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1. ABSTRACT 

A video analysis framework based on spatiotemporal saliency calculation is 

presented. We propose a novel scheme for generating saliency in video sequences by 

taking into account both the spatial extent and dynamic evolution of regions. Towards 

this goal we extend a common image-oriented computational model of saliency-based 

visual attention to handle spatiotemporal analysis of video in a volumetric framework. 

The main claim is that attention acts as an efficient preprocessing step of a video 

sequence in order to obtain a compact representation of its content in the form of 

salient events/objects. The model has been implemented and qualitative as well as 

quantitative examples illustrating its performance are shown. 

1. INTRODUCTION 

Primate vision provides natural solutions to many machine vision problems. If it were 

possible to embody them in a computational theory, then machine vision would be 

successful. Recently, a central part of the human vision system (HVS), namely the 

ability to concentrate of salient regions of the visual input, has attracted several 

researchers both from the field of neuroscience and computer vision. This ability of 

the HVS states that despite the common belief that we see everything around us, only 

a small fraction of the surrounding visual information is processed at any time and 

leads to higher level understanding of the visual scene. One of the dominant theories 

in the field is saliency-based visual attention (VA) [17, 21]. 

Complete vision application systems invoke attentional mechanisms in order to 

confront the computational load of several higher level processing steps [8, 35]. If the 

attended regions represent the input well, a great deal of search can be avoided. Two 
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major attentional mechanisms are known to control the visual selection process. First, 

bottom-up attentional selection is a fast, and often compulsory, stimulus-driven 

mechanism. Involuntary attention capture by distracting inputs occurs only if they 

have a property that a person is using to find a target [31]. Second, top-down 

attentional selection initiates from the higher cognitive levels in the brain that 

influence the attentional system to bias the selection in favor of a particular (or a 

combination) of feature(s). Only information about the region that is preattentively 

extracted can be used to change the preferences of the attentional system. 

In the field of computational video analysis, image sequences are usually 

processed and analyzed in a frame-by-frame basis in order to infer the short-term 

objects’ temporal evolution. Such methods use information over a small number 

(typically two) of frames. Linking together the obtained results generates longer-term 

dynamics. The actual long-term temporal dimension of the video data is therefore 

disregarded by incorporating parametric motion model assumptions or smoothing 

constraints. Such methods are prone to noise and can lead to high computational 

complexity if e.g. accurate motion estimation is one of the prerequisites [2, 16]. For 

video analysis, it is beneficial to use spatiotemporal filtering of a larger neighborhood 

(a volume of data) in order to include the informative temporal dimension. Adelson 

and Bergen [1] were the first to suggest computational solutions for spatiotemporal 

filtering of volumetric data. Bolles and Baker [4, 3] also exploit spatiotemporal 

volumes to extract motion parameters of a camera, moving in a straight line, using 

epipolar plane based analysis.  

More recently, spatiotemporal processing has been used for periodicity analysis 

[24], camera work analysis [19], monitoring and surveillance applications [18] and 

motion analysis and segmentation [29, 37, 33]. Researchers have also used spatial 
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[46] and spatiotemporal salient point detectors [45] to enhance object recognition 

performance or region retrieval classification. Loccoz et al. in [45], go a bit further 

and attempt to combine spatiotemporal salient point detection with a higher level 

(knowledge-based) description of the underlying event. However, the majority of the 

proposed methods treat the video volume in spatiotemporal slices rather than in a 

volumetric manner. Spatiotemporal processing may solve several of the problems 

related to video analysis, but the large amount of data to be processed and the 

consequent computational burden may obstruct proper exploitation. Hence, a 

mechanism for selecting the meaningful part of the input to be processed is 

indispensable for designing successful, computationally efficient algorithms in the 

promising spatiotemporal domain. This need fits well with the saliency-based VA 

model discussed before. Related approaches that process only Regions-Of-Interest 

(ROI) are commonly used in video encoding, where certain parts of the visual input 

are of higher importance than the rest. Such ROI can be decoded with higher quality 

than the background or other non-important areas. There is already undergoing work 

that relates VA to JPEG 2000 and MPEG-4 standards [5, 38]. Additionally, recent 

work on video encoding demonstrates the improvement of the coding efficiency 

obtained by allowing variable bit allocation at the object level in both spatial and 

temporal domain [22, 9].  

The proposed model is inspired by the bottom-up saliency-based VA, which has 

been computationally modeled in the last decade, [21, 15, 14, 30], and seems to 

provide a reasonable first step towards the elucidation and understanding of the visual 

input. This VA model was originally proposed by Koch and Ullman [21] and later 

implemented by Itti et al. [15]. In the model, all feature maps feed, in a purely 

bottom-up manner, into a master saliency map. The purpose of the saliency map is to 
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combine the “salient” locations from each of the lower feature maps (e.g., intensity, 

color, orientation, etc.) into a global measure weighting how much different a given 

location is from its surroundings. This computational strategy has been proven 

successful on many real images by providing robustness to noise and clutter. 

Although biologically inspired, the VA process has two lifelines along which its 

success might be measured as Tsotsos et al. [17] assert: “The first is dependent on 

whether the biological predictions can be verified and whether new observations 

might be explained well by the model. The second is dependent on whether the model 

is useful in computational solutions of vision”. We focus on extending the saliency-

based VA in order to obtain an efficient computational vision model for video 

analysis.  

In an attempt to build a general framework that will provide a reliable way to 

exploit both the static and dynamic (temporal) information of a video, we extend the 

frame-based computational VA model of Itti et al.’s [15] and treat the temporal 

dimension of a sequence as an intrinsic part of it [20]. In the current paper we provide 

an extensive step-by-step overview of the model and a concrete set of experiments to 

evaluate its performance. We treat the video sequence as a video volume with 

temporal evolution being the third dimension. Consequently, the movement of an 

object can be regarded as a volume carved out from the 3D space. Simple 3D 

operators along with morphological tools are used for extracting and enhancing 

features of interest. Under such a framework, locating and analyzing interesting 

events in a sequence by considering their actual temporal evolution across a large 

number of frames could be done without the need for, e.g., optical flow estimation, 

which is computationally expensive and possibly inaccurate, due to the small number 

of processed frames.  
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The proposed model combines the advantages of both VA and spatiotemporal 

processing and qualifies as a platform for various applications that involve event 

detection in noisy or occluded environments, surveillance and monitoring or as a 

preprocessing step for scene segmentation. The spatiotemporal VA can also serve as a 

tool for perceptual coding, since saliency encoded in the output of the system can be 

used by a rate control mechanism to improve subjective quality and highlight the 

importance of content interpretation.  

The paper is organized as follows: Section 2 introduces the proposed 

spatiotemporal visual attention scheme and provides an in-depth overview of the 

model and its main components. In Section 3 experimental results are given, while 

future work is discussed and conclusions are drawn in section 4. 

2. BOTTOM-UP SPATIOTEMPORAL VISUAL ATTENTION 

Fig. 1 provides an illustrative view of the approach. The input video is decomposed 

into feature volumes, which encode intensity, colors and orientations. Separate 

conspicuous volumes are generated and finally combined to produce the saliency 

volume. The proposed model consists of several intermediate steps, which are shown 

in Fig.2. The whole procedure may be divided into video preprocessing, feature 

volume generation and saliency volume generation. The following sections give a 

detailed overview. 
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Figure 1 Spatiotemporal VA architecture. The Feature Extraction stage and the Saliency Volume 
generation are shown. 

 

2.1 Video Preprocessing  

2.1.1 Video Volume Generation 

Given an arbitrary input sequence, the first processing step consists of temporally 

segmenting the sequence into a set of video shots using a common shot-detection 

technique [32]. The number of frames to be processed with the proposed 

computational model can be the same as the length of the corresponding shot, or a 

number of frames that is sufficient to represent adequately the objects’ trajectories 

across them. In other words, we consider a spatiotemporal block of frames of a video 

sequence that are (relatively) closely sampled. Hence, we treat the video sequence as 
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a volume with (x, y) being the spatial dimensions and t (frame evolution) the temporal 

one. Specifically, the spatial dimensions of width and height are the x- and y- axes of 

a frame, while the temporal one is derived by layering the frames sequentially in time 

(x-y-t space). The minor element of a volumetric representation is called voxel and is 

denoted throughout this paper as v. Such a volumetric representation provides richer 

structure and organization along a large temporal scale than individual 2D frames and 

leads to more complete video analysis approaches in terms of data exploitation.  

The video volume is decomposed into a set of distinct “channels” by using linear 

filters tuned to specific stimulus dimensions, such as intensity and red, green, blue 

hues. The number and response properties of these filters have been chosen according 

to what is known of their neuronal equivalents in the early stages of visual processing 

in primates [15]. Hence, the red channel volume, for example, denoted by  

(or simply r) is characterized by the spatiotemporal data spanning the three 

dimensions as explained above. The green and blue channel volumes are similarly 

denoted as g and b, respectively. The intensity volume is then obtained as 

( )tyxr ,,

( ) 3bgrI ++= . Every volume simultaneously represents the spatial distribution and 

temporal evolution of the encoded feature. Interestingly enough, by exploiting the last 

consideration, we avoid the motion estimation needed in other proposed methods to 

infer the dynamic nature of the video content. 
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Figure 2 Spatiotemporal VA model 

 

2.1.2 Simplification/Filtering 

After obtaining spatiotemporal data formation, the input volumes are filtered so as to 

avoid spurious details or noisy areas that might otherwise be erroneously attended by 

the proposed system. The main objectives of this filtering stage are noise removal and 

simplification of intensity/color components. Nevertheless, the simplification 

algorithm should definitely retain the edge structure and produce homogenous areas 

between edges.  
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Morphological connected operators fit well with this task. We employ connected 

filters, in particular those called filters by reconstruction, because of their attractive 

property of simplifying the image while preserving contours. The flat-zones are 

computed by the use of Alternating Sequential Filters (ASF), which are based on 

morphological area opening and closing operations with structuring elements of 

increasing scale [7][27][36]. Particularly, if nS is a 3D structuring element of 

increasing size n=1,2,3,… then the openings αn and closings βn that make up the filter 

for a volume V, are 

[ ]
[ ),,(min),)((

),,(max),)((
tyxnSIyxV
tyxnSIyxV

n

n

•=
=

β ]
α o

                    (1) 

where V may be any of the r, g, b, I volumes. Finally, the filtered volume VASF is 

obtained by 1122... αβαβαβ nnASFV = . Fig. 3 illustrates an example of the application 

of the ASF filter on a two-dimensional image.  

The simplification procedure using ASF is applied to each of the four main 

channels, namely intensity, red, green and blue channels, while the yellow one is a 

combination of the other three. 

 

(a) 

 

                                   (b) 

Figure 3 Illustration of image simplification using the flat-zones approach: (a) original, (b) simplified 
frame 
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2.2 FEATURE VOLUME GENERATION 

Following the structure of the static image-based approach of Itti & Koch, we 

generate pyramids of volumes for each feature of interest, including intensity, color, 

and orientation. Each of them encodes a certain property of the video. The different 

scales are created using Gaussian pyramids (Burt et al. [6]), which consist of 

progressively low-pass filtering and subsampling the input. In our implementation, the 

depth of the pyramid depends on the input video spatiotemporal size, but cannot be 

less than 5 scales. Low-pass filtering and subsampling is obtained by 3D Gaussian 

low-pass filters and vertical/horizontal reduction by consecutive powers of two. The 

final result is a hierarchy of video volumes that represent the input in decreasing 

spatiotemporal scales. This decomposition is done for each of the feature discussed in 

the following subsections and allows the model to represent smaller and larger 

“events” in separate subdivisions of the channels. 

 

2.2.1 Intensity and Color 

A Gaussian pyramid of intensity volumes ( )σI  is created, where σ=1,…,5 is the 

pyramid scale (level). Color channels are normalized by I in order to decouple hue 

from intensity. Since hue variations are not perceivable at very low luminance, 

normalization is only applied to the locations where I is larger than 101  of its 

maximum over the entire volume (other locations yield almost zero r, g, b). Four 

broadly tuned color channels (red, green, blue and yellow), suggested by the opponent 

color theory, are created [15]: 

( ) ( )
( ) ( ) 22,2

2,2
grgrgrb

brgbgr
−−+=+−=

+−=+−=

YB
GR

       (2) 
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Each channel yields maximal response for the hue to which it is tuned and zero 

response for both black and white inputs. Four Gaussian spatiotemporal pyramids 

( ) ( ) ( ) ( )σσσσ YBGR ,,,  are created in this way. 

 

2.2.2 Orientation 

Spatial orientation can be calculated by extracting oriented edges at each frame and 

superimposing the results, while temporal orientation is obtained by direct 3D 

filtering of the video volume. 3D filtering is related to motion analysis tasks since 

orientation in space-time corresponds to velocity [10]. In order to get orientation, one 

needs an appropriate three-dimensional steerable filter set and a method to extract a 

measure of orientation out of the filters’ output. Although motion is of fundamental 

importance in biological vision systems and contributes to visual attention, as 

confirmed by Watanabe et al. [39], it is not included as a feature map in the saliency-

based computational model of Itti & Koch [15]. Elsewhere we have used motion for 

event analysis purposes [34]. Actually, motion/velocity description of the objects can 

be directly extracted by the 3D orientation volume as described in [33][12][40] 

avoiding therefore the need for independent optical flow computation. 

 

2D Orientation 

Gabor pyramid decomposition (or steerable filters decomposition [10]) is widely used 

for local orientation calculation in static images due to the widely accepted belief of 

an existing biological counterpart. Unfortunately, straightforward extension to 

spatiotemporal domain is computationally demanding, thus we use a different 

approach to obtain similar results in a computationally efficient way. Hence, we 

design an algorithm based on morphological tools that shares common ground with 
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the orientation module of Itti et al.’s prototype visual attention scheme. Orientation 

information is obtained from I using morphological processing of the corresponding 

Gaussian pyramids. Generally speaking, the morphological operations transform the 

original image into another one through the interaction with a structuring element of 

certain shape and size. Geometric features of the image that are similar in shape and 

size to the structuring element are preserved while other features are suppressed. 

Therefore, morphological operations can simplify the image data in a controlled way 

by preserving the desired characteristics and eliminating the irrelevant ones. We use 

oriented line structuring elements Sθ in order to obtain the main 2D orientations at 

each frame of the video volume and generate the 2D orientation volume as 

{ }ooooAS 135,90,45,0,)(),( =∈= θσσθ θoIO        (3) 

Applying an opening to the input frame with an oriented structuring element of 

specific angle yields strong response at the corresponding angle. The opening is 

applied to each level of the pyramid with oriented structuring elements of decreasing 

lengths (power of two). 

 

3D Orientation 

Spatiotemporal volumes can be seen as a composition of numerous simple structures 

like planes, textures, edges and lines. Therefore multiple oriented structures may be 

present at a single point. The volume can be either decomposed into images, as 

traditionally carried out, or into overlapping 3D local neighborhoods. Loosely, a 

neighborhood of voxel v is defined as the proximate voxels surrounding v. By using 

3D connectivity, we can apply 3D morphological operations at every volume. We 

filter the volume with rotated versions of an orientation-selective morphological 

structuring element and produce a result with enhanced oriented subvolumes being 
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the result of the objects’ path in the scene (3D). Hence the same procedure described 

in section 4.2.1 is applied to the spatiotemporal domain. Cylinder-shaped structuring 

elements are used in order to obtain the desired 3D orientations of the video volume: 

 

DD
D AS 33

3 ,)(),( ∈= θσσθ θoIO          (4) 

 

Five of the nine main orientations of  are illustrated in Fig. 4. DA3

 

Figure 4 Five of the nine main 3D orientations (not all of them are shown for illustrative purposes) 

 

2.3 SALIENCY VOLUME GENERATION 

2.3.1 Center-Surround Differences 

Let us first concentrate on how retina neurons operate. The area of the retina within 

which a neuron's activity can be influenced is referred to as that neuron's receptive 

field. Because each part of the retina corresponds to a region of visual space, a 

receptive field can also be defined as the part of visual space to which a neuron 

responds. There are several different types of retinal ganglion cell receptive fields. By 

far the most common type is the center-surround receptive field. These receptive 

fields are characterized by circular symmetry, and the presence of two distinct, 
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mutually-antagonistic sub-regions, a center and a surround. The sensitivity profiles of 

the centers and the surrounds are thought to be Gaussian: the response of the center is 

smaller near its border than at its midpoint.  Such architecture is well-suited to 

detecting locations that locally stand-out from their surround. Center-surround, 

denoted as , is implemented in the model as the difference between fine and coarse 

scales. The center is a pixel at scale { }3,2∈c , and the surround is the corresponding 

pixel at scale δ+= cs , with { }2,1∈δ . Hence, we generate five feature volumes as 

follows: 

 

I(c,s)=|I(c)  I(s)|         (5) 

 

RG(c,s)=|(R(c)-G(c))  (G(s)-R(s))|      (6) 

 

BY(c,s)=|(B(c)-Y(c))  (Y(s)-B(s))|       (7) 

 

O(c,s)=|O(θ,c)  Ο(θ,s)|        (8) 

 

O3D(c,s)=|O3D (θ,c)  Ο3D (θ,s)|       (9) 

 

2.3.2 Normalization 

There is an intrinsic difficulty in combining all the volumes resulting from the feature 

extraction stage. When no knowledge about the scene exists, there is no way to bias 

the systems towards specific (salient) features. The spatiotemporal feature volumes 

represent a priori not comparable modalities, with different dynamic ranges and 

meaning. Due to the lack of top-down supervision (knowledge), there is a need for a 
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normalization scheme that will enhance high activation areas and suppress others. 

Such a scheme will enhance the most salient subvolumes so as to prohibit non-salient 

regions from drastically affecting the result. We use a simple normalization operator 

N that consists of the following: 1) normalize all the spatiotemporal feature volumes 

to the same dynamic range, in order to eliminate across-modality amplitude 

differences; 2) for each volume find the global maximum M and the average m over 

all other local maxima; 3) globally multiply the volume by 2)( mM − . 

Emphasizing on morphological approaches, which are computationally less 

demanding and operate in a controlled way, we use the grayscale top-hat 

transformation ( ( )SVVSVTHT o−=),( ) for obtaining the local maxima of each 

volume. Comparing the maximum activity area to the average over all other maxima 

areas measures how important, in terms of intensity value, is the most active area. 

When this difference is large, we strongly promote the map. 

2.3.3 Conspicuity and Saliency Volumes Generation 

The feature volumes are combined into four conspicuity volumes, I  for intensity, 

C for color, O for 2D orientation and DO3  for 3D orientation at an intermediate scale 

(σi) of the spatiotemporal decomposition. They are obtained through across-scale 

addition, , which consists of reduction of each volume to scale σ⊕ i and point-by-

point addition ([15]): 

( )( )scNI
ii

csc
,

12
I⊕⊕

+==
=

σσ
                  (10) 

( )( ) (( )[ ]scNscNC
ii

csc
,,

12
BYRG += ⊕⊕

+==

σσ
)                (11) 

( )( )∑
∈ +==

⎟
⎠
⎞

⎜
⎝
⎛= ⊕⊕

A csc
scNNO

ii

θ

σσ
,

12
O                 (12) 
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( )( )∑
∈ +==

⎟
⎠
⎞

⎜
⎝
⎛= ⊕⊕

D

ii

A csc
D scNNO

3
,

12
3

θ

σσ

3DO                 (13) 

The motivation for the creation of the separate channels and their individual 

normalization is the hypothesis that similar features compete strongly for saliency, 

while different modalities contribute independently to the saliency volume. Finally, 

the four conspicuity volumes are normalized and summed into the saliency volume 

( ) ( ) ( ) ( )( DONONCNINS 34
1

+++= )                (14) 

In order to illustrate the three-dimensional aspect involved in the proposed 

architecture we show representative views of the saliency volume obtained from a 

simple sequence acquired by a static camera. The “truck” sequence shows two toy-

trucks moving towards opposite directions. A static box in the middle of the scene 

occludes one of them. Fig. 5a-b show three representative frames of the sequence and 

the semi-transparent volume of the original sequence and three representative frames, 

while Fig. 5c-e show the saliency volume under three different angles. All of them are 

negative and transparent versions of the original saliency volume (for visualization 

purposes). The route of the first truck, which is visible throughout the sequence, is 

highlighted as a consistent black cylinder at the top-right volume. The temporal 

evolution of both moving trucks is shown clearly at the bottom-left image, while the 

vertical pattern generated by the static box is illustrated at the bottom-right subfigure. 

 

3 RESULTS 
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(a) 

 

(b) 

 

(c) 

  

(d) (e) 

Figure 5 (a) three representative frames of the sequence; (b) unprocessed video volume; (c)-(e) 
saliency volume observed from 3 different angles. The volumes are negative and transparent versions 
of the original saliency volume for visualization purposes. 

3.1 Experimental Setup 

Illustrating the power of the proposed spatiotemporal VA architecture is not easy due 

to the three dimensional data and the inherent visualization problems. Hence, we 

present the results by using a see-through mask for every input frame that is directly 

acquired from the corresponding x-y slice of the saliency volume. Specifically, the 

saliency volume of a sequence looks like the one illustrated at Fig. 5a. The intensity 

of each voxel is related to the saliency of that pixel. 
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 For visualization purposes, we interpolate the volume and produce one with the 

same dimensions as the input sequence, Fig. 6b. Slicing this volume across the 

temporal dimensions at every time frame produces a saliency map for each of the 

input frames Fig. 6c. Superimposing this mask on the corresponding frame generates 

the desired result. Non-salient areas appear dark, while salient ones preserve (almost 

thoroughly) their original intensity. It is important to mention that no thresholding is 

applied to the final masks. Fig. 6d shows an initial frame of the “truck” sequence and 

corresponding slices for each of the feature and saliency volumes. 

Initial

Feature Extraction & Saliency Generation

Saliency

3D Orientation2D OrientationIntensityColor  

Figure 6 (a)-(c) Generation of mask (see text) for visualization purposes; (d) the initial frame and 
corresponding slices for each of the feature and saliency volumes. 
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Figure 5 Results on the “coast-guard” sequence (numbers correspond to frames). Notice that the global 
camera motion does not affect the result. 

To illustrate the behaviour of the model, we first consider natural image sequences 

and provide a qualitative analysis of the results. The sequences analyzed in section 3.2 

are in QCIF format (176x144) and are processed in chunks of 100-150 frames (shot’s 

length dependent). The quantitative analysis presented in section 3.3 uses ground-

truth data from the CAVIAR dataset, [41], to compare the proposed method with the 

established saliency-based approach of Itti et al. [14]. The resolution of CAVIAR data 
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is half-resolution PAL standard (384 x 288 pixels, 25 frames per second) and the 

ground-truth was obtained by hand-labeling the images. In order to be fair, we used 

the publicly available Neuromorphic toolkit, implemented by Itti and his colleagues 

[44], for generating saliency maps for the Itti et al.’s method. These saliency maps are 

obtained using color, intensity, orientation and motion as feature maps. 

 

3.2 Spatiotemporal saliency detection 

Obtaining a successful segmentation of a dynamic scene is an important task for 

visual understanding. Most of the current video segmentation methods use e.g. 

intensity or color cues and exploit motion information either as the dominant or as 

supporting criterion for distinguishing between salient and non-salient 

objects/regions. Spatiotemporal VA, when used as a preprocessing step, may aid the 

accurate segmentation step that follows. The integration of several features under the 

proposed framework captures all the relevant object information and avoids the 

computationally demanding motion estimation step, since large uniformly moving 

regions that do not differ from their spatiotemporal neighborhood are not attended. 

Such regions may e.g. belong to the background that undergoes the same motion due 

to a moving camera. We illustrate this fact by showing the results on two well-known 

sequences, namely “coast-guard” and “table tennis”.  

The “coast guard” sequence shows a complex scene with different objects present. 

Two boats are moving in opposite directions in a river, while the camera pans, 

following the smaller boat initially and then the larger one. Trees and rocks cover the 

coast and the river presents wavy patterns throughout the sequence. The relative 

motions of the small and the large boats during the first and second pans are small in 
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magnitude due to the simultaneous movement of the camera. The proposed VA 

system performs well, since it “focuses” on the two boats and their  

immediate surroundings without being affected by the camera motion or the minor 

changes on the river and the coast. It has to be mentioned that not only moving 

objects are of interest when preprocessing a video sequence. The proposed VA model 

focuses mainly at the two moving boats throughout the sequence, but it also enhances 

the saliency of the surge of the river around frame 099 as can be seen in Fig. 9. The 

surge becomes salient due to its spatiotemporal difference from the surroundings. 

After few frames (frame 149) the large boat becomes salient again. 

The “table tennis” sequence presents a whole range of situations that makes it a 

challenging stream. Many of the regions of interest are discontinuous and rapidly 

changing. An interesting part of the sequence is the zooming out effect appearing 

approximately after the first 25 frames. The camera zooms out, but remains focused 

on a region between the ball and the bat. The challenge is to consistently distinguish 

the ROIs without being affected by the camera motion (zoom out). The first two 

columns of Fig. 10 show the original frame and the corresponding saliency mask 

derived from the saliency volume as explained above. The spatiotemporal VA system 

focuses at the player and the poster on the left even during the camera zoom-out 

(frames 25-86). Consistent distinction of the player and the incoming poster from the 

left can be achieved without being affected by camera operations as observed 

throughout the sequence.  

Several proposed tracking techniques use motion information as an automatic 

initial guess for object’s position or for improving an incremental tracking approach 

[11, 25, 28]. Generally speaking, motion estimation methods are computationally 

intensive and prone to noise. Although the moving objects in a sequence are usually 
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important and have to be tracked there are cases that static objects (e.g. a scene with a 

camera pan showing a moving object and a photo/painting on the wall) play also a 

considerable role. In an attempt to emphasize the power of VA as a preprocessing step 

we provide a short discussion on the spatiotemporal VA’s results of the “table tennis” 

sequence and the advantages it offers against a robust motion estimation technique 

that is used as an initial step in a tracking approach we proposed in [11]. The 

magnitude of the motion field generated by Black & Anandan’s method [26] is shown  

 

55 

 

 

 

 

 

115 

 

 
 

 

122 

 

 

 

 

Figure 6 Results on the “table-tennis” sequence (numbers correspond to frames). Row-wise: original 
frame, saliency map and magnitude of the motion map 
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in the third column of Fig. 10. Notice how the zooming effect (frames 55, 75) 

affects the motion field and how hard it is to automatically distinguish the objects 

even with a refined motion segmentation technique. Spatiotemporal VA focuses on 

the salient objects (player, poster) without being affected by the overall change of the 

scene. The rest of the frames illustrate the ability of the VA to focus on objects that do 

not differ in terms of motion from the background. The motion estimation result can 

be correctly used for locating and tracking the player, but it provides no information 

on the poster at the right. Hence, the proposed spatiotemporal VA provides a richer 

representation of the scene, in terms of salient regions, that can aid a refined 

segmentation based on low-level (feature volumes) or high-level (e.g. knowledge 

about the relative position of static-dynamic objects etc.) information. 

 

3.3 Judging spatiotemporal saliency 

 

Validating the performance of saliency-based techniques in real computer vision 

problems is not a straight-forward task due to lack of appropriate ground-truth. 

Nevertheless, the efficiency of the visual attention model proposed by Itti et al. has 

been proven through experiments that compare human eye fixations with the ones 

obtained by the model [14][15]. In order to obtain numerical statistics that validate the 

methods’ performance we set up an experiment that compares the outputs of the 

proposed spatiotemporal VA and Itti’s one using part of the publicly available 

CAVIAR data [41]. The videos we used have been captured with wide angle lens 

along and across the hallway in a shopping centre in Lisbon and in the entrance lobby 

of the INRIA labs at Grenoble, France. Ground truth for these sequences was obtained 

by hand-labeling the images using filled bounding rectangles. Indicative frames of 
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five different videos and the corresponding ground-truth are shown in the first and last 

columns of Figs. 8, 9 . 

In order to obtain a simple but robust segmentation of the saliency map we use a 

series of image analysis operators as shown in Fig. 7. The initial saliency map is first 

thresholded using the Otsu’s method [42] and then morphologically filtered to reduce 

artifacts and fill the holes (Fig. 7c). Notice that the automatic thresholding does not 

introduce any undesired artifacts since the salient and non-salient areas are clearly 

separated in the initial map. Afterwards, a marker for each candidate region is 

obtained by dilating the regional maxima of the distance transform (Fig. 7e). The 

watershed, constrained by the markers image is then applied to the negative image of 

the distance function (Fig. 7g). The result of this procedure is also called geodesic 

SKIZ (Skeleton Influence Zone) [43]. The final mask is obtained by intersecting the 

filled image (Fig. 7c) with the negative version of the detected watersheds (Fig. 7g). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 7 Segmentation of a single saliency map; (a) initial frame; (b) saliency map; (c) Otsu 
thresholding; (d) morphological filtering; (e) distance transform; (f) regional maxima; (g) constrained 
watershed transform using (f) & neg(e); (h) intersection of (c) & neg(g) 
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Itti et al.with motion 

(a) - 222 
 

a11

 
a12

Spatiotemporal VA 

  
a21

 
a22

 Itti et al.with motion 
 

  
b11(b) - 34 

 
b12

Spatiotemporal VA 

 
  

b21 b22

Fig. 8 Example frames of two different sequences along with the corresponding ground-truth found in 
CAVIAR data set (in row-wise order). 

Indicative results for different videos of the CAVIAR dataset are shown in Figs. 8, 

9. The first and last columns contain the original frame and the corresponding ground-

truth, while the second column shows the saliency map obtained using Itti’s method 

and the proposed spatiotemporal one. The segmentation result is shown at the third 

column. The separated regions are labeled according to saliency and filled in with 

different gray levels. Light gray regions correspond to high-salient ones, while darker 

regions are non-salient. As mentioned before, the ground-truth is composed of solid 

bounding boxes of people walking around a hall or along corridors. Visual attention 
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Itti et al.with motion  

  
a11

 (a) - 350 a12

Spatiotemporal VA 

  
a21

 
a22

Itti et al.with motion  

 
(b) - 140   

b12b11

Spatiotemporal VA 

 
  

b21 b22

Fig. 9 Example frames of two different sequences along with the corresponding ground-truth found in 
CAVIAR data set (in row-wise order). 
methods do not focus on regions that outline certain objects, but regions that probably 

attract the human eye and possibly contain an object of interest. Hence, statistical 

judgment of VA methods in real scenarios by comparing directly the segmented 

results with accurate masks of objects of interest (available ground-truth) is not fair. 

Additionally, ground-truth images usually contain objects having specific features or 

behaviour, like the ones found in CAVIAR datasets (walking people) making this 

comparison even more unfair. 
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Nevertheless, a VA technique should drag the focus-of-attention at these objects 

during time evolution. Under this framework, we establish two evaluation metrics: the  

absolute recall/precision values that the method can reach and the number of foci 

needed to reach these values or equivalently, the number of foci needed to find whole 

or part of the desired target. It is clear that high precision is much harder to obtain 

than high recall. The segmentation technique we use is simple and aims to provide 

crude salient regions around possible targets and therefore high recall is what we 

expect. Actually, this is the main role of VA, namely to limit visual search into few 

and distinct areas of the input and aid the refined analysis steps that may follow. 

In order to provide statistical results we measure the percentage of the targets’ 

bounding boxes that VA covers after a number of sequential foci-of-attention. In our 

case the focus-of-attention has the shape of the segmented regions obtained as 

described before. For example, if we consider the segmented saliency map in Fig. 

8a22, the first two foci-of-attention will be around the center (light-gray regions) and 

the rest will sequentially cover the left part of the frame. 

We follow this procedure for hundreds of frames of the available videos and 

calculate precision as the average ratio of the common area covered by both masks 

(ours and ground truth) to the area of our masks and recall as the average ratio of the 

common area to the area of the ground truth masks. As discussed before, we do not 

expect high precision values for both methods, since accurate segmentation is not the 

focus of this work. We provide results for the kind of videos found in the dataset, 

namely the one capturing people walking around in a hall (e.g. Fig 8a, Fig. 9a) and the 

second one that captures people walking along corridors (e.g. Fig. 8b, Fig. 9b). 

The procedure we follow is outlined into the following steps: 1) a spatiotemporal 

saliency cube is produced for every 64 frames of the input sequence; 2) the saliency 
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map of each frame is segmented using the procedure described before; 3) the 

segmented regions are ordered according to saliency and finally, 4) precision-recall 

statistics are calculated. The same procedure is applied for the Itti et al.’s model in a 

per frame basis. In order to be fair we generate a saliency cube using the saliency of 

each frame and filter it with a 3D median filter to enhance coherency. 

 The statistics plotted in Fig. 10 are the mean precision/recall on 3154 frames of 

the INRIA sequences, while the ones in Fig. 11 concern 3720 frames of the Lisbon 

sequences. The horizontal axis corresponds to the number of foci and the y- axis range 

is equal for the precision and recall plots respectively. Tables 1 and 2 outline the main 

statistical outcomes for both kinds of sequences and are interpreted as follows: e.g. for 

the proposed spatiotemporal VA the best recall value (71.57%) is obtained for the 

INRIA sequences (table 1) after 15 foci of attention, while the first focus-of-attention 

achieves a recall of 31.75%. Similarly, a precision of 14.20% is obtained after 8 foci-

of-attention. 

 
Table 1  Statistics on INRIA sequences 

 Precision # foci 1st focus Recall # foci 1st focus 
Spatiotemporal 

VA 14.20% 8 11.75% 71.57% 15 31.75% 
Itti et al. with 

motion 8.47% 1 8.47% 20.84% 14 11.96% 

 
 
Table 2  Statistics on LISBON sequences 

 Precision # foci 1st focus Recall # foci 1st focus 
Spatiotemporal 

VA 11.94% 2 11.55% 61.52% 15 35.90% 
Itti et al .with 

motion 5.37% 1 5.37% 15.21% 14 11.21% 

 
The mean precision/recall plots reveal the real strengths of the spatiotemporal VA 

technique. The proposed method clearly outperforms the second technique and 

reaches more than half of the max attained value at the first focus-of-attention. It is 

worth mentioning that the difference in performance between the two methods is 
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entirely due to the spatiotemporal configuration of the proposed model. Itti et al.’s 

method includes a motion channel and has been temporally median filtered for further 

temporal enhancement.  

 
(a) 

 
(b) 

Fig. 10 INRIA sequences (a) Precision; (b) Recall 

 

The proposed configuration and the proposed 3D normalization/fusion operators 

capture temporal activities that differ from the surroundings in an efficient way and 

are not sensitive to minor, very short events which are likely to occur due to 

illumination flickering or shadows. INRIA sequences contain large targets in a 

relative non-complex background scene. LISBON sequences are more challenging 

since they contain small targets on a complex background (textured with bright 

sunlight). Statistics on both sequences are much higher for spatiotemporal VA than 

Fig. 11 LISBON sequences (a) Precision; (b) Recall 
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the method of Itti et al.  

 

4 CONCLUSIONS & FUTURE WORK 

A model that exploits spatiotemporal information for video analysis based on the 

concept of saliency-based visual attention has been presented. The goal is to provide 

an efficient pre-processing step (salient spatiotemporal event detection) that will limit 

the application of high level processing tasks to the most salient parts of the input. 

Overall, the performance of the proposed model is very good and exploits both the 

spatial and temporal dimensions of the video. Both qualitative and quantitative 

evaluation of the model presented in this paper is quite promising. Fusing the 

proposed bottom-up spatiotemporal visual attention technique with prior knowledge 

(top-down) for putting up new applications in the field including classification, 

segmentation and tracking will be the focus of our future research. 
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