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Abstract. The RuleML initiative defines a normalized markup for expressing and exchange rules
in the Semantic Web. However, the syntax of the language is still limited and lacks features for
representing rule-based languages capable of handling uncertainty and vagueness. It is desirable to
have a general extension of RuleML which accommodates majorexisting languages proposed in
the latest two decades. The main contribution of the paper isto propose such a general extension,
showing how to encode many of the existing languages in this extension. It is detailed the important
case of fuzzy rule languages. We hope this work can also provide some insights on how to cover
uncertainty in the RIF framework.

1. Introduction

Rules in the Web have become a mainstream topic these days. Onthe one hand, inference rules can
be marked up for e-applications, such as e-commerce and e-science; on the other hand, transformation
can be used for document generations and ontology reuse. Recently, rule interchange has been widely
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considered as an important issue - the World Wide Web Consortium (W3C) has set up a Rule Interchange
Format (RIF) Working Group to tackle this issue.

Representing and handling uncertainty1 has always been a fundamental issue in Knowledge Rep-
resentation and Artificial Intelligence. This research effort resulted in a plethora of formalisms with
different motivation and applications. For example, the size as well as the dynamic aspect of the Web
indicate the usefulness of rules handling uncertainty information. Indeed, the charter of the RIF Working
Group requires an extensible format to handle uncertainty rules.

The RuleML initiative is probably the earliest effort that defines a normalised markup for expressing
and exchanging rules in the Semantic Web. It is a modular markup language designed for expressing
knowledge bases in XML and XML/RDF. Currently, RuleML has syntactic mechanisms for encompass-
ing a series of rule languages, ranging from Datalog to HILOG. However, the support for representing
and associating uncertainty to rules and facts is rather limited. In particular, the current framework lacks
a general mechanism to accommodate major existing languages proposed in the latest two decades. For
this purpose, RuleML sets up the Fuzzy RuleML Technical Group to tackle this issue. In this paper, we
intend to provide a general framework of uncertainty rules,which hopefully will serve as the underpin-
ning of the coming Fuzzy RuleML language.

The need of representing uncertainty information in rules has been identified in various practical
applications. For instance, in order to enable the use emotion in photo search in the Web, such as
searching for photos of “happy people”, uncertainty is needed in representing the relationships between
human emotions and facial expression in image analysis about emotion recognition. We can capture such
relationships by rules (such as the following), but not those without uncertainty support (e.g., to some
degree some assertion is true):

• If someone has her eyebrows raised with a degree larger than 0.4 and has her mouth stretched with
a degree larger than 0.8, then she is happy with a degree larger than 0.7.

• If someone has her eyebrows raised with a degree larger than 0.7 and has her mouth open with a
degree larger than 0.9, then she is surprised with a degree larger than 0.7.

• If someone has her eyebrows squeezed with a degree larger than 0.8 and has her teeth visible with
a degree larger than 0.7, then she is angry with a degree larger than 0.7.

Using the above rules together with the following assertions: (1) Mary has her eyebrows raised with a
degree larger than 0.8, (2) Mary has her mouth stretched witha degree larger than 0.9, (3) Mary has her
mouth open with a degree larger than 0.6, we can draw the conclusion that Mary is more happy than
surprised.

The main contributions of the paper are two-folded. (1) On the one hand, it proposes a general
extension of uncertainty rules for RuleML. On the syntax aspect, it is adopted the existing markup.
On the semantic aspect, we try to be as general as possible, and to cover several categories of general
mechanisms, in which languages can be parameterized by the user in order to convey specific semantic
information. Different illustrative rule languages are briefly presented and aligned with the proposed
syntax, in order to discuss the pros and cons of the several alternatives. We hope this work can also

1Here we are using the term “uncertainty” in the wide sense, covering probability theory, possibility theory, fuzzy logic, and
ignorance.
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provide some insights on how to cover uncertainty in the RIF framework. (2) On the other hand, it inves-
tigate how to integrate such a framework in the ongoing Rule Interchange Format (RIF). In particular,
we will focus on how to accommodate different uncertainty semantics in RIF and how to extend the RIF
Core language to support uncertainties.

The rest of the paper is organised as follows. The next section briefly presents an illustrative set of
uncertainty rule languages. Section 3 proposes a general extension of RuleML to accommodate these
uncertainty rule languages. Such extension is explored in Section 4 to illustrate the encoding of several
of the languages previously described. Section 5 discussesdefault interpretation of connectives for the
fuzzy extension of RuleML, as a particular example of the proposed uncertainty extension. The proposal
of a RIF dialect for the language is proposed in Section 6. Section 7 concludes the paper by briefly
analysing the encodings and summarising the alternatives.

2. Illustrative uncertainty rule languages

The literature in Logic Programming contains a spate of semantics and languages for handling uncer-
tainty; we designate them uncertainty rule languages (including probabilistic, fuzzy, and possibilistic
ones). One of the first well known related languages is Van Emden’s quantitative deduction rules [21],
which are an extension of Horn clauses with a numeric “attenuation factor”:

A← q −B1& . . . &Bn, n ≥ 0 (1)

A quantitative deduction rule(1) is formed by ordinary first-order atomsA and B1 . . . Bn, and the
attenuation factorq, a real number in the interval(0, 1]. Truth-values of ground atoms, i.e. without
variables, are interpreted in the closed unit interval[0, 1]. A ground quantitative deduction rule is satisfied
by an interpretation I iffI(A) ≥ q ×min{I(Bi) | i ∈ {1, . . . , n}}.

In what follows, we briefly present some categories (namely,fuzzy and many-valued, possibilistic-
based and probabilistic-based approaches) uncertainty rule languages, in order to illustrate the existing
diversity of proposals and syntactical constructs. We willneglect, as possible, the important semantic
aspects, which can be rather involved. Interestingly, someof the following languages actually generalise
Van Emden’s quantitative deduction rules. Note that, however, the section is not intended to be an
exhaustive survey of such languages, which will be considered in a forthcoming publication.

2.1. Fuzzy and many-valued approaches

Fuzzy and many-valued approaches usually depart from a many-valued logic and associate truth-values,
weights or degrees to rules and facts. Normally the underlying logic is truth-functional.

2.1.1. Fuzzy logic programs

A typical language is Vojtáš and Pauĺık [48]’s fuzzy logic programming. It is a generalization of definite
logic programming, where programs are constructed from an implication connective (say←1), with
corresponding t-norm adjunction (resp.⊗1), and another t-norm operator denoted by⊗2. A t-norm is a
generalization to the many-valued setting of the conjunction connective. In their setting, a fuzzy rule is
of the form:

A←1 B1 ⊗2 . . .⊗2 Bn with-cf q (2)
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where a rational numberq in [0,1] expresses a confidence factor, andA andB1, . . .Bn are atoms with
truth-value in the unit interval[0, 1]. Van Emden’s quantitative deduction rules [21] can be seen as a
special form of fuzzy rules, where←1 is Goguen implication, with⊗1 as its adjunction (product), and
⊗2 is Gödel t-norm (minimum). Note that the restriction to thecarrier [0, 1] is not essential and was
lifted in [13], in continuation of the initial work of Vojtǎ́s and Pauĺık.

2.1.2. f-SWRL

The more recently proposed fuzzy Semantic Web rule language(f-SWRL) language [38] provides OWL
DL [35] axioms (but with fuzzy interpretation) as well as fuzzy rule axioms of the following form:

A ∗ w← B1 ∗ w1 ∧ . . . ∧Bn ∗ wn (3)

where A,B1, . . . , Bn are either concepts (unary predicates) or properties (binary predicates) used in
OWL DL axioms, and the weightsw1, . . . wn andw are real numbers in the unit interval. The f-SWRL
language provides a framework to accommodate different operations (such as fuzzy intersection, union,
negation, implication as well as weight operations) as longas they conform to the key constraints of
f-SWRL, such as that the degree of fuzzy implication should be no less than the weight of the head, and
that fuzzy assertions are special forms of fuzzy rule axioms, which requires allowing the consequent to
be a constant. As f-SWRL knowledge bases also contains fuzzyconcepts and role axioms from fuzzy
OWL, they are not special forms of Vojtáš and Pauĺık [48]’s fuzzy logic programs, nor are they special
forms of the annotated logic programs to be introduced below.

A more general framework has been proposed by Thomas Lukasiewicz in [34] which allows for
the integration of ontologies with rule bases, allowing also default negation. Syntactically, fuzzy dl-
programs allow the combination of arbitrary t-norms in the body with arbitrary negation-like operators.
Furthermore, DL-atoms can be used in the bodies of fuzzy dl-rules to query ordinary description logic
knowledge bases.

2.1.3. Annotated logic programs

In this family of languages, rules keep a classical interpretation while uncertainty is associated with
atoms, not with the implication. Generalized annotated logic programs (GAPs) is the fundamental for-
malism [26] in this approach. Annotated rules are of the form:

A : f(µ1, . . . , µn)← B1 : µ1 & . . . & Bn : µn (4)

whereµ1, . . . , µn are either annotation constants or annotation variables and f is a total, continuous and
computable function. The intuitive reading of annotated rules is if B1 � µ1, . . . , Bn � µn thenA �
f(µ1, . . . , µn). Annotations denote elements in such given upper-semilattice, used as underlying truth-
value space, where� is the corresponding order. Note that annotation variablescannot be used as object
variables in the atoms, and vice-versa. Van Emden’s quantitative deduction rules can be represented as
annotated rules of the following forms:

A : q ×min(µ1, . . . , µn)← B1 : µ1 & . . . & Bn : µn,

whereµ1, . . . , µn are annotation variables.
Other annotation-based approaches include, e.g., signed formula logic programming (SFLP) [30],

which theoretically has the same expressive power as GAPs [30].
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2.2. Possibilistic-based approaches

Possibilistic logic is a logic of uncertainty designed for reasoning under incomplete evidence and partially
inconsistent knowledge [18]. The logic is non truth-functional, and its integration with logic program-
ming has been proposed firstly in [17] have been proposed. Apossibilistic logic programis a finite set
of (first-order) possibilistic Horn clauses annotated onlywith necessity degrees of the following form:

A ← B1 ∧ . . . ∧Bn (Nα) (5)

where A,B1, . . . , Bn are propositional symbols and(Nα) is the necessity degree of the clause with
0 ≤ α ≤ 1. The intended minimal model for possibilistic logic programming [17] can be captured
by a straightforward translation into quantitative deduction rules, where the underlying implication and
conjunctor are the corresponding Gödel’s connectives.

Possibilistic logic has been extended with fuzzy constantsand fuzzy quantifiers [20] and Horn frag-
ments have been studied in the literature, namely in [2, 3, 4]. However the use of implication and
conjunction is not equivalent to the use of disjunction and negation, and both variants are described in
the literature. Syntactically, rules or clauses have attached a valuation function (see [2] for more details).

2.3. Probabilistic-based approaches

A third kind of approach of uncertain rule languages is basedon probability theory. These are the
most complex languages since the underlying connectives are not truth-functional, requiring complex
definitions and approaches.

2.3.1. Probabilistic logic programs

Probabilistic knowledge bases of Lukasiewicz [31] are setsof conditional constraints of the form:

(H | B)[c1, c2] (6)

whereH andB are ordinary first-order formula, andc1 ≤ c2 are rational numbers in the interval[0, 1].
Probabilistic logic programs of are sets of conditional constraints whereH is restricted to a conjunction
of atoms andB is either a conjunction of atoms or>. These conditional constraints express that the
conditional probability ofH given B is betweenc1 andc2 or that the probability of the antecedent is
0. A semantics and complexity of reasoning are exhaustively studied, and in most cases is intractable
and not truth-functional. However, for a special kind of probabilistic logic programs the author provides
relationships to “classical” logic programming. Ordinaryprobabilistic logic programs are probabilistic
logic programs where the conditional constraints have the restricted form

(A | B1 ∧ . . . ∧Bn)[c, 1] or (A | >)[c, 1] (7)

Under positively correlated probabilistic interpretations (pcp-interpretations), reasoning becomes tractable
and truth-functional, and can be embedded into quantitative deduction rules. This framework has been
further explored by integrating probabilistic reasoning with description logics [33].
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A theory of probabilistic deductive databases is describedin Lakshmanan and Sadri’s work [27]
where belief and doubt can both be expressed explicitly withequal status. Probabilistic programs (p-
programs) are finite sets of triples of the form:

(

A
c
←− B1, . . . , Bn;µr, µp

)

(8)

As usual,A, B1, . . . ,Bn are atoms, which may not contain complex terms,c is a confidence level, and
µr (µp) is the conjunctive (disjunctive) mode associated with therule. For a given ground atomA, the
disjunctive mode associated with all the rules forA must be the same. Confidence levels are pairs of
intervals〈[α, β]〉[γ, δ], the first component denoting the belief and the second doubt. This terminology is
borrowed from Fitting’s bilattices [22]. This was further generalized by Loyer and Straccia [29] within
the framework of normal parametric programs

A
α
← L1, . . . , Ln; 〈fd, fp, fc〉 (9)

The functionfd is the disjunction function used to combine information from the several rules for pred-
icate A, and fp and fc are the propagation function and the conjunction function.The conjunction
function is used to combine the information from literals inthe body of the ruleL1, . . . , Ln, while fp is
used to combine this result with the certainty of the ruleα, taken from a lattice. The truth-value of atoms
are intervals in some lattice. The body can also contain truth-values in the lattice, besides literals.

2.3.2. Hybrid probabilistic logic programs

Hybrid probabilistic logic programs [16] are an adaptationof generalized annotated logic programs to
deal with probabilistic reasoning, but with a different semantics. In this approach, the notion of prob-
abilistic strategy is introduced because there is no single“formula” for computing the probability of a
complex event (e1 ∧ e2) wheree1 ande2 are primitive events [16]. We refer the reader to [16] for more
details about probabilistic strategies.

A hybrid probabilistic logic program over the setS of probabilistic-strategies is a finite set of hp-rules
of the form:

F0 : µ0 ← F1 : µ1 ∧ . . . ∧ Fk : µk (10)

where eachFi : µi is an hp-annotated basic formula overS. Intuitively, an hp-rule means that “if the
probability ofF1 falls in the intervalµ1 and . . . and the probability ofFk falls within the intervalµk, then
the probability ofF0 lies in the intervalµ0”. The Fis are designated hybrid basic formulas and are either
applications of conjunctive (Bi

1
∧s . . . ∧s Bi

ni
) or disjunctive strategies (Bi

1
∨s . . . ∨s Bi

ni
) to finite sets

of distinct atoms (Bi
1
, . . . , Bi

ni
), encoding complex events. Intervals are pairs[c1, c2] of reals numbers in

the unit interval. Hybrid probabilistic logic programs have been further generalized to capture temporal
aspects in real-world applications [15], in particular annotations are more complex since they contain a
time dimension.

2.3.3. Logic programs with annotated disjunctions

Stochastic logic programs are a generalization of Hidden Markov Models [37, 10] and are constituted by
range restricted Horn clauses labeled with non-negative numbers:

p : A :−B1, . . . , Bn (11)
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The original framework by Muggleton [37] enforced that the numbers are probability labels in the unit
interval, which should sum to 1 for every predicate symbol defined in the program. Stochastic logic
programs have a distributional semantics based on SLD-derivations, assigning a probability distribution
to each predicate symbol. The dependency on a particular proof mechanism has been criticized in [46],
mostly because of its non-declarative character. Logic programs with annotated disjunctions (LPADs)
are more declarative and are formed by rules of the form:

(A1 : p1) ∨ . . . (Am : pm)← L1 . . . , Ln (12)

where eachAi is an atom,
∑

1≤i≤n pi = 1 andL1, . . . ,Ln are literals (atoms or their default negation).
Eachpi is a probability in the unit interval, and the semantics defines again a probability distribution on
Herbrand interpretations. Logic programs with annotated disjunctions generalise Poole’s independent
choice logic programs [39].

2.3.4. Bayesian logic programs

Finally, we consider Bayesian logic programs [25] which consist of a (finite) set of Bayesian rules of the
form:

A | B1, . . . , Bn, n ≥ 0 (13)

The distinctive feature of Bayesian logic programs is that for each clausec there is exactly one condi-
tional probability distributioncpd(c), and for each Bayesian predicatep/l there is exactly one combining
rule cr(p/l). It is usually assumed thatcpd(c) is represented as a table; other possible representations
are decision trees and rules! The distributioncpd(c) generically represents the conditional probability
distributions associated with each ground instance of the corresponding clause, while the combining
rule expresses how the different probability distributions of clauses for a given predicate are combined;
an often used combining rule is noisy-or. Bayesian networkscan be embedded into Bayesian Logic
Programs.

3. A general uncertainty extension for RuleML

In this section, we propose an uncertainty extension of RuleML which attains the following “conflicting”
objectives:

• to extend RuleML with a basic and modular set of constructs;

• to be general enough to accommodate main existing rule-based languages dealing with uncertainty;

• to be natural and easy usable by the user;

• to adopt language defaults that are transparent and reasonable to the user;

The existing RuleML 0.9 version already provides the attribute@weight in element<slot>. Attribute
@weight is used to express a slot relative weight with respect to its siblings, and has been applied to
encode in RuleML node-labeled, arc-labeled, weight-labeled trees [6]. This relevance measure is used
in [6] to define semantic matching between trees, and usuallythese weights are normalized real numbers
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in the unit interval[0, 1]. In this paper we ignore this important issue of similarity and ranking, and
possible extensions, which should be incorporated in a full-fledged RuleML framework in particular
to represent and reason with fuzzy data. Some proposals already support these notions, like the ones
described in [5, 40, 9].

More interesting for our objectives is the element<degree>, a child of element<Atom> and<Equal>
in RuleML 0.9. This was originally intended to represent “anoptional truth value (between0 and1) that
may be assigned to facts and rules,” as proposed in [41]. Alsoimportant, RuleML 0.9 defines the attribute
@kind which is allowed in solely in the<Implies> element, for choosing between first-order and logic
programming rules. The original terminology of RuleML is adopted and adapted to achieve the design
goals of our uncertainty extension.

From an attentive analysis of the literature, and in particular of from the previous set of languages, it
can be concluded that are some common features:

• most of the languages use implication symbols to represent rules;

• most of the languages, except annotated ones, attach to rules confidence degrees, probabilities,
weights, conditional probability tables, etc. . . ;

• to different languages usually correspond different typesof implication, conjunction and disjunc-
tion operators in the rules, some of them even allow different operators in the same rule base;

• some languages permit combination of complex formula in thebody and in the head of rules,
which surpass the simple conjunctions and disjunctions;

• annotation-based languages attach complex annotations toatoms, and even to formulae;

• some languages use parameters to specify the behaviour of rules;

• some languages adopt general truth-values structures, namely lattices and residuated lattices.

In order to achieve the objectives stated at the beginning ofthis section, our concrete proposal consists
in extending the RuleML 0.9 by:

• adding@mapKind to performatives<Assert>, <Query> and<Protect>.

• permitting the use of@kind in <Atom>, besides in<Implies>, as well as in any other RuleML
connective<Equivalent>, <Integrity>, <And>, <Or>, <Neg>, and<Naf>.

• the optional element<degree> is allowed in the previous RuleML connectives.

The @kind attribute is used to specify semantic information regarding the construct (e.g. t-norm or
implication used). The attribute@mapKind in the performatives expresses the (default) value of the
@kind attribute of the performative child element(s); this is a technique adopted in RuleML designated
attribute mapping. This simplifies writing of rule bases, without requiring repetitive declarations of
the intended interpretation of connectives. In order to associate weights, annotation, or probability, or
truth-value associated with complex formula, the element<degree> is used. These amendments have a
reduced impact in the RuleML language, and is downward compatible with the existing syntax. For the
sake of completeness, the abstract syntax is presented in Figures 1 and 2, in the style of [24]. We prefer
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Assert

attributes: @mapDirection, @mapClosure,@mapKind
content: ( oid?, (formula)* )

Query

attributes: @closure,@mapKind

content: ( oid?, (formula)* )

Protect

attributes: @closure, @mapDirection, @mapClosure,

@mapKind
content: ( oid?, (warden)+, (formula)* )

@mapKind

[optional] (default:fo| lp | list to be completed)

Figure 1. Content Models for Performatives

to use the normalized striped syntax, and therefore ignoring stripe skipping in the content models. The
differences to RuleML 0.9 are marked in bold in the figures. Notice that some of RuleML elements are
context dependant, and the reader is referred to [24] for theallowed combinations. Concrete fragments
of XML markup can be found in the examples of next section.

An implicit and major design decision regards the syntacticcoexistence of annotation and implication
based approaches. Annotated atoms are captured by the new attribute@kind in the<Atom> element:

<Atom kind="gap">

<degree>

<Data xsi:type="xsd:decimal">0.5</Data>

</degree>

<op><Rel>prop</Rel></op>

</Atom>

Notice also the use of element<degree> to associate the corresponding annotation. The annotation
might also be a variable or a complex annotation (only in headof rules). Similarly, signed formula logic
programming [8] can be encoded in our uncertainty extension, but where degrees are sets of constants
or even complex propositional formula. In order to be able tohandle the more complex languages like
hybrid probabilistic logic programs, the attributekind and element<degree> are allowed in arbitrary
formula. It should also be mentioned, that annotated atoms can always be understood as the implication

<Implies kind="zadeh">

<head>

<Atom><op><Rel>prop</Rel></op></Atom>

</head>

<body>

<Constant>

<degree>
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Atom

attributes: @closure,@kind
content: (oid)?, degree?, op, (slot)*, (arg)+, (slot)*

Implies

attributes: @closure, @direction, @kind

content: ( oid?,degree?, (( head, body)| ( body, head) ))

Integrity

attributes: @closure, @direction,@kind

content: ( oid?,degree?, formula)

Equivalent

attributes: @closure,@kind

content: ( oid?,degree?, torso, torso )

And, Or

attributes:@kind (@closure within Query only)

content: ( oid?,degree?, (formula)* )

Naf

attributes:@kind
content: ( oid?,degree?, weak )

Neg

attributes:@kind

content: ( oid?,degree?, strong )

degree

attributes:none

content: ( Data )

@kind [optional]

(default:fo| lp | list to be completed)

Figure 2. Content Models for Formulas in Our Uncertainty Extension

<Data xsi:type="xsd:decimal">0.5

</Data>

</degree>

</Constant>

</body>

</Implies>

However, this results in complex markup that is difficult to understand and requires a new type of
formula<Constant>which is currently absent from RuleML; therefore it is adopted the simplest syntax
with <degree> element in atoms. This latest encoding has the advantage that variables in annotations
are not required (see [14]). The implication connective used has been proposed by Zadeh [19] and is
interpreted by the function

I(x ⊃ y) =

{

1.0 if x ≤ y

0.0 otherwise

The specific encoding of implication-based languages is straightforward, and will be analysed in detail
in the next section.

4. Examples of encoding existing languages

The simplest (at the syntactical level) rule-based languages (see examples in Section 2) depart from
definite logic programming rules by adding a degree associated with the rule, these include quantitative



Carlos Viegas Damásio et al. / Representing Uncertainty inRuleML 11

deduction, possibilistic logic programming, ordinary probabilistic logic programs, and stochastic logic
programs. These can be rendered according to the following general pattern:

<Implies kind="...">

<degree>

<Data xsi:type="xsd:decimal">...</Data>

</degree>

<head><Atom>...</Atom></head>

<body><And>...</And></body>

</Implies>

The kind attribute in element<Implies> could be used to specify the underlying semantics of the
rule (e.g."slp" for stochastic logic programs2). The degree is always a non-negative decimal number.
However, except for stochastic logic programs, these are all particular cases of the fuzzy logic program-
ming framework which follows the pattern:

<Implies kind="some-implication">

<degree>

<Data xsi:type="xsd:decimal">...</Data>

</degree>

<head><Atom>...</Atom></head>

<body>

<And kind="some-tnorm">...</And>

</body>

</Implies>

Facts are encoded as

<Atom>

<degree>

<Data xsi:type="xsd:decimal">...</Data>

</degree>

<op><Rel>...</Rel></op>

...

</Atom>

or, equivalently, by empty body implications:

<Implies kind="some-implication">

<degree>

<Data xsi:type="xsd:decimal">...</Data>

</degree>

<head><Atom>...</Atom></head>

<body><And></And></body>

</Implies>

2The exact identifiers of supported languages will be defined elsewhere. For instance, it seems preferable to assign to each of
these semantics a URI, for specifying the several allowed forms of rules.
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In order to guarantee the equivalence of the above encodings, it is suggested to use implication
connectives that obey to the property,

I(x→ y) = 1.0 iff I(x) ≤ I(y)

In particular, R-implications satisfy this property (see for instance [19] for a definition). The property
guarantees the existence of a unique least model for the above programs (see [13]). Some usual R-
implications are Lukasiewicz, Gödel, Goguen, and Fodor which are based on the corresponding t-norms
bold intersection, minimum, product, andnilpotent minimum. To avoid syntactic overhead, we take the
liberty of removing the attribute@xsi:type="xsd:decimal" from all <Data> elements in the remain-
ing examples.

Example 4.1. For instance, the following ordinary probabilistic logic programming rule [31] expresses
that the probability of catching a traffic jam while reachingR from S by taking a south road is at least
0.9:

(reach(R,S) | road(R,S) ∧ south(R,S)) [0.9, 1.0]

Under pcp-interpretations (see [31]), is equivalent to thefollowing quantitative deduction rule

reach(R,S)← 0.9− road(R,S) & south(R,S)

which can be represented in our uncertainty extension as

<Implies kind="goguen">

<degree>

<Data>0.9</Data>

</degree>

<head>

<Atom><op><Rel>reach</Rel></op>

<Var>R</Var>

<Var>S</Var>

</Atom>

</head>

<body>

<And kind="minimum">

<Atom><op><Rel>road</Rel></op>

<Var>R</Var>

<Var>S</Var>

</Atom>

<Atom><op><Rel>south</Rel></op>

<Var>R</Var>

<Var>S</Var>

</Atom>

</And>

</Implies>

For possibilistic logic programming, the encoding is simpler since the implication used is Gödel’s
one and conjunction is the corresponding minimum t-norm.
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The language f-SWRL has more cases to be taken care due to the use of weights in the body of rules.
The interpretation of combination of atoms with weights in bodies can be seen as a generalization of
implications with a constant (weight) in the antecedent andatom in the consequent, which is very similar
to the meaning of an annotated atom. Therefore, the same syntax is used.

Example 4.2. Consider the following f-SWRL rule

Happy(?a) ∗ 0.7←

EyebrowsRaised(?a) ∗ 0.4 ∧MouthOpen(?a) ∗ 0.8

This can be encoded as follows, where Gödel’s implication is used and Goguen implication is used as
weight function:

<Implies kind="goedel">

<degree><Data>0.7</Data></degree>

<head>

<Atom>

<op><Rel>Happy</Rel></op>

<Var>a</Var>

</Atom>

</head>

<body>

<And kind="minimum">

<Atom kind="goguen">

<degree><Data>0.4</Data></degree>

<op><Rel>EyebrowsRaised</Rel></op>

<Var>a</Var>

</Atom>

<Atom kind="goguen">

<degree><Data>0.8</Data></degree>

<op><Rel>MouthOpen</Rel></op>

<Var>a</Var>

</Atom>

</And>

</body>

</Implies>

This encoding is capable of capturing all forms of weight functions since it is implicitly assumed
that annotated atoms are viewed as special forms of implication. However, f-SWRL fuzzy assertions
specifying at most conditions, of the form(a : C) ≤ m and(< a, b >: r) ≤ m, require the introduction
of truth-value constants in the language, which is not beingproposed in the current version of the lan-
guage. Alternatively, the use of integrity constraints might be an interesting alternative for representing
such statements. Regarding, fuzzy description logic programs [34] the encoding requires the introducing
of a special form of atoms, DL-atoms, which is not tackled by the previous syntax, requiring additional
investigation.

Similar ways of encodings probabilistic knowledge bases, probabilistic logic programs [32] can be eas-
ily defined, by simply allowing more complex formula in the head and body of rules, and using lists
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of two numbers to represent the associated intervals. More simple are logic programs with annotated
disjunctions [46], which can be translated as shown in the example below.

Example 4.3. Consider the LPAD rule, expressing that the probability of obtaining heads and tails after
tossing a non-biased coin is equiprobable.

(heads(Coin) : 0.5) ∨ (tails(Coin) : 0.5)

← toss(Coin),¬biased(Coin)

Notice this is a concrete extension to the Dishornlog fragment of RuleML 0.9, namely with negation as
failure and probabilistic information. This is rendered inour uncertainty extension as:

<Implies kind="lpad">

<head>

<Or>

<Atom>

<degree><Data>0.5</Data></degree>

<op><Rel>heads</Rel></op>

<Var>Coin</Var>

</Atom>

<Atom>

<degree><Data>0.5</Data></degree>

<op><Rel>tails</Rel></op>

<Var>Coin</Var>

</Atom>

</Or>

</head>

<body>

<And>

<Atom><op><Rel>toss</Rel></op>

<Var>Coin</Var>

</Atom>

<Naf>

<Atom><op><Rel>biased</Rel></op>

<Var>Coin</Var>

</Atom>

</Naf>

</And>

</body>

</Implies>

Regarding Bayesian logic programs, the encoding is more difficult since several predicate specific para-
metric information should be provided in each rule. The<degree> element of the implication is now
a conditional probability table and the combination mode used is specified in the@kind attribute in the
atom element child of<head>. Care should be taken in order to guarantee that the same combination
mode is used in all rules for that predicate.

Other probabilistic approaches like p-programs [28, 27] and normal-parametric programs [29] re-
quire a similar technique: in the<Implies> element we use@kind to associate the propagation function
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with the implication symbol or the probabilistic combination function used; the disjunction combination
mode is specified in the@kind attribute in the atom element child of<head>; the conjunction mode is
present in the<And> element in the body of the rule.

The annotation-based approaches are similar, and here we illustrate one of the more complex ones,
namely hybrid probabilistic logic programs, which requirethe use of<degree> element with complex
formulae:

Example 4.4. Consider the following hp-rule

(paper accepted ∨pc go conference) : [0.85, 0.98] ←−

(good work ∧ind good referees) : [0.7, 0.9] &

have money : [0.9, 1.0]

The translation into our uncertainty extension is:

<Implies kind="hplp">

<head>

<Or kind="positive-correlation">

<degree><Data>0.85 0.98</Data></degree>

<Atom><op><Rel>paper_accepted</Rel></op>

</Atom>

<Atom><op><Rel>go_conference</Rel></op>

</Atom>

</Or>

</head>

<body>

<And>

<And kind="independence">

<degree><Data>0.7 0.9</Data></degree>

<Atom><op><Rel>good_work</Rel></op>

</Atom>

<Atom><op><Rel>good_referees</Rel></op>

</Atom>

</And>

<And kind="independence">

<degree><Data>0.9 1.0</Data></degree>

<Atom><op><Rel>have_money</Rel></op>

</Atom>

</And>

</And>

</body>

</Implies>

The remaining annotation-based languages are treated similarly. A summary of the proposed encodings
can be found in Table 1, where the syntax of<Implies> is specified for some of the existing languages.
Notice that for annotation-based languages the<degree> element is not present, like in the previous
example. There is still the need to integrate the several languages in a common algebraic framework, like
multi-adjoint, residuated or monotonic logic programming[13, 36]. However, due to their very general
abstract syntax of rules, they cannot be encoded in our current proposal for the RuleML extension.



16 Carlos Viegas Damásio et al. / Representing Uncertainty inRuleML

Table 1. Encoding of uncertainty rule languages in RuleML

Language @kind <head> <body> <degree>

QD [21] goguen <Atom> <And kind="minimum"> [0, 1]

FLP [47] r-impl <Atom> <And kind="tnorm"> [0, 1]

Poss [17] goedel <Atom> <And kind="minimum"> [0, 1]

f-SWRL [38] r-impl <Atom> <And kind="tnorm"> of

<Atom><degree>

[0, 1]

GAP [26] gap <Atom><degree> <And> of <Atom><degree> none

(complex annot.) (var and const. annot.)

SFLP [30] signed (as in GAP) (as in GAP) sets of formulas
or 2∆

PKB [32] pkb any formula any formula C[0, 1]

PLP [32] plp <And> of <Atom> <And> of <Atom> C[0, 1]

PP [27] p-p <Atom kind="µp"> <And kind="µr"> C[0, 1]× C[0, 1]

NPP [29] fp <Atom kind="fd"> <And kind="fc"> of <Atom>

and<Neg><Atom>
α in lattice

HPLP [16] hplp <And kind="strat">

<degree> or

<Or kind="strat">

<degree>

<And> of formulas like in the
head

none

constant annotations
C[0, 1]× C[0, 1]

constant annotationsC[0, 1] ×
C[0, 1]

LPAD [46] lpad <Or> of

<Atom><degree>

<And> none

degree in[0, 1]

SLP [37, 10] slp <Atom> <And> [0,∞]

BLP [25] blp <Atom kind="cr"> <And> cpd

5. Fuzzy RuleML

So far we have introduced the optional<degree> element and the@kind attribute into RuleML. The
<degree> element can be attached to atoms (or rules) to specify confidence degrees, truth-values, prob-
abilities, weights, annotations, etc. The@kind attribute can be used to indicate the semantics of con-
nectives. In order to make our uncertainty extension compatible with RuleML, and more importantly,
to simplify the writing of uncertainty programs, some default settings should be provided for the degree
elements and the semantics of the connectives. Due to its simplicity and ease of implementation, it is
adopted a fuzzy interpretation of the connectives in the spirit of the languages described in Section 2.1.1.

• The underlying truth-value lattice is the unit interval[0, 1], which is used in the majority of uncer-
tainty rule languages. When a degree element is omitted, it is assumed to stand for the real number
1.0.
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• The default semantics for conjunction is minimum t-norm.

• The default semantics for disjunction is maximum s-norm.

• The default semantics for negation is1− x.

• Consequently, Gödel implication is used by default for interpreting implication, where

x→G y =

{

1 if x ≤ y

y otherwise

This means an imply element<Implies kind="goedel"> can be simplified as<Implies>.

There are some remarks here. Firstly, what we are trying to propose here is a reasonable default
setting, rather than thebestdefault setting (which might be impossible to achieve, since different people
have different preferences). Like f-SWRL, we regard it an important feature that the uncertain programs
will be used together with some ontologies. It has been pointed out [42] that, under the above semantics
of the connectives, ontology consistency checking of fuzzyontologies can be reduced to that of classic
(Description Logic-based) ontologies. This indicates classic Description Logic reasoners can be reused
to provide reasoning support for fuzzy ontologies. On the other hand, there are already query answering
procedures for fuzzy logic programming based rule languages, some supporting both strong and weak
negation, which can be found in [23, 11, 12, 43, 45]. It shouldbe noticed that for the default interpretation
of connectives, the proof procedures in [11, 12] do terminate in polynomial time in the data complexity
for DATALOG programs.

Secondly, the selection of default connectives also is compatible with classical logic programming,
and the use of the minimum t-norm guarantees that the resulting intended model of the program will be
the greatest, amongst all t-norms (minimum is the less conservative t-norm).

Also, the distinction between strong and naf negation in this framework is not immediate (see for
instance [49]) and might require more complex truth-value lattices, namely bilattices [1, 29]. Further
discussions on this will be part of our future work.

Last but not the least, if the default setting is not the preferred one for some applications, the users
should be able to overwrite the default setting for their uncertain programs. For instance, they could
specify an URL of an RDF file, which uses some pre-defined properties to specify the defaults.

6. Uncertainty dialect for RIF

In this section, we investigate how to integrate the above uncertainty framework into the W3C Rule
Interchange Format (RIF). Although RIF is still a moving target at the moment, the RIF Working Group
has come up with a preliminary version of the core language [7], which is used as the base for our
uncertainty extension.

The RIF Core language is essentially Horn rules with equality, with its abstract syntax specified in
asn06 and has a concrete human-readable syntax, described in EBNF. The abstract syntax can be found
in Figure 3, corresponding to lines not in bold format. Our extension is depicted in the same figure, where
newly introduced features appear in bold type. The only non-standard feature of the presentation, is that
classATOMIC has propertieskind anddegree which are inherited by subclassesEqual andUniterm.
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class Ruleset

property formula :list of RULE

class RULE

subclass Forall

property declare :list of Var

property formula : CLAUSE

class CONDITION

subclass And

property formula :list of CONDITION

property kind: xsd:anyURI

property degree: Uniterm

subclass Or

property formula :list of CONDITION

property kind: xsd:anyURI

property degree: Uniterm

subclass Exists

property declare :list of Var

property formula : Uniterm

property kind: xsd:anyURI

property degree: Uniterm

subclass ATOMIC

class CLAUSE

subclass ATOMIC

subclass Implies

property if: CONDITION

property then: CONDITION

property kind: xsd:anyURI

property degree: Uniterm

class ATOMIC

subclass Equal

property side:list of TERM

subclass Uniterm

property kind: xsd:anyURI

property degree: Uniterm

class TERM

subclass Var

property name:xsd:string

subclass Const

property name:xsd:string

subclass Uniterm

property op: Const

property arg: list of TERM

Figure 3. Uncertainty RIF dialect abstract syntax inasn06 notation

We are using this feature to denote that these properties only make sense in the scope ofATOMIC class,
not being present for generalUniterm andEqual instances. The concrete syntax of RIF Core is not yet
finished by the W3C Working Group, but we will use the existingone for presenting our proposal. We
do not address the multisorted RIF Logic, even though such a feature will be of utmost importance for a
complete uncertainty RIF dialect.

Ruleset::= RULE*
RULE ::= ′Forall ′ Var* ′( ′ CLAUSE ′) ′

CLAUSE ::= Implies | ATOMIC
Implies ::= CONDITION ′:- ′ CONDITION
CONDITION ::= CONJUNCTION | DISJUNCTION | EXISTENTIAL | ATOMIC
CONJUNCTION ::= ′And ′ ′( ′ CONDIT * ′) ′
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DISJUNCTION ::= ′Or ′ ′( ′ CONDIT * ′) ′

EXISTENTIAL ::= ′Exists ′ Var+ ′( ′ CONDITION ′) ′

ATOMIC ::= Uniterm | Equal
Uniterm ::= Const ′( ′ TERM * ′) ′

Equal ::= TERM ′= ′ TERM
TERM ::= Const | Var | Uniterm
Const ::= CONSTNAME | ′" ′ CONSTNAME ′" ′ ′^^ ′ SORTNAME
Var ::= ′? ′ VARNAME | ′? ′ VARNAME ′^^ ′ SORTNAME

The non-instantiable classes appear with names fully capitalized. In particular,ATOMIC stands for an
atomic formula, which can be either an universal term (Uniterm ) or an equality of twoTERM s. We have
generalised the RIF Core language, by allowing to appear RIFCONDITION s in the head (then-part)
and body of a rule (if-part). RIF Core restricts heads of rules to beATOMIC .

In an uncertainty dialect of the RIF language, one can introduce degrees to a rule or an atom in a rule
in the following modified human-readable syntax:

Implies ::= CONDITION ′:- ′ [ DEGREE ′- ′ ] CONDITION
ATOMIC ::= Uniterm [ ′: ′ DEGREE ] | Equal [ ′: ′ DEGREE ]
DEGREE ::= Uniterm

Note that the degrees are optional, and for the sake of the generality they are assumed to be arbitrary
Uniterms; of course, it is expected that most of the times these will be constants of sortxsd:decimal or
xsd:double. For example, we can express the uncertainty rule ‘the probability of catching a traffic jam
while reachingR from S by taking a south road is at least 0.9’ from Example 1 as follows:

Forall ?R ?S (

reach(?R ?S) :- 0.9 -

And( road(?R ?S)

south(?R ?S) )

)

In the above rule, the degree 0.9 is set on the implication, while in the following rule the degrees are
set on the atoms. The uncertainty rule ‘If someone has her eyebrows raised with a degree larger than 0.4
and has her mouth stretched with a degree larger than 0.8, then she is happy with a degree larger than
0.7.’ from Example 2 can be expressed as follows:

Forall ?a (

Happy(?a) : 0.7 :-

And( EyebrowsRaised(?a) : 0.4

MouthOpen(?a) : 0.8 )

)

Besides the introduction of degrees, one can also introducethe kind attribute to specify the kind of
semantics for implications, conjunctions, disjunctions,and existential quantifications in the body. The
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atoms may also have an attached kind information, for supporting several languages, as described in
Section 4. The equality atom may also use kind information for specifying, for instance, similarity fuzzy
relations. The full syntax of the uncertainty in concrete human readable syntax is:

Implies ::= CONDITION ′:- ′ [ KIND ] [ DEGREE ′- ′ ] CONDITION
CONJUNCTION ::= ′And ′ [ KIND ] ′( ′ CONDIT * ′) ′ [ ′: ′ DEGREE ]
DISJUNCTION ::= ′Or ′ [ KIND ] ′( ′ CONDIT * ′) ′ [ ′: ′ DEGREE ]
EXISTENTIAL ::= ′Exists ′ [ KIND ] Var+ ′( ′ CONDITION ′) ′ [ ′: ′ DEGREE ]
ATOMIC ::= Uniterm [ KIND ] [ ′: ′ DEGREE ] | Equal [ ′: ′ DEGREE ]
Equal ::= TERM ′= ′ [ KIND ] TERM
KIND ::= ′< ′ xsd:anyURI ′> ′

DEGREE ::= Uniterm

The kind should be a xsd:anyURI for identifying the corresponding non-default behaviour of connective.
Using this extension, the uncertainty rule ‘the probability of obtaining heads and tails after tossing a

coin is equiprobable’ can be expressed as follows:

Forall ?Coin (

Or(Heads(?Coin):0.5 Tails(?Coin):0.5) :- <lpad> Toss(?Coin)

)

The single sorted semantics of RIF is provided by semantic structures (or interpretations) of the form
< D, IC , IV , IF , IR > whereD is the domain, and four mappings:

• IC mapping constants to elements of the domainD.

• IV mapping variables to elements of the domainD.

• IF mapping constants to functions fromD∗ to D, for interpreting functor symbols.

• IR mapping constants to truth-valued mappings fromD
∗ → TV, for interpreting predicate sym-

bols.

¿From these, it is defined the general mappingI for interpreting Uniterms, as usual:

• I(k) = IC(k) if k is a constant symbol

• I(?v) = IV (?v) if ?v is a variable

• I(f(t1 . . . tn)) = IF (f)(I(t1), . . . , I(tn))

The truth-value spaceTV in our uncertainty RIF dialect is the unit interval[0, 1], and as expected, an
omitted degree is interpreted as1.0. This truth-value space is endowed with a truth-order corresponding
to the usual total order in the real numbers, and this is denoted byx ≤t y iff x is less than or equal toy.
Regarding default interpretations of connectives, the definitions presented in [7] are extended below to
cater for degrees. In the following, it is assumed thatdeg is a Uniterm such thatI(deg) is mapped into
an element of the real unit interval, and→G is Gödel’s implication. We also assume thatI(deg) > 0.0,
otherwise the conditions annotated with a degree are trivially mapped into1.0.



Carlos Viegas Damásio et al. / Representing Uncertainty inRuleML 21

• Atomic Formulas:ITruth(r(t1 . . . tn) : deg) = I(deg)→G IR(r)(I(t1) . . . I(tn))

• Equality: ITruth(t1 = t2 : deg) = 1.0 iff I(t1) = I(t2), otherwiseITruth(t1 = t2 : deg) = 0.0.

• Conjunction: ITruth(And(c1 . . . cn) : deg) = I(deg) →G mint (ITruth(c1), . . . , ITruth(cn)),
wheremint is minimum with respect to the truth order.

• Disjunction: ITruth(Or(c1 . . . cn) : deg) = I(deg) →G maxt (ITruth(c1), . . . , ITruth(cn)),
wheremaxt is maximum with respect to the truth order.

• Quantification:ITruth(Exists?v1 . . .?vn(c) : deg) = I(deg) →G lubt(I
∗
Truth(c)), wherelubt is

taken over all interpretationsI∗ of the form< D, IC , I∗V , IF , IR >, whereI
∗
V is the same asIV

except possibly on the variables?v1, . . . , ?vn (i.e.,I∗ agrees withI everywhere except possibly in
its interpretation of the variables?v1 . . .?vn.

Rule satisfaction is simply defined (equivalently) by:

I |= then : − deg − if

iff (ITruth(if)→G ITruth(then)) ≥t I(deg)

iff ITruth(then) ≥t mint(I(deg), ITruth(if))

This defines a minimal extension of the RIF Core to handle uncertainty. Notice that with this default
interpretation, there is no need to define the kind of each connective. The previous proposal can be
immediately extended in order to handle other types of connectives and sorts.

7. Conclusion

This paper presents a proposal for a uncertainty extension of RuleML, which is capable of encompassing
a significant number of rule languages for uncertainty handling. We hope this can serve as the underpin-
ning of the coming Fuzzy RuleML markup language. Our proposal is a simple extension of RuleML,
namely via an orthogonal use the@kind attribute and the<degree> element. Furthermore, we have also
shown how to integrate such a framework in the preliminary version of the RIF Core language.

In the future, the language will be extended to handle quantifiers and to more general monotonic
operators, in the style of [13, 36]. These are particularly important for capturing Fuzzy Description
Logic Programs, like the ones recently proposed in [44, 34].Moreover, there is the need to provide
representation mechanism for expressing parameterized fuzzy membership functions, as well as fuzzy
relations, and fuzzy constants. This will be discussed in a different paper, requiring further changes to
the content models presented previously.

For a final proposal, a centralised authority should be responsible for registering the several language
formats and exploiting common features, as we have tried to do in this preliminary work.
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