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Abstract 
 
In this chapter, we present our approach to semantic image analysis. Ontologies are 
used to capture a domain’s general, spatial and contextual knowledge and a genetic 
algorithm is applied to fulfil the final annotation. The employed domain knowledge 
considers high-level information in terms of the concepts of interest of the examined 
domain, contextual information in the form of fuzzy ontological relations, as well as 
low-level information in terms of prototypical low-level visual descriptors. To 
account for the inherent ambiguities in visual information, uncertainty has been 
introduced and utilized within the spatial relations definition. To illustrate the 
proposed process, a hypotheses set of graded annotations is produced initially for each 
image region, and then context is exploited to update appropriately the estimated 
degrees of confidence. A genetic algorithm is applied as the last step, in order to 
select the most plausible annotation by utilizing the visual and spatial concept 
definitions that are included in the domain ontology. Experiments with a collection of 
photographs derived from two distinct domains demonstrate the performance of the 
proposed approach. 
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1 Introduction 
 
Recent advances in both hardware and software technologies have resulted in an 

enormous increase in the number of images that are available in multimedia databases 

or over the Internet. As a consequence, the need for techniques and tools supporting 

their effective and efficient manipulation has emerged. To this end, several 

approaches have been proposed in the literature regarding the tasks of indexing, 

searching and retrieval of images. The very first attempts to address these issues 

concentrated on visual similarity assessment via the definition of appropriate 

quantitative image descriptions, which could be automatically extracted, and suitable 

metrics in the resulting feature space. Coming one step closer to treating images the 

way humans do, these were later adapted to a finer granularity level, making use of 

the output of segmentation techniques applied to the image (Smeulders, 2000). Whilst 

low-level descriptors, metrics and segmentation tools are fundamental building blocks 

of any image manipulation technique, they evidently fail to fully capture by 

themselves the semantics of the visual medium; achieving the latter is a prerequisite 

for reaching the desired level of efficiency in image manipulation. To this end, 

research efforts have concentrated on the semantic analysis of images, combining the 

aforementioned techniques with a priori domain specific knowledge, so as to result in 

a high-level representation of images (Al-Khatib, 1999). Domain specific knowledge 

is utilized for guiding low-level feature extraction, higher-level descriptor derivation, 

and symbolic inference. 

 

One major obstacle, though, multimedia analysis still needs to overcome is the 

semantic gap (Mich, 1999; Smeulders, 2000); the latter forms an existing problem and 

in this approach we provide a partial contribution towards its solution. This hindrance 

becomes even harder when attempting to access vast amounts of multimedia 

information encoded, represented, and described in different formats and levels of 

detail. Although this gap has been acknowledged for a long time, multimedia analysis 

approaches are still divided into two main categories; the low-level multimedia 

analysis methods and tools on the one hand (e.g. (Milanese, 1993; Osberger, 1998; 

Oliva, 2001; Rapantzikos, 2005)) and the high-level semantic annotation methods and 

tools on the other hand (e.g. (Henderson, 1999; Tsechpenakis 2002; Benitez, 2003; 



Voisine, 2005)). It was only recently, that state-of-the-art multimedia analysis systems 

have started using semantic knowledge technologies, as the latter are defined by 

notions such as the Semantic Web (Berners-Lee, 2001; W3C, Semantic Web, 2006) 

and ontologies (Gruber, 1993; Staab, 2004). The advantages of using Semantic Web 

technologies for the creation, manipulation and post-processing of multimedia 

metadata is depicted in numerous activities (Stamou, 2005), trying to provide 

“semantics to semantics”. 

 

Depending on the adopted knowledge acquisition and representation process, two 

types of approaches can be identified in the relevant bibliography: implicit ones, 

implemented by machine learning methods, and explicit ones, followed by model-

based approaches. The use of machine learning techniques has proven to be a robust 

methodology for discovering complex relationships and interdependencies between 

numerical image data and the perceptually higher-level concepts, whereas they 

elegantly handle problems of high dimensionality, as well. Among the most 

commonly adopted machine learning techniques are Neural Networks (NNs), Hidden 

Markov Models (HMMs), Bayesian Networks (BNs), Support Vector Machines 

(SVMs) and Genetic Algorithms (GAs) (Mitchell, 1999; Zhang, 2001; Assfalg, 2005). 

On the other hand, model-based image analysis approaches make use of prior 

knowledge in the form of explicitly defined facts, models and rules, i.e., they provide 

a coherent semantic domain model to support “visual” inference in the specified 

context (Dasiopoulou, 2005; Hollink, 2005). 

 
Regardless of the adopted approach towards knowledge representation, the inclusion 

of spatial information in the knowledge exploited during the analysis process 

demands the definition and extraction of spatial relations from the visual medium. 

The relevant literature considers roughly of two categories of approaches dealing with 

the latter task: angle-based and projection-based approaches. Angle-based approaches 

include (Wang, 2004), where a pair of fuzzy k-NN classifiers are trained to 

differentiate between the Above-Below and Left-Right relations, and the work of 

(Millet, 2005), where an individual fuzzy membership function is defined for every 

relation and applied directly to the estimated angle-histogram. Projection-based 

approaches include (Hollink, 2004), where qualitative directional relations in terms of 



the centre and the sides of the corresponding objects’ MBRs were defined, and 

(Skiadopoulos, 2005), where the use of a representative polygon was introduced. 

 

Furthermore, it is rather true that in the real world, objects always exist in a context. 

In principle, a single image taken in an unconstrained environment is not sufficient to 

allow a computer algorithm or a human being to decide where an object starts and 

another object ends. However, a number of cues which are based on the statistics of 

our everyday’s visual world are useful to guide this decision. This context may take 

the form of global image statistics which characterize an environment type, like an 

indoor office scene or an outdoor garden scene. Identification of an object in an 

image, or a close-up image of the same object may be difficult without being 

accompanied by useful contextual information. 

  
(a) Isolated object (b) Object in context 

Fig. 1. Isolated object vs. object in context. 
 
As an example, an image of a horse is more likely to be present in a landscape 

environment such a green field, whereas a sofa is usually found indoors, or as 

depicted in Fig. 1, a close-up picture of a toaster is more difficult to identify or enroll  

when considered out of the rest environmental information of the image. 

Consequently, representing context is a research issue of great importance (Edmonds, 

1999), affecting the quality of the produced results, especially in the field of 

multimedia analysis in general and knowledge-assisted image analysis in particular. 

The latter can be defined as a tightly coupled and constant interaction between low-

level image analysis algorithms and higher-level knowledge representation 

(Athanasiadis, 2005); an area where the role of context is crucial. In recent years, a 

number of different context aspects related to image analysis have been studied, and a 

number of different approaches to model context representation have been proposed 

(Zhao, 1996; Mylonas, 2005; Mylonas, 2006). 

 

Our work presents a radical at first sight approach to knowledge-assisted image 

analysis, based on coupling three independent components, such as explicit prior 



knowledge (in the form of prototypical instances), spatial relations and contextual 

information. This approach is part of the aceMedia1 EU-IST project dealing with 

efficient multimedia content access and personalized delivery. More specifically, a 

novel ontological representation for context is utilized, combining fuzzy theory and 

fuzzy algebra (Miyamoto, 1990; Klir, 1995) with characteristics derived from the 

Semantic Web, like the statement's reification technique (W3C, RDF Reification, 

2004). In this process, confidence values of labels assigned to regions on the basis of 

low-level visual information similarity are optimized, according to a context-based 

confidence value readjustment algorithm (Mylonas, 2006). This is followed by a 

second optimization process, which utilizes the output of the former together with 

spatial information as input to a genetic algorithm, deciding on the optimal semantic 

interpretation of the image (Papadopoulos, 2006). 

 

This chapter is organized in Sections as follows: Section 2 presents the overall 

aceMedia system architecture. Section 3 discusses low-level visual information 

processing, whereas Section 4 describes the employed knowledge infrastructure. 

Section 5 addresses the issues of context and spatial optimization, making use of the 

previously defined processing methods and knowledge representations. Experimental 

results for a collection of photographs belonging to two different domains are 

presented in Section 6 and some conclusions are drawn in Section 7. 

 

2 System Overview 
 

2.1 Overall architecture 
 
The current approach was developed within the aceMedia project ([aceMedia]) and 

addresses the issues of efficient multimedia content access and personalized delivery 

by integration of multimedia analysis technologies with Semantic Web tools and 

techniques (Fig. 2). More specifically, aceMedia develops tools to automatically 

analyze content, generate semantic metadata and annotation, as well as support 

personalized and intelligent content search and retrieval services (Fig. 3).  

 

                                                 
1 http://www.acemedia.org 



 
Fig. 2. Overview of the aceMedia system. 

 

Key component of the aceMedia system is its Knowledge-Assisted Analysis module 

(KAA), which creates automatic multimedia annotations using an ontology driven 

approach. In KAA, low level image features are extracted from the multimedia 

content, using tools and techniques such as segmentation to atom regions and MPEG-

7 descriptors extraction. Conversion of the MPEG-7 descriptors into an RDF (W3C, 

RDF, 2004) representation enables reasoning to be applied such that objects and areas 

in the scene can be identified, with reference to the appropriate domain ontology. 

Subsequently, the KAA module, using a methodology detailed in the sequel, decides 

on the labeling of the atom regions with a set of concepts from the domain ontology. 

The approach that is followed is generic and applicable to any domain, as long as 

appropriate domain ontologies are designed and made available. 

 

Within aceMedia, the automatically generated metadata can be exploited by the 

personalization module which creates a model of user preferences and profiles 

enabling personalized search and presentation of content. The user model is 

dynamically updated by learning on user behavior as users interact with their content.  

Furthermore, semantic multimedia annotation is exploited in user centered 

applications, like intelligent search and retrieval. Latest aceMedia tools include user 

query interpretation, hybrid visual-semantic search and retrieval, and improved 

relevance feedback. In the remainder of this chapter, the focus will be on the 

Knowledge-Assisted Analysis module (KAA) of aceMedia and its supporting 

technologies. 

 



 
Fig. 3. Overall multimedia analysis and understanding architecture. 

 

2.2 Knowledge assisted analysis within aceMedia 
 
The overall architecture of the proposed knowledge-assisted analysis framework is 

illustrated in Fig. 4. First segmentation is applied, and subsequently low-level 

descriptors and spatial relations are extracted for the generated image segments. Once 

the low-level descriptors are available, an initial set of hypotheses is generated for 

each image segment based on the distance between the segment’s extracted 

descriptors and the domain concepts prototypical descriptors that are included in the 

knowledge base. Thereby, a set of plausible annotations (i.e., domain concepts) with 

corresponding degrees of confidence is produced for each segment. These graded 

hypotheses are then passed to the context analysis module that refines them utilizing 

the ad-hoc contextual knowledge, as will be described in more detail in the sequel. 

The refined hypotheses sets along with segment spatial relations are then passed to the 

genetic algorithm, which based on the provided domain concept definitions decides 

on the optimal semantic interpretation. 

 
 

 



 
 

Fig. 4. Knowledge-assisted analysis framework architecture. 
 

3 Low-level Visual Information Processing 
 

3.1 Segmentation, feature extraction and initial hypotheses generation 
 
In order to implement the initial hypotheses generation procedure, the image under 

examination has to be segmented into regions and suitable low-level descriptions have 

to be extracted for every resulting segment. In the current implementation, an 

extension of the Recursive Shortest Spanning Tree (RSST) algorithm has been used 

for segmenting the image (Adamek, 2005). Considering the low-level descriptions, a 

specific set of descriptors defined within the MPEG-7 standard have been selected, 

namely the Homogeneous Texture, Region Shape and Dominant Colour descriptors. 

Their actual extraction, when dealing with each and everyone of the generated image 

regions, is performed according to the guidelines provided by the MPEG-7 

eXperimentation Model (XM) (MPEG-7 Visual Experimentation Model (XM), 2001).  

 

In order to produce the hypotheses sets, appropriate measures need to be defined for 

qualitatively assessing visual similarity between the examined image segments and 

the defined domain concept prototypes. As MPEG-7 does not provide a standardized 



method for combining different descriptors distances or for estimating a single 

distance based on more than one descriptor, a weighted sum approach was followed, 

resulting in the calculation of a single scalar distance D  for each hypothesis. Thereby, 

a similarity degree DOC  is produced per segment against each of the defined domain 

concepts, as follows: 

mDe
DOC 1

=   (1) 

where the slope parameter m is experimentally set. The pairs of each domain concept 

and its corresponding degree of confidence that result for each image segment 

comprise its initial hypotheses set. 

3.2 Fuzzy spatial relations extraction 
 
Exploiting domain-specific spatial knowledge in image analysis tasks is a common 

practice among the object recognition community. It is generally observed that objects 

tend to be present in a scene within a particular spatial context and thus spatial 

information can substantially assist in discriminating between objects exhibiting 

similar visual characteristics. The use of spatial context forms the key for the 

unambiguous recognition process, as it refers to the relationships among the location 

of different objects in the scene; spatial context is associated to spatial relationships 

between objects or regions in a still image or video sequence. In general, at least two 

types of meaningful spatial contextual relationships can be identified in natural 

images. First, relationships exist between spatial co-occurrence of certain objects in 

natural images. For example, repeated detection of snow would imply low grass 

probability. Second, relationships exist between spatial locations of certain objects 

within an image: grass tends to occur below sky, sky above snow, etc. Of course, the 

set of spatial relationships can be rich (many spatial relationships with minor 

differences between each) or sparse (fewer distinct relationships). The spatial 

relations define the absolute or relative spatial information between objects. Among 

the most commonly adopted spatial relations, directional ones have received 

particular attention. In the present analysis framework, eight fuzzy directional 

relations are supported, namely Above (A), Right (R), Below (B), Left (L), Below-Right 

(BR), Below-Left (BL), Above-Right (AR) and Above-Left (AL). 

 



In the proposed analysis approach, the extraction of fuzzy directional relations builds 

on the principles of projection- and angle- based methodologies (Skiadopoulos, 2005; 

Wang, 2004) and can be decomposed in the following steps. First, a reduced box is 

computed from the ground object's (i.e., the object used as reference, painted dark 

grey in Fig. 5) Minimum Bounding Rectangle (MBR), so as to include the object in a 

more representative way. The computation of this reduced box is performed in terms 

of the MBR compactness value c, which is defined as the value of the fraction of the 

object's area to the area of the respective MBR: if the initially computed c is below a 

threshold T, the ground object's MBR is reduced repeatedly until the desired threshold 

is satisfied. Then, eight cone-shaped regions are formed on top of this reduced box, as 

illustrated in Fig. 5, each corresponding to one of the defined directional relations. 

The percentage of the figure object’s (i.e., the object whose relative position is to be 

estimated, painted light grey in Fig. 5) pixels that are included in each of the cone-

shaped regions determines the degree to which the corresponding directional relation 

is satisfied. After extensive experimentations, the value of threshold T was set equal 

to 0.85. 

 
Fig. 5. Fuzzy spatial relation definition – Minimum Bounding Rectangle (MBR). 

 

4 Knowledge Infrastructure 
 
Among the possible knowledge representation formalisms, ontologies present a 

number of advantages (Gruber, 1993; Staab, 2004). They provide a formal framework 

for supporting explicit, machine-processable semantics definitions, and they facilitate 

inference and the derivation of new knowledge based on a set of rules, as well as 

already existing knowledge. Thus, ontologies are suitable for expressing multimedia 

content semantics in a formal machine-processable representation that will allow 



automatic analysis and further processing of the extracted semantic descriptions. 

Following these considerations, in the aceMedia project framework has been used an 

RDF-based ontology infrastructure, introduced in (Bloehdorn, 2005), as the means for 

representing the necessary knowledge components. As illustrated in Fig. 6, this 

knowledge representation consists of (i) a Core Ontology, whose role is to serve as a 

starting point for the construction of new ontologies, (ii) a Visual Descriptor 

Ontology, that contains the representations of the MPEG-7 visual descriptors, (iii) a 

Multimedia Structure Ontology, that models basic multimedia entities from the 

MPEG-7 Multimedia Description Scheme (ISO/IEC Part:3, 2001), and (iv) a set of  

Domain Ontologies, that model the content layer of multimedia content with respect 

to specific real-world domains. In the following of this Section, we shall briefly 

examine each one of them, focusing on the necessary details where needed.  

M-Ontomat

Annotizer 
framework

DOLCE Core Ontology

Spatio – Temporal
Extensions

Multimedia Ontologies

Visual Descriptor 
Ontology (VDO)

Multimedia Structure 
Ontology (MSO)

Domain Specific 
Ontologies

Context Ontology

Domain Ontology

 
Fig. 6. RDF-based knowledge infrastructure. 

4.1 Core ontology 

 
In general, core ontologies are typically conceptualizations that contain specifications 

of domain-independent concepts and relations based on formal principles derived 

from philosophy, mathematics, linguistics, and psychology. The role of the core 

ontology in this overall framework is to serve as a reference point for the construction 

of new ontologies, to provide a reference point for comparisons among different 

ontological approaches, and to serve as a bridge between other existing ontologies 

within the architecture. In the presented framework, the DOLCE (Gangemi, 2002) 



ontology is used for this purpose. DOLCE was explicitly designed as a core ontology, 

is minimal in the sense that it includes only the most reusable and widely applicable 

upper-level categories, rigorous in terms of axiomatization, and extensively 

researched and documented. On top of DOLCE and in order to further accommodate 

the corresponding directional and topological relationships in the spatial domain, 

concepts taken from the ‘Region Connecting Calculus’ (Cohn, 1997), Allen’s interval 

calculus (Allen, 1983) and directional models (Papadias, 1997; Skiadopoulos, 2004) 

have been carefully incorporated (Simou, 2005a), included in Fig. 6 as the set of 

DOLCE’s spatio-temporal extensions. 

4.2 Visual Descriptor Ontology 
 
The visual descriptor ontology (VDO) (Simou, 2005) represents the visual part of the 

MPEG-7 and thus, contains the representations of the set of visual descriptors used for 

knowledge-assisted analysis. Its modelled concepts and properties describe the visual 

characteristics of the objects. The construction of the VDO attempted to follow the 

specifications of the MPEG-7 Visual Part (ISO/IEC Part:3, 2001), however, because a 

strict attachment to the MPEG-7 Visual Part became impossible, several requisite 

modifications were made in order to adapt the XML schema provided by MPEG-7 to 

an ontology and the data-type representations available in RDFS. The tree of the VDO 

consists of four main concepts, namely: VDO:Region, VDO:Feature, 

VDO:VisualDescriptor and VDO:Metaconcepts. It should be noted that none of these 

concepts is included in the XML schema defined in MPEG-7, but their need was 

crucial in order to create a correctly defined ontology. The VDO:VisualDescriptor 

concept contains the visual descriptors, as these are defined by MPEG-7. The 

VDO:Metaconcepts concept on the other hand, contains some additional concepts that 

were necessary for the VDO, but they are not clearly defined in the XML schema of 

MPEG-7. The definition of the remaining two concepts VDO:Region and 

VDO:Feature was necessary in order to enable the linking of visual descriptors to the 

actual image regions. For instance, let us consider the VDO:VisualDescriptor concept, 

which consists of six subconcepts, one for each category of the MPEG-7-specified 

visual descriptors. These are: colour, texture, shape, motion, localization, and basic 

descriptors. Each of these subconcepts includes a number of relevant descriptors that 

are defined as concepts within the VDO. 



4.3 Multimedia structure ontology 
 
The multimedia structure ontology (MSO) models basic multimedia entities from the 

MPEG-7 Multimedia Description Scheme (ISO/IEC Part:5, 2001) and mutual 

relations like decomposition. Multimedia content is considered to be classified into 

five types within the MPEG-7 standard, each of which has its own segment 

subclasses, namely: image, video, audio, audiovisual, and multimedia. The standard 

provides a variety of tools for describing the structure of multimedia content. A 

spatial or temporal fragment of multimedia content is described by the Segment DS 

(ISO/IEC Part:5, 2001). More specifically, a number of specialized subclasses are 

derived from it, that describe the specific types of multimedia segments (such as: 

video segments, moving regions, still regions, mosaics, etc.) resulting from spatial, 

temporal, and spatiotemporal segmentation of the different multimedia content types. 

It should be also stressed out, that multimedia resources may be segmented into sub-

segments through four types of decomposition, namely: spatial, temporal, 

spatiotemporal, and media source. 

4.4 Domain ontology 
 
A domain ontology was developed for representing the knowledge components that 

need to be explicitly defined under the proposed approach. This contains the semantic 

concepts that are of interest in the examined domain (e.g., in the beach vacation 

domain: Sea, Sand, Person, etc.), their prototypical low-level characteristics, as well 

as their spatial relations.  

 

As opposed to concepts themselves that are manually defined by domain experts, 

prototypical visual descriptor instances for each of the concepts of interest, which are 

required for the initial hypotheses generation during the matching process described 

in section 3.1, and spatial relations, are extracted using a training set of images. More 

specifically, to populate the domain knowledge with prototypical visual descriptor 

instances, sample images of a training set are processed with the M-Ontomat-

Annotizer tool (Bloehdorn, 2005), that allows linking domain concepts with low-level 

visual descriptor values (Saathoff, 2006). The values of spatial relations for the 

concepts of the given domain are estimated according to the following ontology 

population procedure: 



 
Let { }IisS i …,1, ==  denote the set of regions produced for the image under 

consideration by the segmentation process, { }PpcC p …,1, ==  denote the set of 

concepts defined in the employed domain ontology and 

{ } { }RLBRBLBARALAKkk ,,,,,,,,1, ===Π …ρ  (2) 
denote the set of supported spatial relations. Then, the degree to which is  satisfies 

relation kρ  with respect to js  can be denoted as ( )ji ssI
k

,ρ , where the values of 

function 
k

I ρ  are estimated according to the fuzzy spatial relations extraction 

procedure of Section 3.2 and thus belong to the [0, 1] interval. To populate the 

ontology, this function needs to be evaluated over a set of segmented images with 

ground truth annotations that serves as a training set. More specifically, the mean 

values, meank
I ρ , of 

k
I ρ  are estimated, for every k over all region pairs of segments 

assigned to objects ( ) qpcc qp ≠,, . The calculated values are stored in the ontology. 

These constitute the constraints input to the spatial optimization problem which is 

solved by the genetic algorithm, as will be described in Section 5.2. 

4.5 Context Ontology 
 

4.5.1 A “fuzzified” context model 
 
As found in the literature, the term context has been widely studied and has many 

interpretations, as well as definitions (Mylonas, 2005), none of which is globally 

applicable. It is therefore very important to establish a working interpretation for 

context, in order to benefit from and contribute to multimedia analysis. The ultimate 

goal is to develop a non-scene specific method for generating context models useful 

for general scene understanding. The problems to be addressed in this Section include 

how to represent context, how to determine it, and how to use it to optimize the results 

of knowledge-assisted analysis. Results of the latter are highly dependent on the 

domain an image belongs to and thus in many cases are not sufficient for the 

understanding of multimedia content. The lack of contextual information (Mylonas, 

2005) in the above process is a major limitation towards a better analysis performance 

and together with similarities in numerous low-level characteristics of various object 

types (such as: colour, texture, shape, etc.) results in a significant number of 



misclassifications. Herein, we introduce a method for further improving the results of 

the proposed knowledge-based approach, based on a contextual ontology and focus on 

its knowledge representation, as its role is crucial in the understanding of the context 

optimization process that follows in Section 5.1.  

 

In general, it is possible to formally describe an ontology as the entire set of concepts 

and semantic relations between concepts within a given universe: 

,{ ,{ }}, , 1,
i jc cO C R   i j n= = … , , : {0,1},   , 1,...

i jc cR C C i j n× → =  (3) 
where O  forms an ontology, C  is the set of all possible concepts it describes and 

,i jc cR  denotes the semantic relation amongst two concepts ,i jc c . Any type of relation 

may be included in an ontology, however, for the problem at hand a “fuzzified”, ad-

hoc context ontology is introduced. In order for this ontology to be highly descriptive 

and accurate, it must contain a representative number of distinct and even diverse 

relations among concepts, so as to scatter information among them and meaningfully 

describe context. In this work we utilize a set of relations, whose semantics are 

defined in MPEG-7  (Benitez, 2001; ISO/IEC Part:5, M 4242, 2001), namely: partOf 

(P), specializationOf (Sp), propertyOf (Pr), inContextOf (Ct), locationOf (Loc), 

instrumentOf (Ins) and patientOf (Pat).  

 

However, when modelling real-life information governed by uncertainty and 

fuzziness, only fuzzy relations can handle such issues. In fact, the above commonly 

encountered relations can be modelled as fuzzy relations. Thus, in order to extract and 

use the desired ontological context, we define it by means of fuzzy ontological 

relations: 

,{ ,{ }},   , 1,...
i jF c cO C r i j n= =   (4) 

where FO  forms a domain-specific “fuzzified” ontology, C  is the set of all possible 

concepts it describes,  

, , ,( ) : [0,1],   : {0,1}  , , 1,...
i j i j i jc c c c c cr F R C C R C C i j n= × → × → =  denotes a fuzzy 

ontological relation amongst two concepts ,i jc c  and ,i jc cR  is a crisp semantic relation 

amongst the two concepts. We shall use this “fuzzified” definition of the knowledge 

model throughout the rest of this chapter. 

 



 

4.5.2 Contextual knowledge representation and ontological relations 
 
The proposed contextual ontology model is able to represent any type of fuzzy 

relation between concepts , ,( )
i j i jc c c cF R r= . All relations between concepts are 

contained within an RDF-based representation, forming the overall contextual 

knowledge. Describing the accompanying degree of confidence is carried out using 

reification (W3C, RDF Reification, 2004), i.e., by making a statement about the 

statement, which contains the degree information. Reification was used in order to 

achieve the desired expressiveness, whereas representing fuzziness with reified 

statements is an acceptable way, since the reified statement should not be asserted 

automatically. For instance, having a statement, such as Car inContextOf 

MotorsportScene and a degree of confidence of 0.85 for this statement, does 

obviously not entail, that a car is always in the context of a motorsports scene. 

 

To illustrate things further, let us select one fuzzy relation, e.g., the partOf  relation P, 

which, according to the previous analysis, is a fuzzy taxonomic relation on the set of 

concepts. ( , ) 0P a b >  means that b is a part of a. For instance, a could be a boat and b 

could be a sail. An example of its formal representation is presented in Fig. 7. 
<?xml version="1.0"?> 
<rdf:RDF 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
xmlns:context="&dom;" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"> 
    <rdf:Description rdf:about="#partOf"> 
        <rdfs:domain> 
            <rdf:Description rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> 
        </rdfs:domain> 
        <rdfs:range> 
            <rdf:Description rdf:about="http://www.w3.org/2001/XMLSchema#float"/> 
        </rdfs:range> 
    </rdf:Description> 
    <rdf:Description rdf:about="#relation1"> 
        <rdf:subject rdf:resource="&dom;sail"/> 
        <rdf:predicate rdf:resource="&dom;partOf"/> 
        <rdf:object> rdf:resource="&dom;boat"</rdf:object> 
        <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> 
        <context:partOf 
rdf:datatype="http://www.w3.org/2001/XMLSchema#float">0.85</context:partOf> 
    </rdf:Description> 
</rdf:RDF> 

Fig. 7. Reified RDF/XML representation of the partΟf fuzzy relation. 



 

The proposed model can be visualised as a graph, in which every node represents a 

concept and each edge between two nodes a contextual relation between the 

respective concepts. Additionally each edge has a corresponding degree of confidence 

that represents the fuzziness that exists within the context model. Non-existing edges 

are implying non-existing relations, i.e. relations with zero confidence values are 

omitted. 

 
Fig. 8. locationOf  ontology fragment from the beach vacation domain. 

 
Finally, another important point to consider is the fact that each concept has a 

different probability to appear in the scene. A flat context model, i.e., relating 

concepts only to the respective scene type, would not be sufficient in this case. We 

model a more detailed graph, where ideally concepts are all related to each other, 

implying that the graph relations used are in fact transitive. As observed in Fig. 8, 

every concept participating in the contextualized ontology has at least one link to the 

root element. Additional degrees of confidence exist between any possible 

connections of nodes in the graph, whereas the root element beach could be related 

either directly or indirectly with any other concept. This results to the notion of 

context relevance, described in greater detail in the following section of this work. 

 
 
 
 
 



5 Context and Spatial Optimization 
 

5.1 Context optimization 
 
Once the contextual knowledge structure is defined and the corresponding 

representation is implemented, a context-based confidence value readjustment 

algorithm is introduced to aid the scope of multimedia analysis. Our contextualization 

approach acts as a post-processing step on top of the initial hypotheses set and re-

estimates the initial degree of confidence of each label for each image segment. In the 

process, it utilizes contextual information residing in the aforementioned context 

ontology and passes the optimized results as input to the genetic algorithm. We 

exploit a contextual form constructed by a semantically meaningful combination of 

the previously selected fuzzy relations. More specifically, each segment’s label is 

related to a specific concept kc  of the application domain ontology and stored 

together with its relationship degrees to any other related concept. To tackle cases that 

more than one concept is related to multiple concepts, we introduce the term context 

relevance ( )dm kcr c , which refers to the overall relevance of concept kc  to the root 

element of the domain dm . An exhaustive approach, that considers all possible routes 

in the graph, is followed, with respect to the fact that all routes between concepts are 

reciprocal at large.  

Estimation of each concept’s context relevance is derived from two sources, namely 

from: 

1. direct relationships of the concept with other concepts and 

2. indirect relationships, utilizing a suitable distance metric operator. 

0.95

0.90

0.75

0.95

0.75

0.65

beachc

sandc

skycseac

 
Fig. 9. Simplified context ontology graph sample.  

 



To the aid of the above, let us present (Fig. 9) a simplified, hence illustrative example 

of a concept’s context relevance calculation, derived from the beach vacation 

contextualized ontology part, presented in Fig. 8, assuming that the only available 

concepts were beachc , seac , sandc  and skyc . Let concept seac  be related to concepts 

beachc , skyc  and sandc  directly with:  , 0.95
sea beachc cr = , , 0.75

sea skyc cr =  and , 0.90
sea sandc cr = , 

while concept skyc is related to concept beachc  with , 0.75
sky beachc cr =  and to concept sandc  

with , 0.65
sky sandc cr =  and concept sandc  is additionally directly related to concept beachc  

with , 0.95
sand beachc cr = . Given the semantic perspective on the correlation between any 

two concepts, we select the max operator as the appropriate distance metric operator. 

Then, we calculate the value for ( )beach skycr c  as follows: 

{ }
{ }

, , , , , , , , , , ,

( )

max , , , ,

max 0.75,0.7125,0.6175,0.55575,0.64125
0.75

sky beach sky sea sea beach sky sand sand beach sky sand sand sea sea beach sky sea sea sand sand beach

beach sky

c c c c c c c c c c c c c c c c c c c c c c

cr c

r r r r r r r r r r r= × × × × × ×

=

=

 

In this case, we observe that the direct relationship between the two concepts 

dominates the context relevance value for concept sky. The reader is encouraged to 

assume that a similar approach is followed for every concept participating in the 

context ontology. 

 

After estimating each concept’s context relevance value and according to the 

contextualization algorithm described in (Mylonas, 2006), we identify the optimal 

normalization parameter for the domain at hand and define a minimum considerable 

value for any potential degree of confidence. The meaning of this normalization 

parameter lies in the fact that our algorithm only examines labels accompanied by a 

degree of confidence higher than this value, i.e., we examine the supplied domain 

ontology and identify the concept in the domain that is related to it, only if the initial 

degree lies above this experimentally identified threshold, in order to reduce the 

redundancy and computational complexity. Then for each identified concept we 

obtain the particular contextual information in the form of its relations to the set of 

any other concepts and calculate the new degree of confidence for the label associated 

to the region, based on the normalization parameter and the context's relevance value. 

In the case a concept is related to additional concepts apart from the root element of 



the ontology, an intermediate aggregation step is applied to calculate the concept's 

context relevance value, as already explained.  

 

Key points in this approach are the identification of the inter-concept relationships 

between all concepts, the definition of a meaningful normalization parameter and the 

identification of the optimal initialization value for the initial confidence values. 

When (re-)evaluating these values, the ideal normalization parameter is always 

defined with respect to the particular domain of knowledge and is the one that 

quantifies the semantic correlation to the domain. The overall process is terminated 

when belief to the labelling output provided initially is not strong enough, i.e., there 

are no more labels with an acceptable initial confidence value above the specified 

initialization value. The result of this contextualization step is the meaningful 

readjustment of the initial degrees of confidence accompanying each image segment, 

increasing the efficiency and robustness of the proposed semantic image analysis 

methodology and providing optimized input to the genetic algorithm, as described in 

the next Section.  

5.2 Spatial Optimization 
 
As outlined in Section 2 of this chapter, after the initial set of hypotheses is generated 

(based solely on visual features) and refined using context, a genetic algorithm (GA) 

is introduced to decide on the optimal image interpretation using the fuzzy spatial 

relations that have been computed for every pair of image segments. The GA is 

employed to solve a global optimization problem, while exploiting the available 

domain spatial knowledge, and thus overcoming the inherent visual information 

ambiguity. Spatial knowledge is obtained according to the guidelines of Section 4.4 

and the resulting learnt fuzzy spatial relations serve as constraints denoting the 

allowed domain objects spatial topology. 

 

5.2.1 Fitness function 
 
The proposed optimization process utilizes as input (i) the context-refined hypotheses 

sets (as already described in Section 5.1), (ii) the fuzzy spatial relations extracted 

between the examined image segments, and (iii) the spatial-related domain knowledge 

as produced by the particular training process. Under the proposed approach, each 



chromosome represents a possible solution. Consequently, the number of the genes 

comprising each chromosome equals the number I of the segments is  produced by the 

segmentation algorithm and each gene assigns a defined domain concept to an image 

segment. 

 

An appropriate fitness function is introduced to provide a quantitative measure of each 

solution’s fitness, i.e. to determine the degree to which each interpretation is 

plausible: 

( ) (1 )norm normf CR FS SCλ λ= ⋅ + − ⋅  (5) 

where CR denotes a particular chromosome, normFS  refers to the degree of low-level 

descriptors matching, and normSC  stands for the degree of consistency with respect to 

the provided spatial domain knowledge. The variable λ  is introduced to adjust the 

degree to which visual features matching and spatial relations consistency should 

affect the final outcome. 

 

The value of normFS  is computed as follows: 

 

min
1

max min

( )
N

M ip
i

norm

I g I
FS

I I
=

−
=

−

∑
 (6) 

where: 
 

( )M ip ipI g DOC≡   (7) 
 
denotes the degree to which the visual descriptors extracted for segment is  match the 

ones of concept pc , and where ipg  represents the particular assignment of pc  to is . 

Thus, ( )M ipI g  gives the degree of confidence, ipDOC (as defined in Section 3.1), 

associated with each hypothesis. min 1
min ( )N

M ipi p
I I g

=
= ∑  is the sum of the minimum 

degrees of confidence assigned to each region hypotheses set and 

max 1
max ( )N

M ipi p
I I g

=
= ∑  is the sum of the maximum degrees of confidence values 

respectively. For the computation of normSC  the approach described in the following 

subsection 5.2.2 is followed. 



 

5.2.2 Spatial constraints verification 
 
The exploitation of spatial information in the analysis procedure relies on the 

estimation of the degree to which the spatial constraints between two objects are 

satisfied for a pair of object- segment mappings ipg , jqg . In this work, this degree of 

satisfaction is expressed by the function ( , )S ip jqI g g , which is defined with the help 

of a normalized Euclidean distance ( , )ip jqd g g . The latter is calculated according to 

the following equation: 

( ) ( )( ) 28

1
, ,

( , )
8

k kmean p q i jk
ip jq

I c c I s s
d g g

ρ ρ=
−

=
∑

  (8) 

 

where meank
I ρ  is part of the knowledge infrastructure, as discussed in Section 4, 

( , )
k i jI s sρ  denotes the degree to which spatial relation kρ  is verified for a certain pair 

of segments ji ss ,  of the examined image and qp cc ,  denote the domain defined 

concepts assigned to them respectively. Distance ( , )ip jqd g g  receives values in the 

interval [0, 1]. Consequently, the function ( , )S ip jqI g g  is then defined as: 

( , ) 1 ( , )S ip jq ip jqI g g d g g= −   (9) 

 

and takes values in the interval [0, 1] as well, where 1 denotes an allowable relation 

and 0 denotes an unacceptable one. Using this, the value of normSC  is computed 

according to the equation: 

( )
W

I
SC

W

l ggS
norm

pqijl∑ == 1 ,   (10) 

 

where W denotes the number of the constraints that had to be examined. 

 

5.2.3 Implementation issues 
 
To implement the previously described optimization process, a population of 200 

chromosomes is employed, and it is initialized with respect to the input set of 



hypotheses. After the population initialization, new generations are iteratively 

produced until the optimal solution is reached. Each generation results from the 

current one through the application of the following three operators. 

• selection: a pair of chromosomes from the current generation are selected to 

serve as parents for the next generation. In the proposed framework, the 

Tournament Selection Operator (Goldberg, 1991), with replacement, is used. 

• crossover: two selected chromosomes serve as parents for the computation of 

two new offsprings. Uniform crossover with probability of 0.7 is used. 

• mutation: every gene of the processed offspring chromosome is likely to be 

mutated with probability of 0.008. If mutation occurs for a particular gene, 

then its corresponding value is modified, while keeping unchanged the degree 

of confidence. 

 

Parameter λ , regulating the relative weights of low-level descriptor matching and 

spatial context consistency was set to 0.35 after experimentation. The resulting weight 

of normSC , points out the importance of spatial context in the optimization process. 

 

To ensure that chromosomes with high fitness will contribute to the next generation, 

the overlapping populations approach was adopted. More specifically, assuming a 

population of m chromosomes, sm  chromosomes are selected according to the 

employed selection method, and by application of the crossover and mutation 

operators, sm  new chromosomes are produced. Upon the resulting smm +  

chromosomes, the selection operator is applied once again in order to select the m 

chromosomes that will comprise the new generation. After experimentation, it was 

shown that choosing mms ⋅= 4.0  resulted in higher performance and faster 

convergence. The above iterative procedure continues until the diversity of the current 

generation is equal to/less than 0.001 or the number of generations exceeds 50. 

 

6 Experimental Results 
 
Finally, in the last Section of this chapter, we present experimental results from 

testing the proposed approach in the domains of beach and mountain vacation images. 



First, two individual domain ontologies were developed to represent the domain 

concepts of interest and their spatial relations. For the case of the beach vacation 

domain and under the current implementation, six concepts, namely: Sky, Sea, Sand, 

Plant, Cliff and Person, have been defined a priori. On the other hand, seven 

concepts, namely Rock, Snow, Ground, Vegetation, Sky, Person and Water, have been 

defined by domain experts for the case of the mountain vacation domain. 

 

To acquire the visual descriptors prototypes and the membership values for the spatial 

relations, a training set of 200 images was assembled (100 for every domain) and 

manually annotated according to the domain ontology, using a variety of 

beach/mountain vacations images. Subsequently, a segmentation process was applied 

as described previously, and the Dominant Colour, Homogeneous Texture and Region 

Shape descriptors of the annotated segments were extracted. Approximately 10 

prototype descriptor instances resulted for each of the defined domain concepts after 

the elimination of the redundant ones (i.e., of prototypes almost identical to each other 

that do not offer any additional discriminative power). Additionally, the degree to 

which each spatial relation is satisfied was estimated for each pair of segments and 

thus, following the already described procedure, the domain ontology spatial relations 

were enhanced with fuzzy degrees for each possible combination of the defined 

domain concepts. 

 

After building the domain knowledge, semantic annotation of images can be 

performed following the proposed approach. For each of the examined images, the 

steps described in the low-level visual information processing section, i.e., 

segmentation, descriptors extraction and spatial relations extraction, are performed at 

first. Then, based on the prototype descriptor instances, initial hypotheses are 

generated for the examined image segments, following the matching approach 

described in section 3.1, which are in turn refined through the application of the 

context analysis presented in section 5. Finally, the updated graded hypotheses along 

with the extracted spatial relations are passed to the genetic algorithm, which is the 

one that determines the final image interpretation. 

 

Quantitative performance measures are given in Tables I-II, in terms of precision and 

recall for the two examined domains. It must be noted that for the numerical 



evaluation, any object present in the examined test set images that was not included in 

the domain ontologies was not taken into account. Indicative results are given in Fig. 

10 and Fig. 11, showing the input image and the annotations resulting from the 

application of the genetic algorithm on the initial hypotheses and on the hypotheses 

refined by the context.  

 

Visual context aids the overall labeling process, although in some concept cases we 

observe a marginal effect. An overall improvement of approximately 8.34% is given 

for the accuracy of the beach vacation domain after the final interpretation (Table I), 

whereas a 9.88% accuracy improvement is observed in the case of the mountain 

vacation domain (Table II), a fact mainly justified by the diversity and the quality of 

the provided image data set. Apart from that, the efficiency of the combination of two 

optimization steps (i.e., visual context together with a genetic algorithm) depends also 

heavily on the particularity of each specific concept; for instance, in Table I we 

observe that after the final interpretation of the images, the precision for the concept 

Plant improves with an overwhelming 248.03%, whereas in Table II, concept 

Ground’s precision and recall values are improved by 685.60% and 98.20%, 

respectively.  

 

Adding visual context and a genetic algorithm to the semantic image analysis process 

is not an expensive process, in terms of computational complexity or timing. Average 

timing measurements for the overall process on the utilized dataset of images 

illustrate that it is a rather fast process. Based on our implementation, initial color 

image segmentation resulting to approximate 30-40 regions requires about 10 

seconds, while visual descriptors extraction and initial region labeling are the major 

bottleneck, requiring 60 and 30 seconds, respectively. Comparing to the above 

numbers, all proposed algorithms (visual context and genetic algorithm) have 

significantly lower computational time, in the order of 1 second.  

 

 

 

 

 



 

Initial hypothesis Hypothesis Refinement 
(visual context) 

Final Interpretation 
(genetic algorithm) 

Object precision recall precision recall precision recall 
Sky 83.33% 94.74% 92.78% 94.74% 95.79% 92.86% 
Sea 93.55% 87.00% 90.95% 95.50% 94.50% 90.00% 
Cliff 51.92% 65.85% 59.02% 87.81% 82.93% 69.39% 
Plant 17.24% 50.00% 23.53% 40.00% 60.00% 33.33% 
Sand 82.69% 94.51% 89.58% 94.51% 96.70% 95.65% 
Person 97.03% 71.02% 98.99% 71.02% 81.16% 99.12% 
Accuracy 82.76% 87.07% 89.66% 

 

Table I. Numerical evaluation for the beach vacation domain. 

 
 
 
 

Initial Hypothesis Hypothesis Refinement 
(visual context) 

Final Interpretation 
(genetic algorithm) 

Object precision recall precision recall precision recall 
Rock 26.67% 28.57% 40.00% 28.57% 53.33% 57.14% 
Snow 75.00% 60.00% 75.00% 60.00% 60.00% 60.00% 
Ground 12.50% 50.00% 14.29% 50.00% 98.20% 99.10% 
Vegetation 87.00% 88.78% 85.32% 94.90% 90.00% 91.84% 
Sky 93.85% 85.92% 95.31% 85.92% 95.71% 94.37% 
Person 37.50% 33.33% 33.33% 22.22% 50.00% 55.56% 
Water 60.00% 60.00% 60.00% 60.00% 100.00% 60.00% 
Accuracy 79.02% 81.46% 86.83% 
 

Table II. Numerical evaluation for the mountain vacation domain. 



 
 

   

  

  

   

(a) (b) (c) (d) 
 
Fig. 10. Experimental results for the beach vacation domain – column (a) displays the 
input image, (b) the initial hypotheses, (c) the hypotheses refinement and (d) the final 

annotation of the image. 
 
 



 
 

  

   

   

   

(a) (b) (c) (d) 

 
Fig. 11. Experimental results for the mountain vacation domain - column (a) displays 
the input image, (b) the initial hypotheses, (c) the hypotheses refinement and (d) the 

final annotation of the image. 
 
 
 



 

7 Conclusions 
 
In this chapter, we presented our current research, view and implementation within 

the aceMedia approach to semantic image analysis. This is formulated as an 

optimization problem that couples ontologies with a genetic algorithm. The employed 

knowledge considers both high- and low-level information, represented using an 

ontology paradigm. The employed high-level knowledge includes the general domain 

knowledge in terms of concepts of interest and their spatial relations, as well as 

contextual knowledge in form of fuzzy ontological relations, whereas low-level 

knowledge consists of low-level visual descriptors required for the analysis process. 

Following such an approach, images from different domains can be semantically 

annotated, as long as the knowledge based is appropriately populated. The use of 

ontologies, due to the well-defined semantics that they provide, enables as well the 

application of inference services on top of the defined conceptualization that can lead 

to further enhanced annotations that can be inferred based on spatial reasoning. As 

illustrated within our experimentations, the proposed system achieves satisfactory 

results that are further improved through the exploitation of contextual knowledge. 

Thereby, the use of a genetic algorithm to treat image interpretation as an 

optimization problem is justified, as well as the added value entailed by the 

introduction and utilization of context into the analysis and interpretation chain. 

 
 
Acknowledgement 
 
The work presented herein was partially supported by the European Commission 
under contract FP6-001765 aceMedia, FP6-027026 K-Space and FP6-507482 
Knowledge-Web. 
 
References 
 
[aceMedia] Integrating knowledge, semantics, and content, for user centered  

intelligent media services : the aceMedia project http://www.acemedia.org 
 
Adamek, T., O’Connor, N., Murphy, N. (2005). Region-based Segmentation of 

Images Using Syntactic Visual Features. In Proc. of Workshop on Image Analysis 
for Multimedia Interactive Services (WIAMIS), Montreux, Switzerland. 

 



Al-Khatib, W., Day, Y.F., Ghafoor, A., Berra, P.B. (1999). Semantic Modeling and 
Knowledge Representation in Multimedia Databases. IEEE Transactions on 
Knowledge and Data Engineering, 11(1). 

 
Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications 

of the ACM, 26(1):832–843. 
 
Assfalg, J., Berlini, M., Del Bimbo, A., Nunziat, W., Pala, P. (2005). Soccer 

Highlights Detection and Recognition using HMMs. IEEE International Conference 
on Multimedia & Expo (ICME), 825-828. 

 
Athanasiadis, Th., Tzouvaras, V., Petridis, K., Precioso, F., Avrithis, Y., & 

Kompatsiaris, I. (2005). Using a Multimedia Ontology Infrastructure for Semantic 
Annotation of Multimedia Content. In Proc. of SemAnnot '05, Galway, Ireland. 

 
Benitez, A. B., Chang, S. F. (2003). Image Classification Using Multimedia 

Knowledge Networks. In Proc. IEEE Int. Conf. on Image Processing (ICIP03), 
Barcelona, Spain. 

 
Benitez, A., Zhong, D., Chang, S. & Smith, J. (2001). MPEG-7 MDS Content 

Description Tools and Applications. In Proc. of International Conference on 
Computer Analysis of Images and Patterns (CAIP), Warsaw, Poland. 

 
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific 

American, 28(5), 34-43. 
 
Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., 

Handschuh, S., Kompatsiaris, I., Staab, S., Strintzis, M.G. (2005). Semantic 
Annotation of Images and Videos for Multimedia Analysis. In Proc. of 2nd 
European Semantic Web Conference, (ESWC 2005), Heraklion, Greece. 

 
Cohn, A., Bennett, B.,  Gooday, J. M.,  & Gotts. N. M. (1997). Representing and 

Reasoning with Qualitative Spatial Relations about Regions, pages 97–134. Kluwer 
Academic Publishers. 
 
Dasiopoulou, S., Mezaris, V., Kompatsiaris, I., Papastathis, V.K., Strintzis, M.G. 

(2005). Knowledge-Assisted Semantic Video Object Detection. IEEE Transactions, 
CSVT, Special Issue on Analysis and Understanding for Video Adaptation, 15(10), 
1210–1224. 

 
Edmonds, B. (1999). The Pragmatic Roots of Context. In Proc. of the 2nd 

International and Interdisciplinary Conference on Modeling and Using Context 
(CONTEXT-99), LNAI, vol. 1688, pp. 119-132, Berlin, Springer. 

 
Gangemi, A., Guarino, N., Masolo, C. Oltramari, A., & Schneider, L. (2002). 

Sweetening ontologies with DOLCE, in Knowledge Engineering and Knowledge 
Management. Ontologies and the Semantic Web, In Proc. of the 13th International 
Conference on Knowledge Acquisition, Modeling and Management, EKAW, 
LNCS, vol. 2473, Siguenza, Spain.  

 



Goldberg, D., Deb, K. (1991). A comparative analysis of selection schemes used in 
genetic algorithms. In Foundations of Genetic Algorithms, G. Rawlins, 69–93. 

 
Gruber, T.R. (1993). A Translation Approach to Portable Ontology Specification. 

Knowledge Acquisition 5: 199-220. 
 
Henderson, J. M., Hollingworth, A. (1999). High level scene perception. Annu. Rev. 

Psychol., vol.  50, pp. 243–271. 
 
Hollink, L., Little, S., Hunter, J. (2005). Evaluating the Application of Semantic 

Inferencing Rules to Image Annotation. 3rd International Conference on Knowledge 
Capture (K-CAP05), Banff, Canada. 

 
Hollink, L., Nguyen, G., Schreiber, G., Wielemaker, J., Wielinga, B., Worring, M. 

(2004). Adding Spatial Semantics to Image Annotations. In Proc. of International 
Workshop on Knowledge Markup and Semantic Annotation, ISWC. 

 
ISO/IEC 15938-3 FCD Information Technology—Multimedia Content Description 

Interface— Part 3: Visual, March 2001, Singapore. 
 
 ISO/IEC 15938-5 FCD Information Technology—Multimedia Content Description 

Interface— Part 5: Multimedia Description Schemes, March 2001, Singapore. 
 
ISO/IEC FDIS 15938-5, ISO/IEC JTC 1/SC 29 M 4242, Information Technology 

Multimedia Content Description Interface Part 5: Multimedia Description Schemes, 
pp. 442-448, October 2001. 

 
Klir, G., Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic, Theory and Applications. 

New Jersey, Prentice Hall. 
 
Mich, O., Brunelli, R., & Modena, C.M. (1999). A survey on video indexing. Journal 

of Visual Communications and Image Representation, 10:78–112. 
 
Milanese, R. (1993). Detecting salient regions in an image: from biology to 

implementation. PhDThesis, University of Geneva, Switzerland. 
 
Millet, C., Bloch, I., Hede, P., Moellic, P.-A. (2005). Using relative spatial 

relationships to improve individual region recognition. In Proc. of EWIMT, 
London. 

 
Mitchell, T. (1999), Machine Learning and Data Mining, Communications of the 

ACM. 
 
Miyamoto, S. (1990). Fuzzy Sets in Information Retrieval and Cluster Analysis. 

Kluwer Academic Publishers, Dordrecht / Boston / London. 
 
MPEG-7 Visual Experimentation Model (XM) (2001), Version 10.0, 

ISO/IEC/JTC1/SC29/WG11, Doc. N4062. 
 



Mylonas, Ph., Athanasiadis, Th., & Avrithis, Y. (2006). Improving image analysis 
using a contextual approach. In Proc. of Internationl Workshop on Image Analysis 
for Multimedia Interactive Services (WIAMIS), Seoul, Korea. 

 
Mylonas, Ph., & Avrithis, Y. (2005). Context modeling for multimedia analysis and 

use. In Proc. of 5th International and Interdisciplinary Conference on Modeling and 
Using Context (CONTEXT ), Paris, France. 

 
Osberger, W., Maeder, A. J. (1998). Automatic Identification of Perceptually 

Important Regions in an Image. Proceedings of IEEE International Conference on 
Pattern Recognition. 

 
Oliva, A., Torralba, A. (2001). Modeling the shape of the scene: A holistic 

representation of the spatial envelope. Int. J. Comp. Vis., vol. 42, pp. 145–175. 
 
Papadias, D., & Theodoridis, Y. (1997). Spatial relations, minimum bounding 

rectangles, and spatial data structures. International Journal of Geographical 
Information Science, 11:111–138. 

 
Papadopoulos, G. Th., Mezaris, V., Dasiopoulou, S., Kompatsiaris, I. (2006). 

Semantic Image Analysis Using a Learning Approach and Spatial Context. 
International Conference on Semantics and Digital Media Technologies (SAMT), 
Athens, Greece. 

 
Rapantzikos, K., Avrithis, Y., Kollias, S. (2005). On the use of spatiotemporal visual 

attention for video classification. In Proc. of International Workshop on Very Low 
Bitrate Video Coding (VLBV '05), Sardinia, Italy. 

 
Saathoff, C., Petridis, K., Anastasopoulos, D., Timmermann, N., Kompatsiaris I., & 

Staab, S. (2006). M-OntoMat-Annotizer: Linking Ontologies with Multimedia Low-
Level Features for Automatic Image Annotation," Demos and Posters of the 3rd 
European Semantic Web Conference (ESWC), Budva, Montenegro. 

 
Simou, N., Saathoff, C., Dasiopoulou, S., Spyrou, E., Voisine, N., Tzouvaras, V., 

Kompatsiaris, I., Avrithis, Y., Staab, S. (2005a). An Ontology Infrastructure for 
Multimedia Reasoning. International Workshop VLBV05, Sardinia, Italy. 

 
Simou, N., Tzouvaras, V., Avrithis, Y., Stamou, G., & Kollias, S. (2005). A visual 

descriptor ontology for multimedia reasoning. In Proc. of Workshop on Image 
Analysis for Multimedia Interactive Services (WIAMIS), Montreux, Switzerland. 

 
Skiadopoulos, S., Giannoukos, C., Sarkas, N., Vassiliadis, P., Sellis, T., Koubarakis, 

M. (2005). 2D topological and direction relations in the world of minimum 
bounding circles. IEEE Transactions on Knowledge and Data Engineering, 17(12), 
1610-1623. 

 
Skiadopoulos, S., & Koubarakis, M. (2004). Composing cardinal direction relations. 

Artificial Intelligence, 152:143–171. 
 



Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R. (2000). Content-
based image retrieval at the end of the early years. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 22(12), 1349-1380. 

 
Staab, S., Studer, R. (2004). Handbook on Ontologies, International Handbooks on 

Information Systems, Springer-Verlag, Heidelberg. 
 
Stamou, G., & Kollias, S. (eds) (2005). Multimedia Content and the Semantic Web: 

Methods, Standards and Tools, John Wiley & Sons Ltd. 
 
Tsechpenakis, G., Akrivas, G., Andreou, G., Stamou, G, Kollias, S. (2002). 

Knowledge-Assisted Video Analysis and Object Detection. In Proc. European 
Symposium on Intelligent Technologies, Hybrid Systems and their implementation 
on Smart Adaptive Systems (Eunite02), Algarve, Portugal. 

 
Voisine, N., Dasiopoulou, S., Mezaris, V., Spyrou, E., Athanasiadis, Th.,  

Kompatsiaris, I., Avrithis, Y., & Strintzis, M.G. (2005). Knowledge-assisted video 
analysis using a genetic algorithm. In Proc. of the 6th International Workshop on 
Image Analysis for Multimedia Interactive Services (WIAMIS 2005). 

 
Wang, Y., Makedon, F., Ford, J., Shen, L., Golding, D. (2004). Generating Fuzzy 

Semantic Metadata Describing Spatial Relations from Images using the R-
Histogram. JCDL , Tucson, Arizona, USA. 

 
W3C, Semantic Web (2006). http://www.w3.org/2001/sw 
 
W3C, RDF (2004). http://www.w3.org/RDF/  
 
W3C, RDF Reification (2004). http://www.w3.org/TR/rdf-schema/  
 
Zhang, L., Lin, F., Zhang, B. (2001). Support Vector Machine Learning For Image 

Retrieval. In Proc. of of International Conference on Image Processing, (2) 721-724. 
 
Zhao, J., Shimazu, Y., Ohta, K., Hayasaka, R., Matsushita, Y. (1996). An 

Outstandingness Oriented Image Segmentation and its Applications. In Proc. of the 
International Symposium on Signal Processing and its Applications. 



Author Bios 
 
Giorgos Th. Papadopoulos, was born in Thessaloniki, Greece in 1982. He received 
the Diploma degree in Electrical and Computer Engineering from Aristotle University 
of Thessaloniki, Greece in 2005. Currently he is pursuing his Ph.D. degree at the 
former University and he is a Postgraduate Research Fellow with the Informatics and 
Telematics Institute (ITI) / Centre for Research and Technology Hellas (CERTH), 
Thessaloniki, Greece. His research interests include still image segmentation, 
knowledge-assisted multimedia analysis, content-based and semantic multimedia 
indexing and retrieval, information extraction from multimedia, multimodal analysis 
and adaptive learning techniques. He is a member of the Technical Chamber of 
Greece. 
 
Phivos Mylonas, MSc (Computer Science), is currently a Researcher by the Image, 
Video and Multimedia Laboratory. He obtained his Diploma in Electrical and 
Computer Engineering from the National Technical University of Athens in 2001, his 
Master of Science in Advanced Information Systems from the National & 
Kapodestrian University of Athens in 2003 and is currently pursuing his Ph.D. degree 
at the former University. His research interests lie in the areas of content-based 
information retrieval, visual context representation and analysis, knowledge-assisted 
multimedia analysis, issues related to personalization, user adaptation, user modeling 
and profiling. 
 
Dr. Vasileios Mezaris received the Diploma degree and PhD in Electrical and 
Computer Engineering from the Aristotle University of Thessaloniki, Thessaloniki, 
Greece, in 2001 and 2005, respectively. He is a postdoctoral research fellow with the 
Informatics and Telematics Institute/Centre for Research and Technology Hellas, 
Thessaloniki, Greece. His research interests include image and video analysis, 
content-based and semantic image and video retrieval, ontologies, multimedia 
standards, knowledge-assisted multimedia analysis, knowledge extraction from 
multimedia, medical image analysis. He is a member of the IEEE and the Technical 
Chamber of Greece. 
 
Dr. Yannis Avrithis was born in Athens, Greece in 1970. He received the Diploma 
degree in Electrical and Computer Engineering from the National Technical 
University of Athens in 1993, the M.Sc. degree in Communications and Signal 
Processing (with Distinction) from the Department of Electrical and Electronic 
Engineering of Imperial College of Science, Technology and Medicine, University of 
London, in 1994, and the Ph.D. degree in ECE from NTUA in 2001. He is currently a 
senior researcher at the Image, Video and Multimedia Systems Laboratory of NTUA. 
His research interests include spatiotemporal image/video segmentation, knowledge-
assisted multimedia analysis and retrieval and personalization. 
 
Dr. Ioannis Kompatsiaris received the Diploma degree in electrical engineering and 
the Ph.D. degree in 3-D model based image sequence coding from Aristotle 
University of Thessaloniki, Greece, in 1996 and 2001, respectively. He is a Senior 
Researcher with the Informatics and Telematics Institute. His research interests 
include semantic multimedia analysis, indexing and retrieval, multimedia and the 
Semantic Web, knowledge structures, reasoning and personalization for multimedia 
applications. He is the coauthor of 6 book chapters, 18 papers in refereed journals and 
more than 60 papers in international conferences. He is a member of IEEE and of the 
IEE VIE TAP. 



Full contact details 
 
Giorgos Th. Papadopoulos 
PhD Candidate 
Multimedia Knowledge Group 
Informatics and Telematics Institute 
Centre for Research and Technology Hellas 
1st Km. Thermi-Panorama Road 
P.O. Box 60361, 57001 Thermi-Thessaloniki, Greece 
Tel: +30 2310 464160 (ext. 125), Fax: +30 2310 464164 
e-mail: papad@iti.gr  
WWW: http://mkg.iti.gr  
 
Phivos Mylonas, M.Sc. 
Researcher 
National Technical University of Athens 
School of Electrical Engineering 
Image, Video and Multimedia Laboratory 
Iroon Polytechneioy 9, P.C. 157 80, Zographoy Campus, Athens, Greece 
Electrical Engineering Building, Office 11.23, 1st Floor 
Tel: +30 210 772 4351 
Fax: +30 210 772 2492 
e-mail: fmylonas@image.ntua.gr  
WWW: http://www.image.ntua.gr/~fmylonas/  
 
Dr. Vasileios Mezaris 
Postdoctoral Research Fellow 
Multimedia Knowledge Group 
Informatics and Telematics Institute 
Centre for Research and Technology Hellas  
1st Km. Thermi-Panorama Road  
P.O. Box 60361, 57001 Thermi-Thessaloniki, Greece 
Tel: +30 2310 464160 (ext. 127), Fax: +30 2310 464164  
e-mail: bmezaris@iti.gr    
WWW: http://mkg.iti.gr 
 
Dr. Yannis Avrithis. 
Senior Researcher 
National Technical University of Athens 
School of Electrical Engineering 
Image, Video and Multimedia Laboratory 
Iroon Polytechneioy 9, P.C. 157 80, Zographoy Campus, Athens, Greece 
Electrical Engineering Building, Office 11.23, 1st Floor 
Tel: +30 210 772 4352 
Fax: +30 210 772 2492 
e-mail: iavr@image.ntua.gr 
WWW: http://www.image.ntua.gr/~iavr/  
 
Dr. Yiannis Kompatsiaris 
Senior Researcher 



Multimedia Knowledge Group 
Informatics and Telematics Institute 
Centre for Research and Technology Hellas  
1st Km. Thermi-Panorama Road  
P.O. Box 60361, 57001 Thermi-Thessaloniki, Greece 
Tel: +30 2310 464160 (ext. 127), Fax: +30 2310 464164  
e-mail: ikom@iti.gr    
WWW: http://mkg.iti.gr 
 


