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Abstract. The RuleML initiative defines a normalized markup for exgieg and exchange rules
in the Semantic Web. However, the syntax of the languagéllidistited and lacks features for
representing rule-based languages capable of handlirgrtaimty and vagueness. It is desirable to
have a general extension of RuleML which accommodates nejisting languages proposed in
the latest two decades. The main contribution of the papier jsopose such a general extension,
showing how to encode many of the existing languages in gtension. It is detailed the important
case of fuzzy rule languages. We hope this work can also geeasome insights on how to cover
uncertainty in the RIF framework.

1. Introduction

Rules in the Web have become a mainstream topic these daysheCGme hand, inference rules can
be marked up for e-applications, such as e-commerce anémeec on the other hand, transformation
can be used for document generations and ontology reusenfeaule interchange has been widely
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considered as an important issue - the World Wide Web Cdnso(iV3C) has set up a Rule Interchange
Format (RIF) Working Group to tackle this issue.

Representing and handling uncertainhas always been a fundamental issue in Knowledge Rep-
resentation and Artificial Intelligence. This researctoeffesulted in a plethora of formalisms with
different motivation and applications. For example, tteesis well as the dynamic aspect of the Web
indicate the usefulness of rules handling uncertaintyrmftion. Indeed, the charter of the RIF Working
Group requires an extensible format to handle uncertairigsr

The RuleML initiative is probably the earliest effort thafohes a normalised markup for expressing
and exchanging rules in the Semantic Web. It is a modular npalkknguage designed for expressing
knowledge bases in XML and XML/RDF. Currently, RuleML has&ctic mechanisms for encompass-
ing a series of rule languages, ranging from Datalog to HIL&@wever, the support for representing
and associating uncertainty to rules and facts is rathételdnin particular, the current framework lacks
a general mechanism to accommodate major existing languageosed in the latest two decades. For
this purpose, RuleML sets up the Fuzzy RuleML Technical @rmutackle this issue. In this paper, we
intend to provide a general framework of uncertainty rusich hopefully will serve as the underpin-
ning of the coming Fuzzy RuleML language.

The need of representing uncertainty information in rulas been identified in various practical
applications. For instance, in order to enable the use emati photo search in the Web, such as
searching for photos of “happy people”, uncertainty is mekith representing the relationships between
human emotions and facial expression in image analysist&paotion recognition. We can capture such
relationships by rules (such as the following), but not éhasthout uncertainty support (e.g., to some
degree some assertion is true):

¢ If someone has her eyebrows raised with a degree larger tham@ has her mouth stretched with
a degree larger than 0.8, then she is happy with a degree taege0.7.

¢ If someone has her eyebrows raised with a degree larger tiean@ has her mouth open with a
degree larger than 0.9, then she is surprised with a degger ldan 0.7.

¢ If someone has her eyebrows squeezed with a degree larged.Bhand has her teeth visible with
a degree larger than 0.7, then she is angry with a degree thaye0.7.

Using the above rules together with the following assestiail) Mary has her eyebrows raised with a
degree larger than 0.8, (2) Mary has her mouth stretchedandiggree larger than 0.9, (3) Mary has her
mouth open with a degree larger than 0.6, we can draw the usinal that Mary is more happy than
surprised.

The main contributions of the paper are two-folded. (1) Om ¢me hand, it proposes a general
extension of uncertainty rules for RuleML. On the syntaxeas$pit is adopted the existing markup.
On the semantic aspect, we try to be as general as possill¢o aover several categories of general
mechanisms, in which languages can be parameterized byénénuorder to convey specific semantic
information. Different illustrative rule languages areefly presented and aligned with the proposed
syntax, in order to discuss the pros and cons of the sevdeshatives. We hope this work can also

'Here we are using the term “uncertainty” in the wide senseering probability theory, possibility theory, fuzzy lagiand
ignorance.
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provide some insights on how to cover uncertainty in the Riework. (2) On the other hand, it inves-
tigate how to integrate such a framework in the ongoing Roderthange Format (RIF). In particular,
we will focus on how to accommodate different uncertaintynaetics in RIF and how to extend the RIF
Core language to support uncertainties.

The rest of the paper is organised as follows. The next sebtiefly presents an illustrative set of
uncertainty rule languages. Section 3 proposes a gendmisian of RuleML to accommodate these
uncertainty rule languages. Such extension is explore@ai@ 4 to illustrate the encoding of several
of the languages previously described. Section 5 discusfasilt interpretation of connectives for the
fuzzy extension of RuleML, as a particular example of thepps®d uncertainty extension. The proposal
of a RIF dialect for the language is proposed in Section 6.ti&ed concludes the paper by briefly
analysing the encodings and summarising the alternatives.

2. lllustrative uncertainty rule languages

The literature in Logic Programming contains a spate of sdiceand languages for handling uncer-
tainty; we designate them uncertainty rule languagesydist probabilistic, fuzzy, and possibilistic

ones). One of the first well known related languages is Vandfrsdquantitative deduction rules [21],

which are an extension of Horn clauses with a numeric “atigon factor”:

A Q- Bi&...&B,, n>0 1)

A quantitative deduction rul€l) is formed by ordinary first-order atom$ and B; ... B,, and the
attenuation factor, a real number in the intervdD, 1]. Truth-values of ground atoms, i.e. without
variables, are interpreted in the closed unit intef9al]. A ground quantitative deduction rule is satisfied
by an interpretation 1 iff (A) > g x min{I(B;) | i € {1,...,n}}.

In what follows, we briefly present some categories (nanfazy and many-valued, possibilistic-
based and probabilistic-based approaches) uncertailgyanguages, in order to illustrate the existing
diversity of proposals and syntactical constructs. We mélfjlect, as possible, the important semantic
aspects, which can be rather involved. Interestingly, sohtiee following languages actually generalise
Van Emden’s gquantitative deduction rules. Note that, h@methe section is not intended to be an
exhaustive survey of such languages, which will be conetier a forthcoming publication.

2.1. Fuzzy and many-valued approaches

Fuzzy and many-valued approaches usually depart from a-vedngd logic and associate truth-values,
weights or degrees to rules and facts. Normally the undegliogic is truth-functional.

2.1.1. Fuzzy logic programs

A typical language is Vojtas and Paulik [48]'s fuzzy logirogramming. It is a generalization of definite
logic programming, where programs are constructed fromngsli¢ation connective (say—), with
corresponding t-norm adjunction (resp;), and another t-norm operator denotedsby A t-norm is a
generalization to the many-valued setting of the conjamctionnective. In their setting, a fuzzy rule is
of the form:

A «—1 B1 ®s...Rs B, with-cf q (2)
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where a rational numbeyrin [0,1] expresses a confidence factor, ahdnd By, ...B,, are atoms with
truth-value in the unit interval0, 1]. Van Emden’s quantitative deduction rules [21] can be seea a
special form of fuzzy rules, where-; is Goguen implication, witlw, as its adjunction (product), and
®9 Is Godel t-norm (minimum). Note that the restriction to teerier [0, 1] is not essential and was
lifted in [13], in continuation of the initial work of Vojtaand Paulik.

2.1.2. f-SWRL

The more recently proposed fuzzy Semantic Web rule lang(fég@/RL) language [38] provides OWL
DL [35] axioms (but with fuzzy interpretation) as well as fiyzule axioms of the following form:

Axw«— Byxwi A...A\By *w, 3)

where A, By,..., B, are either concepts (unary predicates) or properties ripipaedicates) used in
OWL DL axioms, and the weights, . .. w, andw are real numbers in the unit interval. The f-SWRL
language provides a framework to accommodate differentatipas (such as fuzzy intersection, union,
negation, implication as well as weight operations) as laadghey conform to the key constraints of
f-SWRL, such as that the degree of fuzzy implication sho@ahb less than the weight of the head, and
that fuzzy assertions are special forms of fuzzy rule axjomisch requires allowing the consequent to
be a constant. As f-SWRL knowledge bases also contains ftaagepts and role axioms from fuzzy
OWL, they are not special forms of Vojtas and Paulik [48lizzy logic programs, nor are they special
forms of the annotated logic programs to be introduced helow

A more general framework has been proposed by Thomas Lukiagién [34] which allows for
the integration of ontologies with rule bases, allowingoadefault negation. Syntactically, fuzzy dI-
programs allow the combination of arbitrary t-norms in tleelypwith arbitrary negation-like operators.
Furthermore, DL-atoms can be used in the bodies of fuzzyldkrto query ordinary description logic
knowledge bases.

2.1.3. Annotated logic programs

In this family of languages, rules keep a classical integti@n while uncertainty is associated with
atoms, not with the implication. Generalized annotatedclpgograms (GAPS) is the fundamental for-
malism [26] in this approach. Annotated rules are of the form

A:f(pay oo oypin) — B &...& Byt iy (4)

whereuq, ..., u, are either annotation constants or annotation variableég aa total, continuous and
computable function. The intuitive reading of annotate@sus if By = u1, ..., B, = u, thenA =
f(u1, ..., un). Annotations denote elements in such given upper-seioéatised as underlying truth-
value space, where is the corresponding order. Note that annotation variadé@sot be used as object
variables in the atoms, and vice-versa. Van Emden’s qadinétdeduction rules can be represented as
annotated rules of the following forms:

A:gxmin(py, ... pun) <— By 1 & ... & By, ¢ iy,

wherepus, . .., u, are annotation variables.
Other annotation-based approaches include, e.qg., sigmetifa logic programming (SFLP) [30],
which theoretically has the same expressive power as GARs [3
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2.2. Possibilistic-based approaches

Possibilistic logic is a logic of uncertainty designed feasoning under incomplete evidence and partially
inconsistent knowledge [18]. The logic is non truth-fuootl, and its integration with logic program-
ming has been proposed firstly in [17] have been proposegpbs&ibilistic logic progranis a finite set

of (first-order) possibilistic Horn clauses annotated amith necessity degrees of the following form:

A «—BiAN...\NB, (Na) (5)

where A, By, ..., B, are propositional symbols andV«) is the necessity degree of the clause with
0 < a < 1. The intended minimal model for possibilistic logic progmaing [17] can be captured
by a straightforward translation into quantitative dethrctrules, where the underlying implication and
conjunctor are the corresponding Godel's connectives.

Possibilistic logic has been extended with fuzzy constantsfuzzy quantifiers [20] and Horn frag-
ments have been studied in the literature, namely in [2, 3, Hdwever the use of implication and
conjunction is not equivalent to the use of disjunction aadation, and both variants are described in
the literature. Syntactically, rules or clauses have h#d@ valuation function (see [2] for more details).

2.3. Probabilistic-based approaches

A third kind of approach of uncertain rule languages is basedgrobability theory. These are the
most complex languages since the underlying connectivesi@lr truth-functional, requiring complex
definitions and approaches.

2.3.1. Probabilistic logic programs

Probabilistic knowledge bases of Lukasiewicz [31] are eétonditional constraints of the form:
(H | B)[cx, c2] (6)

whereH and B are ordinary first-order formula, ang < ¢, are rational numbers in the intenval 1].
Probabilistic logic programs of are sets of conditionalstoaints wherd is restricted to a conjunction
of atoms andB is either a conjunction of atoms ar. These conditional constraints express that the
conditional probability ofH given B is betweenc; andc, or that the probability of the antecedent is
0. A semantics and complexity of reasoning are exhaustivielglied, and in most cases is intractable
and not truth-functional. However, for a special kind of pailistic logic programs the author provides
relationships to “classical” logic programming. Ordingmpbabilistic logic programs are probabilistic
logic programs where the conditional constraints haveebgicted form

(A| By A...A\Byp)[e,1]or (A | T)[e, 1] (7)
Under positively correlated probabilistic interpretasdpcp-interpretations), reasoning becomes tractable

and truth-functional, and can be embedded into quantiateduction rules. This framework has been
further explored by integrating probabilistic reasoninighvadescription logics [33].
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A theory of probabilistic deductive databases is describbedakshmanan and Sadri's work [27]
where belief and doubt can both be expressed explicitly eghal status. Probabilistic programs (p-
programs) are finite sets of triples of the form:

(A@Bl,...,Bn;ur,,up> (8)

As usual,A, By, ..., B, are atoms, which may not contain complex termis, a confidence level, and
iy (1) is the conjunctive (disjunctive) mode associated withrtile. For a given ground atom, the
disjunctive mode associated with all the rules fomust be the same. Confidence levels are pairs of
intervals([a, 3])[7, d], the first component denoting the belief and the second dadtiig terminology is
borrowed from Fitting’s bilattices [22]. This was furtheemeralized by Loyer and Straccia [29] within
the framework of normal parametric programs

Anga---7Ln;<fd>fpafC> (9)

The functionf, is the disjunction function used to combine informatiomfrthe several rules for pred-
icate A, and f,, and f. are the propagation function and the conjunction functidine conjunction
function is used to combine the information from literalghe body of the ruld.4, ..., L,, while f, is
used to combine this result with the certainty of the w)éaken from a lattice. The truth-value of atoms
are intervals in some lattice. The body can also contaih+vatues in the lattice, besides literals.

2.3.2. Hybrid probabilistic logic programs

Hybrid probabilistic logic programs [16] are an adaptatafrgeneralized annotated logic programs to
deal with probabilistic reasoning, but with a different sentics. In this approach, the notion of prob-
abilistic strategy is introduced because there is no siffglenula” for computing the probability of a
complex eventd; A e2) wheree; ande, are primitive events [16]. We refer the reader to [16] for enor
details about probabilistic strategies.

A hybrid probabilistic logic program over the s&f probabilistic-strategies is a finite set of hp-rules
of the form:

Fo:po—Fr:pr Ao o N Fyooopg (120)

where eacl¥; : p; is an hp-annotated basic formula over Intuitively, an hp-rule means that “if the
probability of £ falls in the interval:; and ... and the probability dfj, falls within the intervaluy, then

the probability ofFy lies in the intervalug”. The F;s are designated hybrid basic formulas and are either
applications of conjunctiveR; A, ... A, B},) or disjunctive strategiess] V; ... V, B.) to finite sets

of distinct atoms B:, . .. ,B}'%), encoding complex events. Intervals are péifsc] of reals numbers in
the unit interval. Hybrid probabilistic logic programs lealveen further generalized to capture temporal
aspects in real-world applications [15], in particular et@tions are more complex since they contain a
time dimension.

2.3.3. Logic programs with annotated disjunctions

Stochastic logic programs are a generalization of HidderkbaModels [37, 10] and are constituted by
range restricted Horn clauses labeled with non-negativebeus:

p:A:—Bq,...,B, (12)
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The original framework by Muggleton [37] enforced that thembers are probability labels in the unit
interval, which should sum to 1 for every predicate symbdingel in the program. Stochastic logic
programs have a distributional semantics based on SLal&nns, assigning a probability distribution
to each predicate symbol. The dependency on a particulaf prechanism has been criticized in [46],
mostly because of its non-declarative character. Logiggams with annotated disjunctions (LPADS)
are more declarative and are formed by rules of the form:

(Alipl)\/...(Am:pm)HLl...,Ln (12)

where eachy; is an atomp , ... p; = 1andLy, ..., L, are literals (atoms or their default negation).
Eachp; is a probability in the unit interval, and the semantics defiagain a probability distribution on
Herbrand interpretations. Logic programs with annotatisfudctions generalise Poole’s independent
choice logic programs [39].

2.3.4. Bayesian logic programs

Finally, we consider Bayesian logic programs [25] whichgistof a (finite) set of Bayesian rules of the
form:
Al By,...,By, n>0 (13)

The distinctive feature of Bayesian logic programs is tloatdfach clause there is exactly one condi-
tional probability distributiorcpd(c), and for each Bayesian predicaté there is exactly one combining
rule er(p/l). Itis usually assumed thapd(c) is represented as a table; other possible representations
are decision trees and rules! The distributigrl(c) generically represents the conditional probability
distributions associated with each ground instance of tdreesponding clause, while the combining
rule expresses how the different probability distribusiarf clauses for a given predicate are combined,;
an often used combining rule is noisy-or. Bayesian netwages be embedded into Bayesian Logic
Programs.

3. A general uncertainty extension for RuleML

In this section, we propose an uncertainty extension of Rulehich attains the following “conflicting”
objectives:

e to extend RuleML with a basic and modular set of constructs;

e to be general enough to accommodate main existing ruledbasguages dealing with uncertainty;
e to be natural and easy usable by the user;

¢ to adopt language defaults that are transparent and rddednahe user;

The existing RuleML 0.9 version already provides the aftel®weight in element<slot>. Attribute
@weight is used to express a slot relative weight with respect toiliigngs, and has been applied to
encode in RuleML node-labeled, arc-labeled, weight-ktheétees [6]. This relevance measure is used
in [6] to define semantic matching between trees, and ustrale weights are normalized real numbers
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in the unit intervall0, 1]. In this paper we ignore this important issue of similaritdaanking, and
possible extensions, which should be incorporated in afiediged RuleML framework in particular
to represent and reason with fuzzy data. Some proposabldglipport these notions, like the ones
described in [5, 40, 9].

More interesting for our objectives is the elemeaégree>, a child of elementAtom> and<Equal>
in RuleML 0.9. This was originally intended to represent ttional truth value (betwedhand1) that
may be assigned to facts and rules,” as proposed in [41].ifportant, RuleML 0.9 defines the attribute
@kind which is allowed in solely in theImplies> element, for choosing between first-order and logic
programming rules. The original terminology of RuleML isoptied and adapted to achieve the design
goals of our uncertainty extension.

From an attentive analysis of the literature, and in paldicaf from the previous set of languages, it
can be concluded that are some common features:

e most of the languages use implication symbols to represéss;r

e most of the languages, except annotated ones, attach ®aoididence degrees, probabilities,
weights, conditional probability tables, etc...;

¢ to different languages usually correspond different tygfesplication, conjunction and disjunc-
tion operators in the rules, some of them even allow diffeoperators in the same rule base;

e some languages permit combination of complex formula inkibéy and in the head of rules,
which surpass the simple conjunctions and disjunctions;

e annotation-based languages attach complex annotati@iertes, and even to formulae;
e some languages use parameters to specify the behaviouesf ru
e some languages adopt general truth-values structureglydattices and residuated lattices.

In order to achieve the objectives stated at the beginnirthisfsection, our concrete proposal consists
in extending the RuleML 0.9 by:

¢ adding@mapKind to performativesAssert>, <Query> and<Protect>.

e permitting the use ofkind in <Atom>, besides irkImplies>, as well as in any other RuleML
connectiveEquivalent>, <Integrity>, <And>, <0r>, <Neg>, and<Naf>.

e the optional elementdegree> is allowed in the previous RuleML connectives.

The @kind attribute is used to specify semantic information regaydime construct (e.g. t-norm or
implication used). The attributémapKind in the performatives expresses the (default) value of the
@kind attribute of the performative child element(s); this is ehtsique adopted in RuleML designated
attribute mapping This simplifies writing of rule bases, without requiringpetitive declarations of
the intended interpretation of connectives. In order t@eiase weights, annotation, or probability, or
truth-value associated with complex formula, the eleme@rigree> is used. These amendments have a
reduced impact in the RuleML language, and is downward ctitsipavith the existing syntax. For the
sake of completeness, the abstract syntax is presentedureBil and 2, in the style of [24]. We prefer
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Assert
attributes: @mapDirection, @mapClosug@mapKind
content: (oid?, (formula)*)
Query
attributes: @closure@mapKind
content: (0id?, (formula)*)
Protect
attributes: @closure, @mapDirection, @mapClosure,
@mapKind
content: (oid?, (warden)+, (formula)*)
OGmapKind

[optional] (default:fo| Ip | list to be completed

Figure 1. Content Models for Performatives

to use the normalized striped syntax, and therefore iggasiripe skipping in the content models. The
differences to RuleML 0.9 are marked in bold in the figurestidéothat some of RuleML elements are
context dependant, and the reader is referred to [24] foallbered combinations. Concrete fragments
of XML markup can be found in the examples of next section.

An implicit and major design decision regards the syntamiExistence of annotation and implication
based approaches. Annotated atoms are captured by thetribwt@tkind in the <Atom> element:

<Atom kind="gap">
<degree>
<Data xsi:type="xsd:decimal">0.5</Data>
</degree>
<op><Rel>prop</Rel></op>
</Atom>

Notice also the use of elemexdegree> to associate the corresponding annotation. The annotation
might also be a variable or a complex annotation (only in refadles). Similarly, signed formula logic
programming [8] can be encoded in our uncertainty extensiohwhere degrees are sets of constants
or even complex propositional formula. In order to be abledndle the more complex languages like
hybrid probabilistic logic programs, the attributénd and elemenkdegree> are allowed in arbitrary
formula. It should also be mentioned, that annotated at@msbvays be understood as the implication

<Implies kind="zadeh">
<head>
<Atom><op><Rel>prop</Rel></op></Atom>
</head>
<body>
<Constant>
<degree>



10

Atom
attributes: @closure@kind
content: (oid)?, degree?, op, (slot)*, (arg)+, (slot)*

Implies
attributes: @closure, @direction, @kind
content: ( oid?degree? (( head, body) ( body, head) ))

Integrity
attributes: @closure, @directio@kind
content: (oid?degree? formula)

Equivalent
attributes: @closure@kind

Carlos Viegas Damaésio et al./ Representing UncertaintiRie ML

Naf
attributes@kind
content: (oid?degree? weak )

Neg
attributes@kind
content: (oid?degree? strong)

degree
attributes:none
content: ( Data)

@kind [optional]
(default:fo| Ip | list to be completed

content: (oid?degree?torso, torso)

And, Or
attributes:@kind (@closure within Query only)
content: (oid?degree? (formula)*)

Figure 2. Content Models for Formulas in Our Uncertaintydesion

<Data xsi:type="xsd:decimal">0.5
</Data>
</degree>
</Constant>
</body>
</Implies>

However, this results in complex markup that is difficult tederstand and requires a new type of
formula<Constant> which is currently absent from RuleML; therefore it is adapthe simplest syntax
with <degree> element in atoms. This latest encoding has the advantagedhables in annotations
are not required (see [14]). The implication connectivedusas been proposed by Zadeh [19] and is
interpreted by the function
1.0 ifx<y
0.0 otherwise

I(chy)z{

The specific encoding of implication-based languages #@gittforward, and will be analysed in detail
in the next section.
4. Examples of encoding existing languages

The simplest (at the syntactical level) rule-based langsggee examples in Section 2) depart from
definite logic programming rules by adding a degree asstiaith the rule, these include quantitative
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deduction, possibilistic logic programming, ordinary Ipabilistic logic programs, and stochastic logic
programs. These can be rendered according to the follonengral pattern:

<Implies kind="...">
<degree>
<Data xsi:type="xsd:decimal">...</Data>
</degree>
<head><Atom>. . .</Atom></head>
<body><And>. . .</And></body>
</Implies>

The kind attribute in elementImplies> could be used to specify the underlying semantics of the
rule (e.g."s1p" for stochastic logic program} The degree is always a non-negative decimal number.
However, except for stochastic logic programs, these apadticular cases of the fuzzy logic program-
ming framework which follows the pattern:

<Implies kind="some-implication">
<degree>
<Data xsi:type="xsd:decimal">...</Data>
</degree>
<head><Atom>...</Atom></head>
<body>
<And kind="some-tnorm">...</And>
</body>
</Implies>

Facts are encoded as

<Atom>
<degree>
<Data xsi:type="xsd:decimal">...</Data>
</degree>
<op><Rel>...</Rel></op>

</A£ém>
or, equivalently, by empty body implications:

<Implies kind="some-implication">
<degree>
<Data xsi:type="xsd:decimal">...</Data>
</degree>
<head><Atom>. . .</Atom></head>
<body><And></And></body>
</Implies>

The exact identifiers of supported languages will be defitseirere. For instance, it seems preferable to assign toaac
these semantics a URI, for specifying the several allowetis$oof rules.
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In order to guarantee the equivalence of the above encadih@gs suggested to use implication
connectives that obey to the property,

I(x —y)=1.01ff I(z) < I(y)

In particular, R-implications satisfy this property (se@e instance [19] for a definition). The property
guarantees the existence of a unique least model for theeglmmgrams (see [13]). Some usual R-
implications are Lukasiewicz, Gddel, Goguen, and Foddckvare based on the corresponding t-norms
bold intersectionminimum product andnilpotent minimum To avoid syntactic overhead, we take the
liberty of removing the attribut@xsi:type="xsd:decimal" from all <Data> elements in the remain-
ing examples.

Example 4.1. For instance, the following ordinary probabilistic logimgramming rule [31] expresses
that the probability of catching a traffic jam while reachiRgrom S by taking a south road is at least
0.9:

(reach(R,S) | road(R, S) A south(R,S)) [0.9,1.0]

Under pcp-interpretations (see [31]), is equivalent toftilewing quantitative deduction rule

reach(R,S) — road(R, S) & south(R, S)
which can be represented in our uncertainty extension as

<Implies kind="goguen">
<degree>
<Data>0.9</Data>
</degree>
<head>
<Atom><op><Rel>reach</Rel></op>
<Var>R</Var>
<Var>S</Var>
</Atom>
</head>
<body>
<And kind="minimum">
<Atom><op><Rel>road</Rel></op>
<Var>R</Var>
<Var>S</Var>
</Atom>
<Atom><op><Rel>south</Rel></op>
<Var>R</Var>
<Var>S</Var>
</Atom>
</And>
</Implies>

For possibilistic logic programming, the encoding is siergince the implication used is Godel's
one and conjunction is the corresponding minimum t-norm.
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The language f-SWRL has more cases to be taken care due teaha weights in the body of rules.
The interpretation of combination of atoms with weights odles can be seen as a generalization of
implications with a constant (weight) in the antecedentatodh in the consequent, which is very similar
to the meaning of an annotated atom. Therefore, the samaxsgniised.

Example 4.2. Consider the following f-SWRL rule

Happy(?a) * 0.7 —
EyebrowsRaised(?a) * 0.4 A MouthOpen(?a) * 0.8

This can be encoded as follows, where Godel's implicat®onsed and Goguen implication is used as
weight function:

<Implies kind="goedel">
<degree><Data>0.7</Data></degree>
<head>
<Atom>
<op><Rel>Happy</Rel></op>
<Var>a</Var>
</Atom>
</head>
<body>
<And kind="minimum">
<Atom kind="goguen">
<degree><Data>0.4</Data></degree>
<op><Rel>EyebrowsRaised</Rel></op>
<Var>a</Var>
</Atom>
<Atom kind="goguen">
<degree><Data>0.8</Data></degree>
<op><Rel>MouthOpen</Rel></op>
<Var>a</Var>
</Atom>
</And>
</body>
</Implies>

This encoding is capable of capturing all forms of weightctions since it is implicitly assumed
that annotated atoms are viewed as special forms of imjgicatHowever, f-SWRL fuzzy assertions
specifying at most conditions, of the forfa : C') < m and(< a,b >: r) < m, require the introduction
of truth-value constants in the language, which is not bgirgposed in the current version of the lan-
guage. Alternatively, the use of integrity constraints milye an interesting alternative for representing
such statements. Regarding, fuzzy description logic pirngr[34] the encoding requires the introducing
of a special form of atoms, DL-atoms, which is not tackled g previous syntax, requiring additional
investigation.

Similar ways of encodings probabilistic knowledge basesbhabilistic logic programs [32] can be eas-
ily defined, by simply allowing more complex formula in thealdeand body of rules, and using lists
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of two numbers to represent the associated intervals. Morples are logic programs with annotated
disjunctions [46], which can be translated as shown in tlaergte below.

Example 4.3. Consider the LPAD rule, expressing that the probability lmhining heads and tails after
tossing a non-biased coin is equiprobable.

(heads(Coin) : 0.5) V (tails(Coin) : 0.5)

— toss(Coin), —biased(Coin)

Notice this is a concrete extension to the Dishornlog fragnoé RuleML 0.9, namely with negation as
failure and probabilistic information. This is renderedir uncertainty extension as:

<Implies kind="lpad">
<head>
<0r>
<Atom>
<degree><Data>0.5</Data></degree>
<op><Rel>heads</Rel></op>
<Var>Coin</Var>
</Atom>
<Atom>
<degree><Data>0.5</Data></degree>
<op><Rel>tails</Rel></op>
<Var>Coin</Var>
</Atom>
</0r>
</head>
<body>
<And>
<Atom><op><Rel>toss</Rel></op>
<Var>Coin</Var>
</Atom>
<Naf>
<Atom><op><Rel>biased</Rel></op>
<Var>Coin</Var>
</Atom>
</Naf>
</And>
</body>
</Implies>

Regarding Bayesian logic programs, the encoding is mofieulifsince several predicate specific para-
metric information should be provided in each rule. Kaegree> element of the implication is now
a conditional probability table and the combination modeduis specified in th@kind attribute in the
atom element child okhead>. Care should be taken in order to guarantee that the sameirtatinh
mode is used in all rules for that predicate.

Other probabilistic approaches like p-programs [28, 24 aarmal-parametric programs [29] re-
quire a similar technique: in theImplies> element we us@kind to associate the propagation function
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with the implication symbol or the probabilistic combiratifunction used; the disjunction combination
mode is specified in theékind attribute in the atom element child ehead>; the conjunction mode is
present in thecAnd> element in the body of the rule.

The annotation-based approaches are similar, and herdustegte one of the more complex ones,
namely hybrid probabilistic logic programs, which requine use okdegree> element with complex
formulae:

Example 4.4. Consider the following hp-rule

(paper_accepted Vp. go-con ference): [0.85,0.98] «—
(good_work Ninq good_referees) : [0.7,0.9] &
have_money : [0.9, 1.0]

The translation into our uncertainty extension is:

<Implies kind="hplp">
<head>
<0r kind="positive-correlation">
<degree><Data>0.85 0.98</Data></degree>
<Atom><op><Rel>paper_accepted</Rel></op>
</Atom>
<Atom><op><Rel>go_conference</Rel></op>
</Atom>
</0r>
</head>
<body>
<And>
<And kind="independence">
<degree><Data>0.7 0.9</Data></degree>
<Atom><op><Rel>good_work</Rel></op>
</Atom>
<Atom><op><Rel>good_referees</Rel></op>
</Atom>
</And>
<And kind="independence">
<degree><Data>0.9 1.0</Data></degree>
<Atom><op><Rel>have_money</Rel></op>
</Atom>
</And>
</And>
</body>
</Implies>

The remaining annotation-based languages are treatelddymA summary of the proposed encodings
can be found in Table 1, where the syntaxohplies> is specified for some of the existing languages.
Notice that for annotation-based languages <egree> element is not present, like in the previous
example. There is still the need to integrate the severgllages in a common algebraic framework, like
multi-adjoint, residuated or monotonic logic programm[&§, 36]. However, due to their very general

abstract syntax of rules, they cannot be encoded in ourrupreposal for the RuleML extension.
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Table 1. Encoding of uncertainty rule languages in RuleML

Language Q@kind <head> <body> <degree>
QD [21] goguen  <Atom> <And kind="minimum"> [0,1]
FLP [47] r-impl <Atom> <And kind="tnorm"> [0,1]
Poss [17] goedel  <Atom> <And kind="minimum"> [0,1]
f-SWRL[38] | r-impl <Atom> <And kind="tnorm"> of [0,1]
<Atom><degree>
GAP [26] gap <Atom><degree> <And> of <Atom><degree> none
(complex annot.) (var and const. annot.)
SFLP [30] signed (asin GAP) (asin GAP) sets of formulas
or24
PKB [32] pkb any formula any formula C[0,1]
PLP [32] plp <And> of <Atom> <And> of <Atom> C[0,1]
PP [27] PP <Atomkind="y,"> <And kind="p,"> C[0,1] x C[0,1]
NPP [29] I <Atom kind=" fy"> <And kind="f."> of <Atom> « in lattice
and<Neg><Atom>
HPLP [16] hplp <And kind="strat"> <And> of formulas like in the none
<degree> or head
<0r kind="strat">
<degree>
constant annotations constant annotation§[0,1] x
C[0,1] x C[0,1] C[0,1]
LPAD [46] lpad <0r> of <And> none
<Atom><degree>
degree ino, 1]
SLP [37,10] | slp <Atom> <And> [0, o0]
BLP [25] blp <Atom kind="cr"> <And> cpd

5. Fuzzy RuleML

So far we have introduced the optionalegree> element and th@kind attribute into RuleML. The
<degree> element can be attached to atoms (or rules) to specify comgddegrees, truth-values, prob-
abilities, weights, annotations, etc. Theind attribute can be used to indicate the semantics of con-
nectives. In order to make our uncertainty extension coitleatvith RuleML, and more importantly,

to simplify the writing of uncertainty programs, some défaettings should be provided for the degree
elements and the semantics of the connectives. Due to ifdisity and ease of implementation, it is
adopted a fuzzy interpretation of the connectives in thetggithe languages described in Section 2.1.1.

e The underlying truth-value lattice is the unit intery@l 1], which is used in the majority of uncer-
tainty rule languages. When a degree element is omittezlagsumed to stand for the real number
1.0.
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The default semantics for conjunction is minimum t-norm.

The default semantics for disjunction is maximum s-norm.

The default semantics for negationlis- x.

Consequently, Godel implication is used by default foeipteting implication, where

lifx <y
r—qy = .
y otherwise

This means an imply elemerImplies kind="goedel"> can be simplified asImplies>.

There are some remarks here. Firstly, what we are trying épgse here is a reasonable default
setting, rather than theestdefault setting (which might be impossible to achieve, sidifferent people
have different preferences). Like f-SWRL, we regard it apamant feature that the uncertain programs
will be used together with some ontologies. It has been pdiout [42] that, under the above semantics
of the connectives, ontology consistency checking of fumziplogies can be reduced to that of classic
(Description Logic-based) ontologies. This indicatessia Description Logic reasoners can be reused
to provide reasoning support for fuzzy ontologies. On thephand, there are already query answering
procedures for fuzzy logic programming based rule langsiageme supporting both strong and weak
negation, which can be found in [23, 11, 12, 43, 45]. It shdagahoticed that for the default interpretation
of connectives, the proof procedures in [11, 12] do terneimaipolynomial time in the data complexity
for DATALOG programs.

Secondly, the selection of default connectives also is e@tiile with classical logic programming,
and the use of the minimum t-norm guarantees that the negufttended model of the program will be
the greatest, amongst all t-norms (minimum is the less coeatiée t-norm).

Also, the distinction between strong and naf negation ia flamework is not immediate (see for
instance [49]) and might require more complex truth-vaktides, namely bilattices [1, 29]. Further
discussions on this will be part of our future work.

Last but not the least, if the default setting is not the pref&one for some applications, the users
should be able to overwrite the default setting for theirastain programs. For instance, they could
specify an URL of an RDF file, which uses some pre-defined ptiggeto specify the defaults.

6. Uncertainty dialect for RIF

In this section, we investigate how to integrate the aboweerainty framework into the W3C Rule
Interchange Format (RIF). Although RIF is still a movinggeir at the moment, the RIF Working Group
has come up with a preliminary version of the core languadewhich is used as the base for our
uncertainty extension.

The RIF Core language is essentially Horn rules with eqyaditth its abstract syntax specified in
asn06 and has a concrete human-readable syntax, described in.HBNRbstract syntax can be found
in Figure 3, corresponding to lines not in bold format. Oueesion is depicted in the same figure, where
newly introduced features appear in bold type. The only standard feature of the presentation, is that
classATOMIC has propertiekind anddegree which are inherited by subclassBgual andUniterm.
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class Ruleset
property formula :1ist of RULE

class RULE
subclass Forall
property declare :1ist of Var
property formula : CLAUSE

class CONDITION

subclass And
property formula:1ist of CONDITION
property kind: xsd:anyURI
property degree: Uniterm

subclass Or
property formula:1ist of CONDITION
property kind: xsd:anyURI
property degree: Uniterm

subclass Exists
property declare 1ist of Var
property formula : Uniterm
property Kind: xsd:anyURI
property degree: Uniterm

subclass ATOMIC

class CLAUSE
subclass ATOMIC
subclass Implies
property if: CONDITION
property then: CONDITION
property Kind: xsd:anyURI
property degree: Uniterm

class ATOMIC
subclass Equal
property side:1list of TERM
subclass Uniterm
property Kind: xsd:anyURI
property degree: Uniterm

class TERM
subclass Var
property hame:xsd:string
subclass Const
property hame:xsd:string
subclass Uniterm
property op: Const
property arg:list of TERM

Figure 3. Uncertainty RIF dialect abstract syntaxém06 notation

We are using this feature to denote that these propertigsnoake sense in the scope OfOMIC class,

not being present for generdhiterm andEqual instances. The concrete syntax of RIF Core is not yet
finished by the W3C Working Group, but we will use the existorg for presenting our proposal. We
do not address the multisorted RIF Logic, even though sueataife will be of utmost importance for a
complete uncertainty RIF dialect.

Ruleset::= RULE*

RULE ::= 'Forall’ Var* '(/ CLAUSE ')’

CLAUSE ::=Implies | ATOMIC

Implies ::= CONDITION ’:-’ CONDITION

CONDITION ::= CONJUNCTION | DISJUNCTION | EXISTENTIAL | ATOMIC
CONJUNCTION ::= ’'And’ '(/ CONDIT* ")’
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DISJUNCTION ::= '0r’ '(/ CONDIT* /)’

EXISTENTIAL := ‘Exists’ Var+ '(/ CONDITION )’

ATOMIC ::=Uniterm | Equal

Uniterm ::= Const '(/ TERM* ")’

Equal ::=TERM ’'=’ TERM

TERM ::=Const| Var | Uniterm

Const::= CONSTNAME | '/ CONSTNAME "’ ’~~/ SORTNAME
Var ::= '?” VARNAME | '?’ VARNAME '~~’ SORTNAME

The non-instantiable classes appear with names fully aigtl. In particularATOMIC stands for an
atomic formula, which can be either an universal tekimiferm) or an equality of twarERM s. We have
generalised the RIF Core language, by allowing to appear@GRNDITION s in the head (then-part)
and body of a rule (if-part). RIF Core restricts heads ofgutebeATOMIC .

In an uncertainty dialect of the RIF language, one can intceddegrees to a rule or an atom in a rule
in the following modified human-readable syntax:

Implies ::= CONDITION ’:-’ [ DEGREE ’-’ ] CONDITION
ATOMIC :=Uniterm [ ':’ DEGREE] | Equal[ ':’ DEGREE]
DEGREE ::= Uniterm

Note that the degrees are optional, and for the sake of thergjéy they are assumed to be arbitrary
Uniterms; of course, it is expected that most of the timesedheill be constants of soxisd:decimal or
xsd:double. For example, we can express the uncertainty rule ‘the pitityeof catching a traffic jam
while reachingR from S by taking a south road is at least 0.9’ from Example 1 as fdatow

Forall 7R 7S (
reach(?R ?8) :- 0.9 -
And( road(?R 78)
south(?R 78) )
)

In the above rule, the degree 0.9 is set on the implicatioilgvitthe following rule the degrees are
set on the atoms. The uncertainty rule ‘If someone has hdreys raised with a degree larger than 0.4
and has her mouth stretched with a degree larger than 018 stieis happy with a degree larger than
0.7." from Example 2 can be expressed as follows:

Forall 7a (
Happy(?7a) : 0.7 :-
And( EyebrowsRaised(?7a) : 0.4
MouthOpen(?7a) : 0.8 )
)

Besides the introduction of degrees, one can also introthec&ind attribute to specify the kind of
semantics for implications, conjunctions, disjunctioasd existential quantifications in the body. The
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atoms may also have an attached kind information, for stimgoseveral languages, as described in
Section 4. The equality atom may also use kind informatiorspecifying, for instance, similarity fuzzy
relations. The full syntax of the uncertainty in concretenlam readable syntax is:

Implies ::= CONDITION ’:-’ [ KIND ][ DEGREE ’-’ ] CONDITION
CONJUNCTION ::= 'And’ [ KIND ] "¢/ CONDIT* /)’ [ ’:’ DEGREE]
DISJUNCTION = ‘or’ [KIND ] /¢’ CONDIT* /)’ [ ’:’ DEGREE]
EXISTENTIAL := 'Exists’ [ KIND ] Var+ '(/ CONDITION ")/ [ ’:’ DEGREE]
ATOMIC ::=Uniterm [KIND ][ ’:’ DEGREE] | Equal[ ':’ DEGREE]

Equal ::=TERM =’ [ KIND ] TERM

KIND ::= <’ xsd:anyURI '>’

DEGREE ::= Uniterm

The kind should be a xsd:anyURI for identifying the corregting non-default behaviour of connective.
Using this extension, the uncertainty rule ‘the probapitif obtaining heads and tails after tossing a
coin is equiprobable’ can be expressed as follows:

Forall 7Coin (
Or (Heads(7Coin) :0.5 Tails(?Coin):0.5) :- <lpad> Toss(7Coin)
)

The single sorted semantics of RIF is provided by semantictires (or interpretations) of the form
<D,I¢,Iy,Ip, Iz > whereD is the domain, and four mappings:

e I~ mapping constants to elements of the dondain
e I}, mapping variables to elements of the domBin
e I mapping constants to functions frddr* to D, for interpreting functor symbols.

e Iz mapping constants to truth-valued mappings fibrh— TV, for interpreting predicate sym-
bols.

¢ From these, it is defined the general mapgifay interpreting Uniterms, as usual:
e I(k) =Ic(k)if kis a constant symbol
e I(7v) =Iy(?v)if 7vis avariable

o I(f(t1...tn) =Ir(f)(X(t1), ..., 1(tn))

The truth-value spac€&V in our uncertainty RIF dialect is the unit interjal 1], and as expected, an
omitted degree is interpreted &9. This truth-value space is endowed with a truth-order apoeding
to the usual total order in the real numbers, and this is @ehloyx <; v iff x is less than or equal .
Regarding default interpretations of connectives, thenitefis presented in [7] are extended below to
cater for degrees. In the following, it is assumed #hat is a Uniterm such thak(deg) is mapped into
an element of the real unit interval, aré; is Godel's implication. We also assume tli&tfeg) > 0.0,
otherwise the conditions annotated with a degree are ltyivizapped intol .0.
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e Atomic FormulasIy, i (r(t1 .. . ty) : deg) = I(deg) —¢ Ir(r)(X(t1) ... I(tn))
° Equality: ITruth(tl =19: deg) = 1.0iff I(tl) = I(tg), otherwiseITmth(tl =19 : deg) = 0.0.

e Conjunction: I, (And(cy ... c,) = deg) = I(deg) —a ming Iprun(c1), -« Irruen(cn))s
wheremin; is minimum with respect to the truth order.

i DiSjunCtion: ITruth(OT(Cl ce Cn) : deg) = I(de.g) —G Mmaxy (ITruth(Cl)a oo aITruth(Cn))1
wheremaz; is maximum with respect to the truth order.

o Quantification:Iz,.,, (Exists?vy .. .7v,(c) : deg) = I(deg) —a luby(I5,,,,(c)), wherelub, is
taken over all interpretations of the form< D, I¢, I3, I, Iz >, wherel;; is the same a¥y
except possibly on the variablés,, ..., 7v, (i.e.,I* agrees witH everywhere except possibly in
its interpretation of the variabl€s .. .7v,.

Rule satisfaction is simply defined (equivalently) by:

I then:—deg — if
iff (ITruth(if) —G ITruth(then)) >t I(d@g)
iff Iprun (then) >t mint(I(de.g)a | (Zf))

This defines a minimal extension of the RIF Core to handle miaicgy. Notice that with this default
interpretation, there is no need to define the kind of eaclmective. The previous proposal can be
immediately extended in order to handle other types of cctives and sorts.

7. Conclusion

This paper presents a proposal for a uncertainty extengiBaleML, which is capable of encompassing
a significant number of rule languages for uncertainty HagdMe hope this can serve as the underpin-
ning of the coming Fuzzy RuleML markup language. Our propsa simple extension of RuleML,
namely via an orthogonal use theind attribute and thedegree> element. Furthermore, we have also
shown how to integrate such a framework in the preliminamgioa of the RIF Core language.

In the future, the language will be extended to handle qgfiargiand to more general monotonic
operators, in the style of [13, 36]. These are particulampartant for capturing Fuzzy Description
Logic Programs, like the ones recently proposed in [44, breover, there is the need to provide
representation mechanism for expressing parameterizzy fuembership functions, as well as fuzzy
relations, and fuzzy constants. This will be discussed iiffardnt paper, requiring further changes to
the content models presented previously.

For a final proposal, a centralised authority should be mesipte for registering the several language
formats and exploiting common features, as we have tried ta this preliminary work.
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