wherexi
0 is a root node

wheremax returns the maximum degreen out of the set of triples of
the form〈A,≥, ni〉, or0 if no such triple exists. It can be shown that
T is a fuzzy tableau forΣ. 2



Proposition 6 (Completeness)Consider a fuzzyALC KB Σ. If Σ
has a fuzzy tableau, then the expansion rules can be applied in such
a way that the tableaux algorithm yields a complete and clash-free
completion-forest forΣ.

Proof: [Sketch] LetT = (S,L, E ,V) be a fuzzy tableau forΣ. Us-
ing T , we trigger the application of the expansion rules such that
they yield a completion-forestF that is both complete and clash-free.
Similarly to [8] we can define a mappingπ which maps nodes ofF
to elements ofS, and guide the application of the non-deterministic
rulesv, t≥ andu≤. Our method slightly differs from the one used
in crisp DLs [8] in the following way. Using the membership degree
of a node to a concept, found in the fuzzy tableau, we create artificial
triples that are tested against conjugation with the candidate triples
that the non-deterministic rule can insert in the completion-forest.
The triples that don’t cause a conjugation can be added. The modi-
fied rules, which are used to guide such an expansion, are presented
in Table 3. The modified rules together with the termination property
ensure the completeness of the algorithm. 2

Table 3. Thev′, t′≥ andu′≤ rules

(v′) if 1. C v D ∈ T , x is not indirectly blocked and
2. {〈C,≤, n− ε〉, 〈D,≥, n〉} ∩ L(x) = ∅ for n ∈ NA

then L(x) → L(x) ∪ {E} for someE ∈ {〈C,≤, n− ε〉,
〈D,≥, n〉}, not conjugated with〈C,≥,L(π(x), C)〉
or 〈D,≤,L(π(x), D)〉

(t′≥) if 1. 〈C1 t C2,≥, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1,≥, n〉, 〈C2,≥, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for someC ∈ {〈C1,≥, n〉,
〈C2,≥, n〉} not conjugated with〈C1,≤,L(π(x), C1)〉
or 〈C2,≤,L(π(x), C2)〉

(u′≤) if 1. 〈C1 u C2,≤, n〉 ∈ L(x), x is not indirectly blocked, and
2. {〈C1,≤, n〉, 〈C2,≤, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for someC ∈ {〈C1,≤, n〉,
〈C2,≤, n〉} not conjugated with〈C1,≥,L(π(x), C1)〉
or 〈C2,≥,L(π(x), C2)〉

4 CONCLUSIONS

Fuzzy DLs extend crisp DLs to deal with vague concepts. None of
the work on fuzzy DLs so far presented a correct and complete cal-
culus for cyclic TBoxes and general concept inclusions, which are
important features of current crisp DL systems. We overcome to this
limitation by providing a tableau for fuzzyALC with GCIs.

Major topics for future research are indeed the extension of the
fuzzy tableau algorithm to expressive DL languages such as fuzzy
SHIF(D) or SHOIN (D) [21] and the development of a sys-
tem supporting this language. In the former case, such algorithm
can be based directly on the ones presented for the fuzzySI and
SHIN DLs [14, 15] and the rules for nominals, forSHOIN [10]
and for fuzzySHOIN [16].
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