Recursive 3D Reconstruction under Orthography using Kalman Filtering
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ABSTRACT

In modern technological applications, machines
that operate in three-dimensional environments
have become extremely popular. Sophisticated
systems, with the ability to extract the structure
and motion of objects on the basis of certain 3D
and/or 2D features, have resulted to a substan-
tially new set of tasks; including, among others,
3D reconstruction and modeling.

The recovery of 3D motion and structure, or
the Structure From Motion problem (SFM), has
been tackled by several authors, however the ob-
tained results are reported to suffer from noise.
In this work, we investigate the improvement of
depth estimates on the basis of multiple frames
using a Kalman filter under orthography. Sim-
ulation results exhibit the efficiency of the pro-
posed approach.

1. INTRODUCTION

The Structure From Motion problem emerges
in several modern applications, as well as re-
search fields, such as 3D modeling, video coding
and compression. The problem has been tackled
by several authors on the basis of different 2D
features (input measurements), including lines,
curves or points, with the latter being the most
popular.

In both the case of orthographic and perspec-
tive projection, exact theoretical solutions to the
SFM problem have been proposed for example
in [1] and [2] respectively. Solutions in the pres-
ence of noisy point correspondences have been
proposed as well, for both cases [3, 4], yielding
relatively accurate 3D motion estimates. How-
ever, due to the inevitable noise in motion vec-
tors, 3D structure estimates are of rather low
quality. For the improvement of 3D structure, a
common approach is the utilization of as many
as possible frames from the available sequence.
For the orthographic case, a solution is proposed
in [5], based on the singular value decomposition

of a large matrix, containing all employed point
correspondences over the employed frames.

As reported in [6], the Kalman filter and the
extended Kalman filter (EKF) theory has been
employed for the estimation of both motion and
structure of rigid objects from multiple frames.
Such a solution can be found in [7], where an
iterative extended Kalman filter (IEKF) is in-
troduced for the perspective case. In this work,
an appropriate Kalman filter 1s constructed for
the estimation of 3D structure under orthogra-
phy given the 3D motion parameters extracted
by the algorithm presented in [3]. For improved
estimation of motion parameters, the guidelines
presented in [8] were adopted.

The employed Kalman filter is proved to yield
particular improved results for increasing num-
ber of available frames (and 2D motion esti-
mates). Simulation results will be included to
verify the accuracy of the obtained estimates.

2. BACKGROUND

2.1. 3D motion model

The extraction of 3D motion under orthogra-
phy is performed using the algorithm presented
in [8], which is proved to yield relatively accu-
rate estimates of the rotation matrix R and the
translation vector T for each transition between
frames. In this sense, we will hereon assume
that R 1s known and T is also available within
a noise component.

Yet, the three dimensional scene’s structure
can’t be recovered within a satisfactory degree of
accuracy, despite knowledge of rotation parame-
ters. In fact, the latter is rather expected, since
structure depends not only on rotation param-
eters, but also on the available noisy 2D point
correspondences, as it can be seen in the fol-
lowing equation when point (z,y, z) moves to



(z',y,2") in 3D space,
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2.2. Kalman filter formalism

A discrete time Kalman filter is expressed by a
simple iteration, if the system’s state equations
have the proper formulation [9]. In particular,
let x(k + 1) denote the state variable vector at
time k4 1. Then, its dependency on its previous
value x(k) and the random noise vector w(k) is
supposed to be given by:

x(k+1)=F(k)x(k)+G(k)w(k)+T(k)u(k) (2)

while the measurements vector q(k) is expressed
as

a(k) = HT (k)x(k) + v(k) , (3)

where v(k) denotes the additive noise vector to
q(k), u(k) is a known input sequence and F(k),
G(k), T'(k) and H(k) are appropriately defined
matrices w.r.t. the model.

Given these matrices, x(k+ 1) is obtained in
terms of the well-known Kalman filter equations
[9]. Naturally, an initialization is necessary for
the state’s first estimate x(k,), and since this
initial value cannot be exact, for its mean value
E, = E(x(k,)) and variance P, = P(x(k,)) as
well. In addition, the measurement noise v(k)
i1s considered as zero mean, while the variance
matrices for all the random quantities, i.e. the
noise w(k) and v(k), as well as the inexact ini-
tial value x,, are considered to be known.

In fact, these quantities are treated as tuning
parameters, to be set by the filter’s designer for
optimal results. In the proposed model, as it will
be shown in Section 4, the obtained estimates
appeared considerably robust to changes in the
initial values.

3. DERIVING EQUATIONS FOR 3D
STRUCTURE RECOVERY

In the 3D reconstruction problem, the unknown
state variable to be estimated is the 3D position
of all given points on the rigid object. The latter
is estimated w.r.t. to a reference frame (corre-
sponding to a reference scene), for example the
first available frame. It can be then seen, that
depth in all available frames is estimated from
equation (1).

Using equation (1) for all given transitions,
two equations corresponding to (2) and (3) are
obtained. In the proposed algorithm, we choose

vector zg, containing the 3D depth positions of
a given set of points in the k-th scene, to be
the state vector. Hereon, we will consider for
simplicity the 3D position of one single point
zi, without loss of generality. Let R(k), T(k)
denote the rotation and translation matrices re-
spectively for the transition from frame 0 to
frame k (transition 0 — k). Let also (g, yx)
denote the 2D position in the k-th frame of
the particular point ((zg, yo) in the reference 0-
th frame). We define the following decomposi-
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vector containing the first two components of T
and T3 the third.

Then, matrix equation (1) for transition (0 —
k) can be analyzed into:

[z:] — Ros(k) [f/g] +ri(k) z0 + Tia(k) (4)

and
2 = 10 (k) [zg] +raz(k) zo + T5(k) . (5)

On the basis of (4), (5) and another two sim-
ilar equations for transition (0 — k + 1), after
some manipulations, we obtain the Kalman fil-
ter model, eqs (2) and (3), for
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Using the proposed model, a solution for zg
is provided by the Kalman filter equations. In
addition, an estimate for depth zp in the ref-
erence scene is obtained through equation (5).
Depth for all points in the k-th and the refer-
ence scene is obtained by direct expansion of (4)
and (5), in the sense that the state vector zy is
of length equal to the number of points.

An initial value for each point’s depth is ob-
tained from transitions (0 — 1) and (1 — 2), on
the basis of the estimated motion parameters



(using [8]) and the corresponding noisy 2D mo-
tion vectors. Since this initial value is not exact,
it bears a degree of uncertainty that is expressed
by variance P,, which in turn is set by the filter’s
designer. The random noise w(k) of eq. (2) and
the measurement noise v(k) of eq. (3) are sup-
posed to have known statistical properties, i.e.
mean value and covariance matrix. Their co-
variance matrices can be defined by the filter’s
designer to be as close to the actual ones as pos-
sible, since then the Kalman filter will be more
efficient.Based on the above system equations,
initial values and noise properties, the Kalman
filter performs a recursive estimation process of
depth zg for each point.

Figure 1: Synthetic model of moving teapot
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Figure 2: Noise-free motion field
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Figure 3: Noise-contaminated motion field

4. SIMULATIONS

The performance of the proposed filter was tested
over a large number of synthetic models, such as
the moving teapot depicted in Figure 1. The em-
ployed synthetic models were subjected to sub-
sequent rotations and translations in order to
produce arbitrary successive 3D scenes and re-
spective 2D frames. The corresponding motion
fields were artificially noise-contaminated with
zero-mean 1.1.d. noise of various SNR levels.

The obtained noise-contaminated motion fields
were next given as input to the 3D motion es-
timation algorithm in order to obtain motion
parameters for each transition. Motion param-
eters along with the noisy motion fields were in
turn fed to the Kalman filter and improvement
in depth estimates was verified. In Figures 2
and 3, a noise-free motion field and its noise-
contaminated counterpart respectively are de-
picted for the teapot model.

Figure 4 depicts the improvement in 3D depth
for all employed points on the teapot for increas-
ing number of frames. Mean estimates of the
mean squared error (MSE), between estimated
and true depth for all points were calculated on
the basis of 50 Monte Carlo runs. It must be no-
ticed, that since absolute depth cannot be deter-
mined under orthography, the object’s barycen-
tre was set to coincide with the world origin be-
fore calculating MSE factors. In Figures 5, 6
and 7, the obtained depth in the reference scene
(0-scene) is depicted for all points for 5, 20 and
40 frames respectively. All three figures should
be compared to the true ’visible’ portion of the
teapot utilized (Figure 8).

The number of frames required for a (vi-
sually) satisfactory reconstruction varied along
with the induced noice, the error in initial con-
ditions (noise mean value and covariance) and
the particular model. In all cases examined, 20-
40 frames were sufficient. In fact, the proposed
approach proved to be robust to errors in initial
conditions, since the performance of the filter
was little affected by even large arbitrary errors.

5. CONCLUSIONS

In this work, a Kalman filter is designed for im-
proved 3D reconstruction results on the basis
of multiple frames. Kalman filtering has been
widely utilized in 3D reconstruction in the case
of perspective projections attempting to imme-
diately estimate motion and structure. The pro-
posed approach employs an existing algorithm
for the estimation of motion parameters under
orthography and proposes a filter for the im-
provement of depth estimates. The algorithm
appears to perform well in a large number of
simulated experiments. The prospect of incor-
porating the filter in a motion and structure es-
timation system from natural sequences is cur-
rently under consideration.
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