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Abstract. Emotions play a major role in human-to-human communication ena-
bling people to express themselves beyond the verbal domain. In recent years, 
important advances have been made in unimodal speech and video emotion 
analysis where facial expression information and prosodic audio features are 
treated independently. The need however to combine the two modalities in a 
naturalistic context, where adaptation to specific human characteristics and ex-
pressivity is required, and where single modalities alone cannot provide satis-
factory evidence, is clear. Appropriate neural network classifiers are proposed 
for multimodal emotion analysis in this paper, in an adaptive framework, which 
is able to activate retraining of each modality, whenever deterioration of the re-
spective performance is detected. Results are presented based on the IST 
HUMAINE NoE naturalistic database; both facial expression information and 
prosodic audio features are extracted from the same data and feature-based 
emotion analysis is performed through the proposed adaptive neural network 
methodology.  

1   INTRODUCTION 

Humans interact with each other in a multimodal manner to convey general messages; 
emphasis on certain parts of a message is given via speech and display of emotions by 
visual, vocal, and other physiological means, even instinctively. In the last decade 
much effort has been directed towards multimodal user interfaces that emulate human 
to human communication with the goal of enabling computer interfaces with means of 
natural, expressive and thus more intuitive ways of interaction. 

Typical examples of human communication vehicles include auditory channels that 
carry speech or paralinguistic intonation and visual channels that convey facial ex-
pressions or body movements. The related senses of sight and hearing are examples of 
modalities. Everyday face-to-face communication utilizes many and diverse channels 
and modalities, increasing the flexibility of a communication scheme. In these situa-
tions, failure of one channel is usually recovered by another channel; this kind of be-
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haviour should actually be considered as a model requirement for robust, natural and 
efficient multimodal HCI [12]. Therefore, the introduction of an emotion analysis 
system that can analyse intonation and visual cues, to help infer the likely emotional 
state of a specific user in real life environments, can enhance the affective nature [13] 
of MMI applications. Adaptive artificial neural network classifiers are proposed in 
this paper, which can treat both sound and vision cues for emotion analysis, can evalu-
ate their single or multi-modal performance and can adapt their knowledge, through 
on-line retraining, to real life changing environments.  

Probably the most important issue when designing and training artificial neural 
networks in real life applications is network generalization. Many significant results 
have been derived during the last few years regarding generalization of neural net-
works when tested outside their training environment. Examples include algorithms 
for adaptive creation of the network architecture during training, such as pruning or 
constructive techniques, modular and hierarchical networks, or theoretical aspects of 
network generalization, such as the VC dimension. Specific results and mathematical 
formulations regarding error bounds and overtraining issues have been obtained when 
considering cases with known probability distributions of the data. Despite, however, 
the achievements obtained, most real life applications do not obey some specific prob-
ability distribution and may significantly differ from one case to another mainly due to 
changes of their environment. That is why straightforward application of trained net-
works, to data outside the training set, is not always adequate for solving image recog-
nition, classification or detection problems, as is the case with (multimodal) emotion 
analysis. Instead, it would be desirable to have a mechanism, which would provide the 
network with the capability to automatically test its performance and be automatically 
retrained when its performance is not acceptable. The retraining algorithm should 
update the network weights taking into account both the former network knowledge 
and the knowledge extracted from the current input data.      

This paper presents an approach  for improving the performance of neural networks 
when handling real life multimodal emotion analysis, based on an automatic decision 
mechanism, which determines when network retraining should take place, and a re-
training - nonlinear programming - algorithm.  
     Section 2 formulates the retraining problem under investigation. Section 3 presents 
the retraining technique, while section 4 presents the decision mechanism for activat-
ing retraining. Section 5 presents the multimodal emotion recognition problem and the 
application of the afore-mentioned technologies to the problem, while section 6 sum-
marizes and provides conclusions on the capabilities of the proposed approach. 

 

 

 



2. FORMULATION OF THE PROBLEM 

Let us assume that we seek to classify, to one of, say, p available emotion classes ω,  
each input vector x i containing the features extracted by one or more input modalities. 
A neural network produces a p-dimensional output vector )( ixy   
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pω denotes the probability that the ith input belongs to the jth class.  

Let us first consider that a neural network has been initially trained to perform the 
previously described classification task using a specific training set, say, 
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denote the ith input training vector and the corresponding desired output vector con-
sisting of p elements. Let )( ixy  denote the network output when applied to the ith 
input outside the training set, corresponding to a new user, or to a change of the envi-
ronmental conditions; new network weights should be estimated in such cases.  

Let bw  include all weights of the network before retraining, and aw  the new 
weight vector which is obtained after retraining. A training set Sc  is assumed to be 
extracted from the current operational situation composed of, (one or more), say, mc  

inputs; ( ) ( ){ }
cc mmc dxdxS ,,,, 11 L=  where ix  and id  with cmi ,,2,1 L=  simi-

larly correspond to the ith input and desired output retraining data. The retraining 
algorithm that is activated, whenever such a need is detected, computes the new net-
work weights aw , minimizing the following error criterion with respect to weights, 
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where acE ,  is the error performed over training set cS  (“current” knowledge), 

afE , the corresponding error over training set bS  (“former” knowledge); )( ia xz  and 

)( ia xz ′  are the outputs of the retrained network, corresponding to input vectors ix  

and ix′  respectively, of the network consisting of  weights aw .  Similarly )( ib xz  

would represent the output of the network, consisting of weights bw , when accepting 

vector ix  at its input; when retraining the network for the first time )( ib xz  is identi-

cal to )( ixy .  Parameter η  is a weighting factor accounting for the significance of 

the current training set compared to the former one and 2⋅  denotes the L2 -norm.    



3. THE RETRAINING APPROACH 

The goal of the training procedure is to minimize (2) and estimate the new network 
weights wa , i.e., 0

aW  and wa
1  respectively. The adopted algorithm has been pro-

posed by the authors in [2].  Let us first assume that a small perturbation of the net-
work weights (before retraining) wb  is enough to achieve good classification per-
formance. Then,  
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where 0W∆ and 1w∆  are small increments. This assumption leads to an analytical 
and tractable solution for estimating aw , since it permits linearization of the non-
linear activation function of the neuron, using a first order Taylor series expansion.  

Equation (2) indicates that the new network weights are estimated taking into ac-
count both the current and the previous network knowledge. To stress, however, the 
importance of current training data in (2), one can replace the first term by the con-
straint that the actual network outputs are equal to the desired ones, that is  

  )( iia dxz = cc Smi in  data allfor ,,...,1 =                                            (4) 

Equation (4) indicates that the first term of (2), corresponding to error acE , , takes 
values close to zero, after estimating the new network weights.  

Through linearization, solution of (4) with respect to the weight increments is 
equivalent to a set of linear equations 
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where [ ]TTT www )()( 10 ∆∆=∆ , { }00 vec W∆=∆w , with { }0vec W∆  denoting a 

vector formed by stacking up all columns of 0W∆ ; vector c  and matrix A are ap-
propriately expressed in terms of the previous network weights. In particular,  
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expressing the difference between network outputs after and before retraining for all 
input vectors in cS . c  can be written as  
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Equation (6) is valid only when weight increments w∆  are small quantities. It can be 
shown [2] that, given a tolerated error value, proper bounds ϑ  and φ  can be com-
puted for the weight increments and input vector ix  in cS  



Let us assume that the network weights before retraining, i.e., bw , have been esti-
mated as an optimal solution over data of set bS . Furthermore, the weights after re-
training are considered to provide a minimal error over all data of the current set cS . 
Thus, minimization of the second term of (2), which expresses the effect of the new 
network weights over data set bS , can be considered as minimization of the absolute 
difference of the error over data in bS  with respect to the previous and the current 
network weights. This means that the weight increments are minimally modified, re-
sulting in the following error criterion   
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with bfE , defined similarly to afE , , with az  replaced by bz in (2). 
 
   It can be shown  [2] that (7) takes the form of     
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where the elements of matrix K are expressed in terms of the previous network 
weights bw  and  the training data in bS . The error function defined by (8) is convex 
since it is of squared form. The constraints include linear equalities and inequalities. 
Thus, the solution should satisfy the constraints and minimize the error function in (8). 
The gradient projection method is adopted to estimate the weight increments.  

Each time the decision mechanism ascertains that retraining is required, a new 
training set cS  is created, which represents the current condition. Then, new network 
weights are estimated taking into account both the current information (data in cS ) and 
the former knowledge (data in bS ). Since the set cS  has been optimized over the 
current condition, it cannot be considered suitable for following or future states of the 
environment. This is due to the fact that data obtained from future states of the envi-
ronment may be in conflict with data obtained from the current one. On the contrary, it 
is assumed that the training set bS , which is in general provided by a vendor, is able 
to roughly approximate the desired network performance at any state of the environ-
ment. Consequently, in every network retraining phase, a new training set cS  is cre-
ated and the previous one is discarded, while new weights are estimated based on the 
current set cS  and the old one bS , which remains constant throughout network op-
eration.  



4. DECISION MECHANISM FOR NETWORK RETRAINING   

The purpose of this mechanism is to detect when the output of the neural network 
classifier is not appropriate and consequently to activate the retraining algorithm at 
those time instances when a change of the environment occurs. 

Let us index images or video frames (similar definitions are used for speech sig-
nals) in time, denoting by ),( Nkx  the feature vector of the kth image or image frame, 
following the image at which the Nth network retraining occurred. Index k is therefore 
reset each time retraining takes place, with ),0( Nx  corresponding to the feature vec-
tor of the image where the Nth retraining of the network was accomplished.   Retrain-
ing of the network classifier is accomplished at time instances where its performance 
deteriorates, i.e., the current network output deviates from the desired one. Let us 
recall that vector c  expresses the difference between the desired and the actual net-
work outputs based on weights bw  and applied to the current data set cS . As a result, 
if the norm of vector c  increases, network performance deviates from the desired one 
and retraining should be applied. On the contrary, if vector c  takes small values, then 
no retraining is required. In the following we denote this vector as ),( Nkc  depending 
upon feature vector ),( Nkx .   

Let us assume that the Nth retraining phase of the network classifier has been com-
pleted. If the classifier is then applied to all instances ),0( Nx , including the ones 
used for retraining, it is expected to provide classification results of good quality. The 
difference between the output of the retrained network and of that produced by the 
initially trained classifier at feature vector ),0( Nx  constitutes an estimate of the level 
of improvement that can be achieved by the retraining procedure. Let us denote by 
e N( , )0  this difference and let ),( Nke  denote the difference between the corre-
sponding classification outputs, when the two networks are applied to the feature set 
of the kth image or image frame (or speech segment) following the Nth network re-
training phase. It is anticipated that the level of improvement expressed by 

),( Nke will be close to that of ),0( Ne  as long as the classification results are good. 
This will occur when input images are similar to the ones used during the retraining 
phase. An error ),( Nke , which is quite different from ),0( Ne , is generally due to a 

change of the environment. Thus, the quantity ),0(),(),( NeNkeNka −=  can be 
used for detecting the change of the environment or equivalently the time instances 
where retraining should occur. Thus, no retraining is needed if: 

( , )a k N T<                                                          (9)    
where T is a threshold which expresses the max tolerance, beyond which retraining is 
required for improving the network performance. In case of retraining, index k is reset 
to zero while index N is incremented by one.  

Such an approach detects with high accuracy the retraining time instances both in 
cases of abrupt and gradual changes of the operational environment since the compari-



son is performed between the current error difference ),( Nke  and the one obtained 
right after retraining, i.e., ),0( Ne . In an abrupt operational change, error ),( Nke  
will not be close to ),0( Ne ; consequently, ),( Nka  exceeds threshold T and retrain-
ing is activated. In case of a gradual change, error ),( Nke  will gradually deviate 
from ),0( Ne  so that the quantity ),( Nka  gradually increases and retraining is acti-
vated at the frame where TNka >),( .  

Network retraining can be instantaneously executed each time the system is put in 
operation by the user. Thus, the quantity )0,0(a  initially exceeds threshold T and 
retraining is forced to take place.  

5. APPLICATION TO MULTIMODAL EMOTION ANALYSIS 

5.1 How to combine modalities 

While evaluating the user’s emotional state, information on one modality can be used 
to disambiguate information on the other ones. Two obvious approaches exist of fus-
ing information from different cues: the first is to integrate information at the signal or 
feature level, whereas the second is to process information and make a decision inde-
pendently on each modality and finally fuse those decisions at semantic level.  

For the first strategy, namely fusion at the signal level, to be meaningful, two condi-
tions must be satisfied: first, modalities must have features that can be handled in a 
similar way and second the modalities must be synchronized. Such is the case in the 
combined speech and lip movement analysis. The obvious disadvantages of treating 
inputs on the signal level include the requirement of large amounts of training data, 
and the inability to combine the fusion process with possible knowledge about the 
internal mechanisms present in physical multimodal understanding.  

On the other hand, fusion on the decision level, can be applied to modalities which 
have different time scale characteristics; in this case timing in each modality can be 
different not only on the frequency of feature extraction but also on the time interval 
where each decision is valid. For example, an audio prosodic feature concerning some 
milliseconds of speech could reveal a specific emotional speaker disposition, while the 
presence of a facial expression could have to be detected for several seconds before it 
reveals a specific underlying emotion. Decision-level fusion offers several advantages 
over feature-level fusion. Firstly, each modality is treated independently therefore, 
they can be both separately trained and their integration does not require excessive 
computation. A disadvantage of this method is the fact that it does not support mutual 
disambiguation: using information from one modality to enhance or reject information 
coming from the other.  

In the current approach, a novel technique is proposed, based on the above de-
scribed adaptive neural network retraining detection. In particular, the proposed ap-
proach is applied separately, but synchronised, to the two modalities. The perform-



ance of each unimodal classifier is monitored through the decision mechanism of 
section 4. Whenever a deterioration of performance in one modality is detected, the 
other one, if still successful, is used to provide the desired outputs for retraining the 
modality where the problem occurred. The experimental study is presented next.   

5.2 The experimental study 

In this work, we analyzed naturalistic data from the EU IST HUMAINE Network of 
Excellence [5] naturalistic database. The database includes persons driven to real 
emotional discourse, being annotated in valence and activity terms by several experts. 
Both facial expression information in the form of MPEG-4 features [9], and prosodic 
audio features were extracted from the same data and feature-level classification was 
employed. Our main synchronization unit has been chosen to be audio tunes, i.e. for 
the video analysis MPEG-4 FAPs have been extracted on each video frames both at 
the location of tunes and at the location of silence between tunes (a tune being the 
portion of the pitch contour that lies between two audio pause boundaries) [11,14]. 
We observed that in the majority of the cases from a subjective point of view, a tune 
defined with audio pauses of at least 150 ms seems to be a good segmentation at the 
sentence level.  

Regarding training, testing and performance evaluation of automatic recognizers of 
multimodal data, a frequent problem is the absence of labelling on separate modalities. 
The work here is really at its infancy: there are only one or two annotated naturalistic 
databases, and those have not been annotated separately on each modality, i.e. having 
human experts produce an emotional annotation by watching only one modality at a 
time. Moreover, there is the question of the labelling synchronization: when dealing 
with tune segments, is it proper to reduce continuous labeling to tune labeling instead 
of first defining tunes and then labeling them? 

5.3   Extraction of Visual Features 

At first face detection is performed using nonparametric discriminant analysis with a 
Support Vector Machine (SVM) [6], which classifies face and non-face areas by re-
ducing the training problem dimension to a fraction of the original with negligible loss 
of classification performance. The face detection step provides us with a rectangle 
head boundary which includes the whole face area. The latter is segmented roughly 
using static anthropometric rules [1] into three overlapping rectangle regions of inter-
est which include both facial features and facial background; these three feature-
candidate areas include the left eye/eyebrow, the right eye/eyebrow and the mouth. 
Continuing, we utilize these areas to initialize the feature extraction process. Facial 
feature extraction performance depends on head pose, thus head pose needs to be 
detected and the head restored in the upright position; in this work we are mainly 
concerned with roll rotation, since it is the most frequent rotation encountered in real 
life video sequences.  



Head pose is estimated through the detection of the left and right eyes in the corre-
sponding eye candidate areas. After locating the eyes, we can estimate head roll rota-
tion by calculating the angle between the horizontal plane and the line defined by the 
eye centers. For eye localization we propose an efficient technique using a feed-
forward back propagation neural network with a sigmoidal activation function. The 
multi-layer perceptron (MLP) we adopted employs Marquardt-Levenberg learning [8] 
while the optimal architecture obtained through pruning has two 20 node hidden lay-
ers and 13 inputs.  

We apply the network separately on the left and right eye-candidate face regions. 
For each pixel in these regions the 13 inputs to the neural network are the luminance 
Y, the Cr & Cb chrominance values and the 10 most important DCT coefficients (with 
zigzag selection) of the neighboring 8x8 pixel area. The MLP has two outputs, one for 
each class, namely eye and non-eye, and it has been trained with more than 100 hand-
made eye masks that depict eye and non-eye area in random frames from the ERMIS 
and HUMAINE [5] databases, in images of diverse quality, resolution and lighting 
conditions. 

Eyes are located with the aid of the aforementioned network while this information 
is also combined with other feature detectors in a fusion process, to create facial fea-
ture masks, i.e. binary maps indicating the position and extent of each facial feature. 
The left, right, top and bottom–most coordinates of the eye and mouth masks, the left, 
right and top coordinates of the eyebrow masks as well as the nose coordinates, are 
used to define the considered feature points (FPs).  

For the nose and each of the eyebrows, a single mask is created. On the other hand, 
since the detection of eyes and mouth can be problematic in low-quality images, a 
variety of methods is used each resulting in a different mask. In total, we have four 
masks for each eye and three for the mouth. These masks have to be calculated in 
near-real time, thus avoiding utilizing complex or time-consuming feature extractors. 
The use of the afore-mentioned neural network greatly serves this scope. The feature 
extractors developed for this work are described in [4]. 

 

 
  (a) 

 
(b) 

 
(c) 

Fig. 1. (a) original frame, (b) final mask for the eyes, (c) detected feature points from the mask 

Eyebrows are detected with a procedure involving morphological edge detection 
and feature selection using data from [1]. Nose detection is based on nostril localiza-
tion. Nostrils are easy to detect due to their low intensity. Connected objects (i.e. nos-
tril candidates) are labeled based on their vertical proximity to the left or right eye, 
and the best pair is selected according to its position, luminance and geometrical con-
straints from [1].  



Since, as was already mentioned, the detection of a mask using the applied methods 
can be problematic, all detected masks have to be validated against a set of criteria. 
Each one of the criteria examines the masks in order to decide whether they have 
acceptable size and position for the feature they represent. This set of criteria consists 
of relative anthropometric measurements, such as the relation of the eye and eyebrow 
vertical positions, which when applied to the corresponding masks produce a value in 
the range [0,1] with zero denoting a totally invalid mask. More information about the 
used expression profiles can be found in [9].  

5.4 Extraction of Audio Features 

The features used in this work are exclusively based on prosodic features. We con-
sider here features related to pitch and rhythm. All information related to emotion that 
one can extract from pitch is probably not only in these features, but the motivation of 
this approach is in the desire to develop and use a higher level of speech prosody 
analysis than the usual pitch features used in previous studies.  

We analyzed each tune with a method employing prosodic representation based on 
perception called 'Prosogram'. Prosogram is based on a stylization of the fundamental 
frequency data (contour) for vocalic (or syllabic) nuclei. It gives globally for each 
voiced nucleus a pitch and a length. According to a 'glissando threshold' in some cases 
we don’t get a fixed pitch but one or more lines to define the evolution of pitch for this 
nucleus. This representation is in a way similar to the 'piano roll' representation used 
in music sequencers. This method, based on the Praat environment, offers the possibil-
ity of automatic segmentation based both on voiced part and energy maxima. From 
this model/representation stylization we extracted several types of features: pitch in-
terval based features, nucleus length features and distances between nuclei. 

In musical theory, ordered pitch interval is the distance in semitones between two 
pitches upwards or downwards. For instance, the interval from C to G upward is 7, but 
the interval from G to C downwards is −7. Using integer notation (and eventually 
modulo 12) ordered pitch interval, ip, may be defined, for any two pitches x and y, as:  

 
,

,

ip y x x y

ip x y y x

= −

= −
  (1) 

In this study we considered pitch intervals between successive voiced nuclei. For 
any two pitches x and y, where x precedes y, we calculate the interval ,ip x y y x= − , 
then deduce the following features. 

For each tune, feature (f1) is the minimum of all the successive intervals in the 
tune. In a similar way, we extract the maximum (f2), the range (absolute difference 
between minimum and maximum) (f3), of all the successive intervals in each tune. 
Using the same measure, we also deduce the number of positive intervals (f4) and the 
number of negative intervals (f5). Using the absolute value, a measure equivalent to 
the unordered pitch interval in music theory, we deduce a series of similar features: 
minimum (f6), maximum (f7), mean (f8) and range (f9) of the pitch interval. Another 
series of features is also deduced from the ratio between successive intervals, here 



again maximum (f10), minimum (f11), mean (f12) and range (f13) of these ratios give 
the related features. In addition to the aforementioned features, the usual pitch features 
have also been used such as fundamental frequency minimum (f14), maximum (f15), 
mean (f16) and range (f17). The global slope of the pitch curve (f18), using linear 
regression, has also been added. 

As was previously said, each segment (voiced “nucleus” if it is voiced) of this rep-
resentation has a length, and this has also been used in each tune to extract features 
related to rhythm. These features are, as previously, maximum (f19), minimum (f20), 
mean (f21) and range (f22). Distances between segments have also been used as fea-
tures and the four last features we used are maximum (f23), minimum (f24), mean 
(f25) and range (f26) of these distances. 

5.6  Adaptive Multimodal Emotion Analysis 

In our study, we tested the proposed neural-network-based adaptive classification, 
evaluation and retraining procedure on the multimodal data sets that were described 
above. More than 100 tunes of speech and 1000 video frames showing four personali-
ties reacting to an emotion provoking environment named SAL (Sensitive Artificial 
Listener) developed in the framework of the IST NoE Humaine. The goal was to clas-
sify each instant of visual and speech input to one of the quadrants of the emotional 
wheel, which measures emotion based on a 2-D representation, where dimensions 
correspond to activation and evaluation of interaction.  

While the basic classification rates for each input modality (speech, face) were 
close to 67%, by implementing the retraining procedure, whenever a change of per-
sonality or a lower performance measure was detected, and relying on the cues pro-
vided by both modalities, the classification rate was raised to 79%, which illustrates 
the ability of the proposed method to take advantage of multimodal analysis for im-
proving the obtained results in emotion analysis and classification problems. 

6   CONCLUSIONS 

A novel neural network on line retraining procedure has been proposed in this paper, 
which is appropriate for real life analysis of multimedia applications. Illustration of 
the method’s ability to achieve multimodal emotion recognition is given in this paper 
using naturalistic audio and visual data, created in the HUMAINE IST Network of 
Excellence (2004-2008). The proposed approach is based on neural network architec-
tures which examine each input modality, monitoring the performance of the classifi-
cation operation and provide a measure of confidence on the achieved accuracy. 
Whenever this measure gets unacceptable, an efficient on-line retraining of the net-
work knowledge takes place, using the gradient projection method and combining 
input from all modalities under investigation.  Extensive studies are currently under 
implementation, for further evaluation of the method capabilities.  
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