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Abstract

The RuleML initiative defines a normalized markup for ex-
pressing and exchange rules in the Semantic Web. However, the
syntax of the language is still limited and lacks features for rep-
resenting rule-based languages capable of handling uncertainty.
It is desirable to have a general extension of RuleML which ac-
commodates major existing languages proposed in the latest two
decades. The main contribution of the paper is to propose such
a general extension, showing how to encode many of the existing
languages in this extension. We hope this work can also provide
some insights on how to cover uncertainty in the RIF framework.

1 Introduction

Rules in the Web have become a mainstream topic these
days. On the one hand, inference rules can be marked up for
e-applications, such as e-commerce and e-science; on the
other hand, transformation can be used for document gen-
erations and ontology reuse. Recently, rule interchange has
been widely considered as an important issue - the World
Wide Web Consortium (W3C) has set up a Rule Interchange
Format (RIF) Working Group to tackle this issue.

Representing and handling uncertainty has always been a
fundamental issue in Knowledge Representation and Artifi-
cial Intelligence. This research effort resulted in a plethora
of formalisms with different motivation and applications.
For example, the size as well as the dynamic aspect of the
Web indicate the usefulness of rules handling uncertainty

∗This research has been partially funded by European Commission
and by the Swiss Federal Office for Education and Science within the
6th Framework Programme projects REWERSE (IST-2004-506779) and
Knowledge Web (IST-2004-507842).

information. Indeed, the charter of the RIF Working Group
requires an extensible format to handle uncertainty rules.

The RuleML initiative is probably the earliest effort that
defines a normalized markup for expressing and exchang-
ing rules in the Semantic Web. It is a modular markup lan-
guage designed for expressing knowledge bases in XML
and XML/RDF. Currently, RuleML has syntactic mecha-
nisms for encompassing a series of rule languages, rang-
ing from Datalog to HILOG. However, the support for rep-
resenting and associating uncertainty to rules and facts is
rather limited. In particular, the current framework lacks
a general mechanism to accommodate major existing lan-
guages proposed in the latest two decades.

The main purpose of the paper is to propose such a gen-
eral extension of uncertainty rules for RuleML. On the syn-
tax aspect, it is adopted the existing markup. On the se-
mantic aspect, we try to be as general as possible, and to
cover several categories of general mechanisms, in which
languages can be parameterized by the user in order to con-
vey specific semantic information. Different illustrative rule
languages are briefly presented and aligned with the pro-
posed syntax, in order to discuss the pros and cons of the
several alternatives. We hope this work can also provide
some insights on how to cover uncertainty in the RIF frame-
work.

The rest of the paper is organised as follows. The next
section briefly presents an illustrative set of uncertainty
rule languages. Section 3 proposes a general extension of
RuleML to accommodate these uncertainty rule languages.
Such an extension is used in Section 4 to illustrate the en-
coding of the previous languages. Section 5 discusses de-
fault interpretation of connectives in our uncertainty ex-
tension of RuleML, and Section 6 concludes the paper by
briefly analysing the encodings and summarising the alter-
natives.
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2 Some Existing Uncertainty Rule Lan-
guages

The literature in Logic Programming contains a spate
of semantics and languages for handling uncertainty; we
call them uncertainty rule languages. One of the first well
known related languages is Van Emden’s quantitative de-
duction rules [34], which are an extension of Horn clauses
with an “attenuation factor”:

A ← q −B1& . . . &Bn, n ≥ 0 (1)

A quantitative deduction rule(1) is formed by atomsA and
B1 . . . Bn, and the attenuation factorq, a real number in the
interval (0, 1]. Truth-values of atoms are interpreted in the
closed unit interval[0, 1]. A ground quantitative deduction
rule is true in an interpretation I iffI(A) ≥ q×min{I(Bi) |
i ∈ {1, . . . , n}}.

In what follows, we briefly present some cate-
gories (namely, implication-based, annotation-based and
probabilistic-based) of uncertainty rule languages, in order
to illustrate the existing diversity of proposals and syntac-
tical constructs. Interestingly, some of the following lan-
guages actually generalise Van Emden’s quantitative deduc-
tion rules. Note that, however, the section is not intended to
be an exhaustive survey of such languages, which will be
considered in a forthcoming publication.

2.1 Implication-based Approaches

Implication-based approaches usually depart from a
many-valued logic and associate truth-values, weights or
degrees to rules and facts. Normally the underlying logic
is truth-functional.

2.1.1 Fuzzy Logic Program

A typical implication-based language is Vojtá̌s and
Pauĺık [37]’s fuzzy logic programming. It is a general-
ization of definite logic programming, where programs are
constructed from an implication connective (say←1), with
corresponding t-norm adjunction (resp.⊗1), and another t-
norm operator denoted by⊗2. A t-norm is a generalization
to the many-valued setting of the conjunction connective.
In their setting, a fuzzy rule is of the form:

A ←1 B1 ⊗2 . . .⊗2 Bn with-cf q (2)

where a rational numberq in [0,1] expresses a confidence
factor, andA andB1, . . .Bn are atoms with truth-value in
the unit interval[0, 1]. van Emden’s quantitative deduction
rules [34] can be seen as a special form of fuzzy rules, where
←1 is Goguen implication, with⊗1 as its adjunction (prod-
uct), and⊗2 is Gödel t-norm (minimum). Note that the

restriction to the carrier[0, 1] is not essential and was lifted
in [9], continuing the initial work of Vojt́ǎs and Paulı́k.

2.1.2 Possibilistic Logic Program

Possibilistic Logic Programs [13] can be seen as a special
form of fuzzy logic programs. Apossibilistic logic program
is a finite set of (first-order) possibilistic Horn clauses anno-
tated only with necessity degrees of the following form:

A ← B1 ∧ . . . ∧Bn (Nα) (3)

where A,B1, . . . , Bn are propositional symbols and(Nα)
is the necessity degree of the clause with0 ≤ α ≤ 1. Possi-
bilistic Logic Programming [13] and Ordinary Probabilistic
Logic Programs [23] are all particular instances of Quanti-
tative Deduction; thus they can also be captured by Fuzzy
Logic Programming. For instance, the embedding of Pos-
sibilistic Logic Programming is straightforward where the
underlying implication and conjunctor are the correspond-
ing Gödel’s connectives.

2.1.3 f-SWRL

Another implication-based language is the recently pro-
posed f-SWRL language [28]. f-SWRL provides OWL
DL [25] axioms (but with fuzzy interpretation) as well as
fuzzy rule axioms of the following form:

A ∗ w ← B1 ∗ w1 ∧ . . . ∧Bn ∗ wn (4)

where A,B1, . . . , Bn are either concepts (unary predicates)
or properties (binary predicates) used in OWL DL axioms,
and the weightsw1, . . . wn andw are real numbers in the
unit interval. f-SWRL provides a framework to accommo-
date different operations (such as fuzzy intersection, union,
negation, implication as well as weight operations) as long
as they conform to the key constraints of f-SWRL, such as
that the degree of fuzzy implication should be no less than
the weight of the head, and that fuzzy assertions are spe-
cial forms of fuzzy rule axioms, which requires allowing the
consequent to be a constant. As f-SWRL knowledge bases
also contains fuzzy concept and role axioms from fuzzy
OWL, they are not special forms of Vojtá̌s and Paulı́k [37]’s
fuzzy logic programs, nor are they special forms of the an-
notated logic programs to be introduced below.

2.2 Annotation-based Approaches

In annotation-based approaches, rules keep a classical
interpretation while uncertainty is associated with atoms,
not with the implication. Generalized Annotated Logic Pro-
gramms (GAPs) is the fundamental formalism [18] in this
approach. Annotated rules are of the form:

A : f(µ1, . . . , µn) ← B1 : µ1 & . . . & Bn : µn (5)
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whereµ1, . . . , µn are either annotation constants or anno-
tation variables andf is a total, continuous and computable
function. The intuitive reading of annotated rules is if
B1 º µ1, . . . , Bn º µn thenA º f(µ1, . . . , µn). An-
notations denote elements in such given upper-semilattice,
used as underlying truth-value space, whereº is the cor-
responding order. Note that annotation variables cannot be
used as object variables in the atoms, and vice-versa. Van
Emden’s quantitative deduction rules can be represented as
annotated rules of the following forms:

A : q ×min(µ1, . . . , µn) ← B1 : µ1 & . . . & Bn : µn,

whereµ1, . . . , µn are annotation variables.
Other annotation-based approaches include, e.g., Signed

Formula Logic Programming (SFLP) [22], which theoreti-
cally has the same expressive power as GAPs [22].

2.3 Probabilistic-based Approaches

A third kind of approach of uncertain rule languages is
based on probability theory. These are the most complex
languages since the underlying connectives are not truth-
functional, requiring complex definitions and approaches.

2.3.1 Hybrid Probability Logic Program

Hybrid Probabilistic Logic Program [12] are an adapta-
tion of Generalized Annotated Logic Programs to deal with
probabilistic reasoning, but with a different semantics. In
this approach, the notion of probabilistic strategy is intro-
duced because there is no single “formula” for computing
the probability of a complex event (e1 ∧ e2) wheree1 and
e2 are primitive events [12]. Due to the limitation of space,
we refer the reader to [12] for more details about probabilis-
tic strategies.

A Hybrid Probabilistic Logic Program over the setS of
probabilistic-strategies is a finite set of hp-rules of the form:

F0 : µ0 ← F1 : µ1 ∧ . . . ∧ Fk : µk (6)

where eachFi : µi is an hp-annotated basic formula overS.
Intuitively, an hp-rule means that “if the probability ofF1

falls in the intervalµ1 and . . . and the probability ofFk falls
within the intervalµk, then the probability ofF0 lies in the
intervalµ0”. The Fis are designated hybrid basic formulas
and are either applications of conjunctive (Bi

1∧s . . .∧sBi
ni

)
or disjunctive strategies (Bi

1 ∨s . . . ∨s Bi
ni

) to finite sets of
distinct atoms (Bi

1, . . . , B
i
ni

), encoding complex events. In-
tervals are pairs[c1, c2] of reals numbers in the unit interval.
Hybrid Probabilistic Logic Programs have been further gen-
eralized to capture temporal aspects in real-world applica-
tions [11], in particular annotations are more complex since
they contain a time dimension.

2.3.2 Bayesian logic program

Finally, we consider Bayesian logic programs [17] which
consist of a (finite) set of Bayesian rules of the form:

A | B1, . . . , Bn, n ≥ 0 (7)

The distinctive feature of Bayesian Logic Programs is that
for each clausec there is exactly one conditional probabil-
ity distributioncpd(c), and for each Bayesian predicatep/l
there is exactly one combining rulecr(p/l). It is usually
assumed thatcpd(c) is represented as a table; other possi-
ble representations are decision trees and rules! The distri-
bution cpd(c) generically represents the conditional prob-
ability distributions associated with each ground instance
of the corresponding clause, while the combining rule ex-
presses how the different probability distributions of clauses
for a given predicate are combined; an often used combin-
ing rule is noisy-or. Bayesian networks are a particular case
of Bayesian Logic Programs.

Other probabilistic-based approaches include Probabilis-
tic programs [19], Stochastic Logic Programs [6], etc.

3 A General Uncertainty Extension

In this section, we propose a fuzzy extension of RuleML
which attains the following “conflicting” objectives:

• to extend RuleML with a basic and modular set of con-
structs;

• to be general enough to accommodate main existing
rule-based languages dealing with uncertainty;

• to be natural and easy usable by the user;

• to adopt language defaults that are transparent and rea-
sonable to the user;

The existing RuleML 0.9 version already provides the at-
tribute@weight in element<slot> . Attribute@weight
is used to express a slot relative weight with respect to its
siblings, and has been applied to encode in RuleML node-
labeled, arc-labeled, weight-labeled trees [3]. This rele-
vance measure is used in [3] to define semantic matching
between trees, and usually these weights are normalized
real numbers in the unit interval[0, 1]. In this paper we
ignore this important issue of similarity and ranking, and
possible extensions, which should be incorporated in a full-
fledged Fuzzy RuleML framework in particular to represent
and reason with fuzzy data. Some proposals already support
these notions, like the ones described in [2, 29, 5].

More interesting for our objectives is the element
<degree> , a child of element<Atom> and<Equal> in
RuleML 0.9. This was originally intended to represent “an
optional truth value (between0 and1) that may be assigned
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to facts and rules,” as proposed in [30]. Also important,
RuleML 0.9 defines the attribute@kind which is allowed
in solely in the<Implies> element, for choosing between
first-order and logic programming rules. The original ter-
minology of RuleML is adopted and adapted to achieve the
design goals of our uncertainty extension.

From an attentive analysis of the literature, and in par-
ticular of from the previous set of languages, it can be con-
cluded that are some common features:

• most of the languages use implication symbols to rep-
resent rules;

• most of the languages, except annotated ones, attach to
rules confidence degrees, probabilities, weights, con-
ditional probability tables, etc. . . ;

• to different languages usually correspond different
types of implication, conjunction and disjunction op-
erators in the rules, some of them even allow different
operators in the same rule base;

• some languages permit combination of complex for-
mula in the body and in the head of rules, which sur-
pass the simple conjunctions and disjunctions;

• annotation-based languages attach complex annota-
tions to atoms, and even to formulae;

• some languages use parameters to specify the be-
haviour of rules;

• some languages adopt general truth-values structures,
namely lattices and residuated lattices.

In order to achieve the objectives stated at the beginning of
this section, our concrete proposal consists in extending the
RuleML 0.9 by:

• adding @mapKind to performatives <Assert> ,
<Query> and<Protect> .

• permitting the use of@kind in <Atom> , besides in
<Implies> , as well as in any other RuleML con-
nective<Equivalent> , <Integrity> , <And>,
<Or> , <Neg>, and<Naf> .

• the optional element<degree> is allowed in the pre-
vious RuleML connectives.

The @kind attribute is used to specify semantic informa-
tion regarding the construct (e.g. t-norm or implication
used). The attribute@mapKind in the performatives ex-
presses the (default) value of the@kind attribute of the
performative child element(s); this is a technique adopted in
RuleML designatedattribute mapping. This simplifies writ-
ing of rule bases, without requiring repetitive declarations
of the intended interpretation of connectives. In order to

Assert
attributes: @mapDirection, @mapClosure,@mapKind
content: ( oid?, (formula)* )

Query
attributes: @closure,@mapKind
content: ( oid?, (formula)* )

Protect
attributes: @closure, @mapDirection, @mapClosure,

@mapKind
content: ( oid?, (warden)+, (formula)* )

@mapKind
[optional] (default:fo| lp | list to be completed)

Figure 1. Content Models for Performatives

associate weights, annotation, or probability, or truth-value
associated with complex formula, the element<degree>
is used. These amendments have a reduced impact in the
RuleML language, and is downward compatible with the
existing syntax. For the sake of completeness, the abstract
syntax is presented in Figures 1 and 2, in the style of [16].
We prefer to use the normalized striped syntax, and there-
fore ignoring stripe skipping in the content models. The
differences to RuleML 0.9 are marked in bold in the fig-
ures. Notice that some of RuleML elements are context de-
pendant, and the reader is referred to [16] for the allowed
combinations. Concrete fragments of XML markup can be
found in the examples of next section.

An implicit and major design decision regards the syn-
tactic coexistence of annotation and implication based ap-
proaches. Annotated atoms are captured by the new at-
tribute@kind in the<Atom> element:

<Atom kind="gap">
<degree>

<Data xsi:type="xsd:decimal">0.5</Data>
</degree>
<op><Rel>prop</Rel></op>

</Atom>

Notice also the use of element<degree> to associate
the corresponding annotation. Notice that this annotation
might also be a variable or a complex annotation (only in
head of rules). Similarly, signed formula logic program-
ming [4] can be encoded in our uncertainty extension, but
where degrees are sets of constants or even complex propo-
sitional formula. In order to be able to handle the more com-
plex languages like Hybrid Probabilistic Logic Programs,
the attributekind and element<degree> are allowed in
arbitrary formula. It should also be mentioned, that anno-
tated atoms can always be understood as the implication

<Implies kind="zadeh">
<head>
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Atom
attributes: @closure,@kind
content: (oid)?, degree?, op, (slot)*, (arg)+, (slot)*

Implies
attributes: @closure, @direction, @kind
content: ( oid?,degree?, (( head, body)| ( body, head) ))

Integrity
attributes: @closure, @direction,@kind
content: ( oid?,degree?, formula)

Equivalent
attributes: @closure,@kind
content: ( oid?,degree?, torso, torso )

And, Or
attributes: @kind (@closure within Query only)
content: ( oid?,degree?, (formula)* )

Naf
attributes: @kind
content: ( oid?,degree?, weak )

Neg
attributes: @kind
content: ( oid?,degree?, strong )

degree
attributes: none
content: ( Data )

@kind
[optional] (default:fo| lp | list to be completed)

Figure 2. Content Models for Formulas in Our Uncertainty Extension

<Atom><op><Rel>prop</Rel></op></Atom>
</head>
<body>

<Constant>
<degree>

<Data xsi:type="xsd:decimal">0.5
</Data>

</degree>
</Constant>

</body>
</Implies>

However, this results in complex markup that is dif-
ficult to understand and requires a new type of formula
<Constant> which is currently absent from RuleML;
therefore it is adopted the simplest syntax with<degree>
element in atoms. This latest encoding has the advantage
that variables in annotations are not required (see [10]).
The implication connective used has been proposed by
Zadeh [14] and is interpreted by the function

I(x ⊃ y) =
{

1.0 if x ≤ y
0.0 otherwise

The specific encoding of implication-based languages is
straightforward, and will be analysed in detail in the next
section.

4 Examples of Encoding Existing Languages

The simplest (at the syntactical level) rule-based lan-
guages (see examples in Section 2) depart from definite
logic programming rules by adding a degree associated with
the rule, these include quantitative deduction, possibilistic

logic programming, ordinary probabilistic logic programs,
and stochastic logic programs. These can be rendered ac-
cording to the following general pattern:

<Implies kind="...">
<degree>

<Data xsi:type="xsd:decimal">...</Data>
</degree>
<head><Atom>...</Atom></head>
<body><And>...</And></body>

</Implies>

The kind attribute in element<Implies> could be
used to specify the underlying semantics of the rule (e.g.
"slp" for Stochastic Logic Programs1). The degree is
always a non-negative decimal number. However, except
for Stochastic Logic Programs, these are all particular cases
of the Fuzzy Logic Programming framework which follows
the pattern:

<Implies kind="some-implication">
<degree>

<Data xsi:type="xsd:decimal">...</Data>
</degree>
<head><Atom>...</Atom></head>
<body>

<And kind="some-tnorm">...</And>
</body>

</Implies>

Facts are encoded as

<Atom>
<degree>

1The exact identifiers of supported languages will be defined elsewhere.
For instance, it seems preferable to assign to each of these semantics a URI,
for specifying the several allowed forms of rules.
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<Data xsi:type="xsd:decimal">...</Data>
</degree>
<op><Rel>...</Rel></op>
...

</Atom>

or, equivalently, by empty body implications:

<Implies kind="some-implication">
<degree>

<Data xsi:type="xsd:decimal">...</Data>
</degree>
<head><Atom>...</Atom></head>
<body><And></And></body>

</Implies>

In order to guarantee the equivalence of the above en-
codings, it is suggested to use implication connectives that
obey to the property,

I(x → y) = 1.0 iff I(x) ≤ I(y)

In particular, R-implications satisfy this property (see
for instance [14] for a definition). The property guar-
antees the existence of a unique least model for the
above programs (see [9]). Some usual R-implications
are Lukasiewicz, G̈odel, Goguen, and Fodor which are
based on the corresponding t-normsbold intersection, min-
imum, product, andnilpotent minimum. To avoid syntac-
tic overhead, we take the liberty of removing the attribute
@xsi:type="xsd:decimal" from all <Data> ele-
ments in the remaining examples.

Example 1 For instance, the following ordinary probabilis-
tic logic programming rule [24] expresses that the probabil-
ity of catching a traffic jam while reachingR from S by
taking a south road is at least0.9:

(reach(R,S) | road(R,S) ∧ south(R, S)) [0.9, 1.0]

Under pcp-interpretations (see [24]), is equivalent to the fol-
lowing quantitative deduction rule

reach(R, S) ← 0.9 − road(R, S) & south(R, S)

which can be represented in our uncertainty extension as

<Implies kind="goguen">
<degree>

<Data>0.9</Data>
</degree>
<head>

<Atom><op><Rel>reach</Rel></op>
<Var>R</Var>
<Var>S</Var>

</Atom>
</head>
<body>

<And kind="minimum">
<Atom><op><Rel>road</Rel></op>

<Var>R</Var>
<Var>S</Var>

</Atom>
<Atom><op><Rel>south</Rel></op>

<Var>R</Var>
<Var>S</Var>

</Atom>
</And>

</Implies>

For possibilistic logic programming, the encoding is
simpler since the implication used is Gödel’s one and con-
junction is the corresponding minimum t-norm.

The language f-SWRL has more cases to be taken care due
to the use of weights in the body of rules. The interpretation
of combination of atoms with weights in bodies can be seen
as a generalization of implications with a constant (weight)
in the antecedent and atom in the consequent, which is very
similar to the meaning of an annotated atom. Therefore, the
same syntax is used.

Example 2 Consider the following f-SWRL rule

Happy(?a) ∗ 0.7 ←
EyebrowsRaised(?a) ∗ 0.9 ∧MouthOpen(?a) ∗ 0.8

This can be encoded as follows, where Gödel’s implication
is used and Goguen implication is used as weight function:

<Implies kind="goedel">
<degree><Data>0.7</Data></degree>
<head>

<Atom>
<op><Rel>Happy</Rel></op>
<Var>a</Var>

</Atom>
</head>
<body>

<And kind="minimum">
<Atom kind="goguen">

<degree><Data>0.9</Data></degree>
<op><Rel>EyebrowsRaised</Rel></op>
<Var>a</Var>

</Atom>
<Atom kind="goguen">

<degree><Data>0.8</Data></degree>
<op><Rel>MouthOpen</Rel></op>
<Var>a</Var>

</Atom>
</And>

</body>
</Implies>

This encoding is capable of capturing all forms of weight
functions since it is implicitly assumed that annotated atoms
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are viewed as special forms of implication. However, f-
SWRL fuzzy assertions specifying at most conditions, of
the form(a : C) ≤ m and(< a, b >: r) ≤ m, require the
introduction of truth-value constants in the language, which
is not being proposed in the current version of the language.
Alternatively, the use of integrity constraints might be an
interesting alternative for representing such statements.

Similar ways of encodings Probabilistic Knowledge bases,
Probabilistic Logic Programs [23] can be easily defined,
by simply allowing more complex formula in the head and
body of rules, and using lists of two numbers to represent
the associated intervals. More simple are Logic Programs
with Annotated Disjunctions [35], which can be translated
as shown in the example below.

Example 3 Consider the LPAD rule, expressing that the
probability of obtaining heads and tails after tossing a non-
biased coin is equiprobable.

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)
← toss(Coin),¬biased(Coin)

Notice this is a concrete extension to the Dishornlog frag-
ment of RuleML 0.9, namely with negation as failure and
probabilistic information. This is rendered in our uncer-
tainty extension as:

<Implies kind="lpad">
<head>

<Or>
<Atom>

<degree><Data>0.5</Data></degree>
<op><Rel>heads</Rel></op>
<Var>Coin</Var>

</Atom>
<Atom>

<degree><Data>0.5</Data></degree>
<op><Rel>tails</Rel></op>
<Var>Coin</Var>

</Atom>
</Or>

</head>
<body>

<And>
<Atom><op><Rel>toss</Rel></op>

<Var>Coin</Var>
</Atom>

<Naf>
<Atom><op><Rel>biased</Rel></op>

<Var>Coin</Var>
</Atom>

</Naf>
</And>

</body>
</Implies>

Regarding Bayesian logic programs, the encoding is more
difficult since several predicate specific parametric infor-
mation should be provided in each rule. The<degree>
element of the implication is now a conditional probabil-
ity table and the combination mode used is specified in
the@kind attribute in the atom element child of<head> .
Care should be taken in order to guarantee that the same
combination mode is used in all rules for that predicate.

Other probabilistic approaches like p-programs [20, 19]
and normal-parametric programs [21] require a similar tech-
nique: in the<Implies> element we use@kind to as-
sociate the propagation function with the implication sym-
bol or the probabilistic combination function used; the dis-
junction combination mode is specified in the@kind at-
tribute in the atom element child of<head> ; the conjunc-
tion mode is present in the<And> element in the body of
the rule.

The annotation-based approaches are similar, and here
we illustrate one of the more complex ones, namely Hy-
brid Probabilistic Logic Programs, which require the use of
<degree> element with complex formulae:

Example 4 Consider the following hp-rule

(paper accepted ∨pc go conference) : [0.85, 0.98] ←−
(good work ∧ind good referees) : [0.7, 0.9] &
have money : [0.9, 1.0]

The translation into our uncertainty extension is:

<Implies kind="hplp">
<head>

<Or kind="positive-correlation">
<degree><Data>0.85 0.98</Data></degree>
<Atom><op><Rel>paper_accepted</Rel></op>
</Atom>
<Atom><op><Rel>go_conference</Rel></op>
</Atom>

</Or>
</head>
<body>

<And>
<And kind="independence">

<degree><Data>0.7 0.9</Data></degree>
<Atom><op><Rel>good_work</Rel></op>
</Atom>
<Atom><op><Rel>good_referees</Rel></op>
</Atom>

</And>
<And kind="independence">

<degree><Data>0.9 1.0</Data></degree>
<Atom><op><Rel>have_money</Rel></op>
</Atom>

</And>
</And>

</body>
</Implies>
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Table 1. Encoding of uncertainty rule languages in Fuzzy RuleML

Language @kind <head> <body> <degree>
QD [34] goguen <Atom> <And kind="minimum"> [0, 1]

FLP [36] r-impl <Atom> <And kind="tnorm"> [0, 1]

Poss [13] goedel <Atom> <And kind="minimum"> [0, 1]

f-SWRL [28] r-impl <Atom> <And kind="tnorm"> of
<Atom><degree>

[0, 1]

GAP [18] gap <Atom><degree> <And> of <Atom><degree> none
(complex annot.) (var and const. annot.)

SFLP [22] signed (as in GAP) (as in GAP) sets of formulas or
2∆

PKB [23] pkb any formula any formula C[0, 1]

PLP [23] plp <And> of <Atom> <And> of <Atom> C[0, 1]

PP [19] p-p <Atom kind=" µp"> <And kind=" µr"> C[0, 1]× C[0, 1]

NPP [21] fp <Atom kind=" fd"> <And kind=" fc"> of
<Atom> and<Neg><Atom>

α in lattice

HPLP [12] hplp <And kind="strat">
<degree> or
<Or kind="strat">

<degree>

<And> of formulas like in the head none

constant annotations
C[0, 1]× C[0, 1]

constant annotationsC[0, 1] ×
C[0, 1]

LPAD [35] lpad <Or> of
<Atom><degree>

<And> none

degree in[0, 1]

SLP [27, 6] slp <Atom> <And> [0,∞]

BLP [17] blp <Atom kind="cr"> <And> cpd

The remaining annotation-based languages are treated sim-
ilarly. A summary of the proposed encodings can be found
in Table 1, where the syntax of<Implies> is specified for
some of the existing languages. Notice that for annotation-
based languages the<degree> element is not present, like
in the previous example. There is still the need to inte-
grate the several languages in a common algebraic frame-
work, like Multi-adjoint, Residuated or Monotonic Logic
Programming [9, 26]. However, due to their very general
abstract syntax of rules, they cannot be encoded in our cur-
rent proposal for the Fuzzy RuleML extension.

5 Default interpretation of connectives

To simplify the writing of uncertainty programs, a set
of reasonable defaults should be proposed for the language.
First, the underlying truth-value lattice is the unit interval
[0, 1], which is used in the majority of uncertainty rule lan-
guages. When a degree element is omitted, it is assumed
to stand for the real number1.0. It is adopted minimum
t-norm and maximum s-norm as the interpretation of con-
junction and disjunction, respectively. Consequently, Gödel
implication is used for interpreting implication. Negation
is the usual complement defined by function1 − x. This

extends classical logic, and minimum is the less conserva-
tive t-norm. However, the distinction between strong and
naf negation in this framework is not immediate (see for
instance [38]) and might require more complex truth-value
lattices, namely bilattices [1, 21]. The full semantics of the
default language will be described in a forthcoming paper.
Furthermore, it might be possible to soften the above de-
fault setting by allowing to specify an URL of an RDF file
for the defaults.

There are already query answering procedures for fuzzy
logic programming based rule languages, some support-
ing both strong and weak negation, which can be found
in [15, 7, 8, 31, 33]. It should be notice that for the default
interpretation of connectives, the proof procedures in [7, 8]
do terminate in polynomial time for DATALOG programs.

6 Conclusion

This paper presents a proposal for a uncertainty ex-
tension of RuleML, which is capable of encompassing a
significant number of rule languages for uncertainty han-
dling. We hope this can serve as the underpinning of the
coming Fuzzy RuleML markup language. Our proposal

8

Preprint from the Proceeding of 2nd International Conference of Rules and Rule Markup Languages for the Semantic Web (RuleML-06). IEEE.



is a simple extension of RuleML, namely via an orthogo-
nal use the@kind attribute and the<degree> element.
The @mapKind attribute is introduced to provide a sim-
ple mechanism of expressing the desired interpretation of
rules. Logical constants might be beneficial for some par-
ticular languages, namely f-SWRL, but it is not proposed
for the basic language.

In the future, the language will be extended to handle
quantifiers and to more general monotonic operators, in the
style of [9, 26]. These are particularly important for cap-
turing Fuzzy Description Logic Programs, like the ones re-
cently proposed in [32]. Moreover, there is the need to
provide representation mechanism for expressing parame-
terized fuzzy membership functions, as well as fuzzy rela-
tions, and fuzzy constants. This will be discussed in a differ-
ent paper, requiring further changes to the content models
presented previously.

For a final proposal, a centralized authority should be
responsible for registering the several language formats and
exploiting common features, as we have tried to do in this
preliminary work.
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