
Expressive Reasoning with Horn Rules and

Fuzzy Description Logics

Theofilos Mailis, Giorgos Stoilos, and Giorgos Stamou

Department of Electrical and Computer Engineering, National Technical University
of Athens, Zographou 15780, Greece

Abstract. This essay describes fuzzy CARIN, a knowledge representa-
tion language combining fuzzy description logics with Horn rules. Fuzzy
CARIN integrates the management of fuzzy logic into the non-recursive
CARIN system. It provides a sound and complete algorithm for repre-
senting and reasoning about fuzzy ALCNR extended with non-recursive
Horn rules. Such an extension is most useful in realistic applications deal-
ing with uncertainty and imprecision, such as multimedia processing and
medical applications. Additionally, it provides the ability of answering to
union of conjunctive queries, which is a novelty not previously addressed
by fuzzy DL systems.

1 Introduction

Over the last two decades fragments of first order logic, called Description Logics
(DLs) [1], have been brought into focus by the Artificial Intelligence community.
DLs well formed semantics and great expressivity has enforced their utilization
in numerous domains, such as multimedia [2–4] and medical [5] applications,
as knowledge representation and reasoning languages. More importantly DLs
provide the formal foundation for the standard web ontology language OWL [6]
which is a milestone for the Semantic Web [7].

DLs main asset, their class-based knowledge representation formalism, also
sets a limit to their expressive power as they are incapable of providing complex
descriptions about role predicates. Expressive DLs such as SHOIQ are inca-
pable of expressing even a simple composition between roles1. For this reason,
as visualized in the Semantic Web stack diagram2, there is a need for integrating
DLs with rules. A natural choice for such integration would be classes of rule lan-
guages originating from logic programming and non-monotonic reasoning [10].

In [10], the “cream” of systems combining rules and DLs is presented. Sys-
tems such as DLP [11], SWRL [12], AL-log [13], F -logic [14] and CARIN [15]
present different approximations for intergrading DLs with rules. These are di-
vided into the hybrid systems, where there is a distinction between the predicates
in the rule and the DL part, and the homogeneous where there is no such dis-
tinction. CARIN is such an hybrid system that combines the DL ALCNR with

1 Recent systems such as EL++ [8], SROIQ [9] are such extensions
2 http://www.w3.org/2003/Talks/05-gartner-tbl/slide29-0.html

Horn rules and through its existential entailment algorithm offers a sound and
complete inference procedure for non-recursive knowledge bases, can answer to
arbitrary conjunctive queries and provides an algorithm for rule subsumption
over ALCNR [15].

Though CARIN offers great expressivity in order to represent a fragment of
our universe, it is incapable of encoding knowledge with some degree of uncer-
tainty and imprecision. Uncertainty emerges from our lack of knowledge about a
certain fact e.g. we assume that the black dot in the background of a picture is a
lion, while imprecision refers to the intrinsic inability to strictly classify a fact or
a state of an object e.g. a half-empty glass of water can neither be characterized
as full, nor as empty.

Fuzzy logic is a mean to represent knowledge containing uncertainty and
imprecision. Several systems, such as fuzzy ALC [16], fuzzy fKD −SI [4], fKD-
SHIN [17], have been proposed for combining fuzzy logic with description logics.
Based on these systems we propose fuzzy CARIN, which is an extension of non-
recursive CARIN, in order to represent uncertainty and imprecision. Related
work combining DLs with Rules has been presented in [18, 19], providing fuzzy
extensions of DL programs [20].

The need for fuzzy extensions of systems combining DLs with rules is most
obvious in multimedia applications:

Example 1. Suppose that we have a, rather “optimistic”, algorithm for object
recognition. This algorithm is divided into an image processing and a DL ex-
tended with rules part. Assume it contains the following rules and implications:

leaf(x) ∧ nextTo(x, y) ∧ trunk(y)⇒ tree(x, y)
∃hascolor.green ⊔ ∃hascolor.yellow ⊑ leafs . . .

The algorithm implies that a tree is an object consisting of leafs and a trunk
and that leafs is an object of either green or yellow color. Obviously an object
described by another shade of green would never have been characterized as being
leafs by a crisp system. That’s where fuzzy logic fits in, allowing assertions of the
form (object : green) ≥ 0.7 that imply an object being green to a certain degree.
As it will be demonstrated this degree plays an important role throughout the
whole reasoning procedure.

The rest of the paper is organized as follows: section 2 provides some pre-
liminary report on the CARIN system and fuzzy logic, section 2 provides the
syntax and semantics of our system, section 4 describes the inference problems
addressed by our system, section 5 presents a consistency checking algorithm
for fuzzy ALCNR and finally section 6 presents an algorithm for answering to
conjunctive queries and union of conjunctive queries.

2 Preliminaries

2.1 CARIN

The CARIN language combines the DL ALCNR with Horn rules. CARIN’ s
structural elements are concept names, role names, individuals and ordinary

predicates. Individuals reflect the objects of our universe while concepts and
roles correspond to unary and binary predicates. Ordinary predicates refer to
predicates of any arity that are found only in the ABox and in the Horn rule
component. CARIN enables us to create concept descriptions using the following
constructors:

C,D → A | ⊤ | ⊥ | C ⊓D | C ⊔D | ¬C | ∀R.C | ∃R.C |≥ nR |≤ nR

where A is a concept name (primitive concept), R is a role name and C, D
denote concept descriptions.

A CARIN knowledge base K consists of an ABox, TBox and a Horn rule
component. The ABox consists of a set of concept, role and ordinary predicate
assertions of the form: C(a), R(a, b) and q(a1, . . . , ak) where q is an ordinary
predicate and a, b, a1, . . . , ak are individuals in K. The TBox is a set of concept
inclusions or definitions of the form C ⊑ D, C := D and role definitions P1 ⊓
. . .⊓Pk ≡ R, where P1, . . . Pk are role names. Finally the Horn rules component
consists of a set of Horn rules of the form p1(X1) ∧ . . . ∧ pk(Xk)⇒ q(Y) where
p1, . . . , pk are either concept descriptions, role definitions or ordinary predicates
of the appropriate arity.

The semantics of CARIN are given via interpretations. An interpretation
consists of a domain and an interpretation function (∆I , ·I), where the domain is
a non-empty set of objects and the interpretation function maps: each individual
name a to an object aI ∈ ∆I , each concept name C to a subset of ∆I , CI ⊆ ∆I ,
each role name R to a binary relation RI ⊆ ∆I×∆I and each ordinary predicate
q to a n-ary relation qI ⊆ ∆I × . . . × ∆I . An interpretation I satisfies C(a),
R(a, b) and q(a1, . . . , ak) if aI ∈ CI , 〈aI , bI〉 ∈ RI and 〈aI1 , . . . , a

I
k 〉 ∈ q

I . TBox
axioms C ⊑ D, C := D and R := P1 ⊓ . . . ⊓ Pk imply that CI ⊆ DI , CI := DI

and RI ≡ P I
1 ∩ . . .∩P

I
k . Finally Horn rules of the form p1(X1)∧ . . .∧pk(Xk)⇒

q(Y) imply that for any mapping ψ : V arsIndivs(X1 ∪ . . . ∪ Xk) → ∆I , if
ψ(Xi) ∈ pIi , then ψ(Y) ∈ qI .

2.2 Fuzzy Sets

Fuzzy set theory and fuzzy logic enables to represent uncertain and imprecise
knowledge [21]. In classical set theory an element x which belongs to the universe
Ω, x ∈ Ω, may or may not belong to a subset A of Ω. This can be represented
by a mapping χA : Ω → {0, 1}, if χA(x) = 1 then x ∈ A else if χA(x) = 0 then
x 6∈ A. In fuzzy set theory, a fuzzy subset A of Ω has a mapping µA : Ω → [0, 1]
which means that instead of saying that x ∈ A we can claim that x belongs to
A to a certain degree. Additionally a binary fuzzy relation over two crisp sets
Ω1, Ω2 is a mapping R : Ω1×Ω2 → [0, 1] and a n-ary relation q over n crisp sets
Ω1, . . . Ωn is a mapping q : Ω1 × . . .×Ωn → [0, 1].

The classical set theoretical operations of complement, union intersection
and implication are also extended in fuzzy set theory by using triangular norm
operations [21]. Because of the difficulty of extending DLs with arbitrary fuzzy
set operations our system uses some standard norm operations [16]. These norms

are: the Lukasiewicz negation c(a) = 1− a, the Gödel t− norm for conjunction,
t(a, b) = min(a, b), the Gödel t-conorm for disjunction u(a, b) = max(a, b) and
the Kleene-Dienes fuzzy implication, J(a, b) = max(1− a, b).

3 The language of Fuzzy Carin

As stated, non recursive fuzzy CARIN is a language, which combines the de-
scription logic fuzzy ALCNR with non recursive Horn Rules. A fuzzy CARIN
knowledge base K is composed of three components K = 〈T ,H,A〉, a DL termi-
nology component T also called a TBox, a Horn rules componentH and a ground
facts component A also called an ABox. In the syntax and semantics that we
propose, we consider that fuzziness exists only in the ground facts component.

3.1 Syntax

Fuzzy CARIN’s structural elements are a set of individuals I, an alphabet of
concept names C, role names R and ordinary predicate names Q. Elements of
I represent the objects in our universe, while C and R correspond to unary and
binary fuzzy relationships between individuals in I. Elements of Q correspond
to relationships, between individuals, of any arity.

Terminological component in fuzzy CARIN: The fuzzy CARIN terminological
component T has the same syntax as the crisp. Complex concepts are built
from concept and role names using the constructors of ALCNR as described in
Equation 1 where A is a concept name, C and D are concept descriptions and
R is a role definition.

C,D −→ A | ⊤ | ⊥ | C⊓D | C⊔D | ¬C | ∀R.C | ∃R.C | (≥ mR) | (≤ mR) (1)

The TBox contains concept definitions A := D, concept inclusions C ⊑ D and
role definitions of the form R := P1 ⊓ . . . ⊓ Pk, where Pis are role names.3

Horn rules in fuzzy CARIN: The Horn rule component H of a fuzzy CARIN
knowledge base K contains a set of Horn rules that are logical sentences of the
form:

p1(X1) ∧ . . . ∧ pk(Xk)⇒ q(Y) (2)

where X1, · · · ,Xk and Y are tuples of variables and individuals and p1, · · · pk

may be concept names, roles or ordinary predicates while q is always an ordinary
predicate. The antecedents of a Horn rule are called its body and the consequents
are called its head.

Fuzzy as well as the classic CARIN are, as stated before, hybrid systems,
which means that there is a clear distinction between their DL and Horn rule
part. For this reason ordinary predicates are defined as predicates of any arity
that locate only in H and A and cannot be part of a concept description, even
if they are unary or binary predicates. Additionally in order to have a sound

3 In some bibliography role definitions may be a part of an RBox R instead of a TBox.

and complete algorithm, variables located in Y must also be located in one of
the Xi’s and only non-recursive Horn rules are adopted. A set of rules is said
to be recursive if there is a cycle in the dependency relation among ordinary
predicates, i.e an ordinary predicate q depends on a predicate p when p appears
in the body of a rule whose head is q and dependency is a transitive relation.

Ground fact component: The ground fact component A of a fuzzy CARIN
knowledge base contains a set of fuzzy assertions as shown in table 1:

Table 1. Fuzzy CARIN assertions

(a : C) ⊲⊳ n
where a ∈ I, ⊲⊳∈ {>, >, 6, <}, n ∈ [0, 1] and C is a concept
description

(〈a, b〉 : R) � n where a, b ∈ I, � ∈ {>, >}, n ∈ [0, 1] and R is a role name

(a : p) � n
where a is a tuple of individuals, � ∈ {>, >}, n ∈ [0, 1] and p is
an ordinary predicate of any arity.

Intuitively a fuzzy assertion of the form (weather : cloudy) > 0.5 means
that the weather is cloudy with a degree at least equal to 0.5. We call assertions
defined by >, > positive assertions, denoted with ⊲, while those defined by 6, <

negative assertions, denoted with ⊳. ⊲⊳ stands for any type of inequality. In fuzzy
CARIN, we consider only positive role assertion, since negative assertions would
imply the existence of role negation and union of roles in ALCNR, which would
lead to undecidability. Similarly for ordinary predicates we use only positive
assertions since negation cannot be expressed in simple Horn Rules.

3.2 Semantics

The semantics of the terminological component are given via fuzzy interpreta-
tions which use membership functions that range over the interval [0, 1]. A fuzzy

interpretation is a pair I = 〈∆
I

, ·I〉, where the domain ∆I is a non empty set
of objects and ·I is a fuzzy interpretation function, which maps:

1. An individual name a ∈ I to an element aI ∈ ∆I ,
2. A concept name A ∈ C to a membership function AI : ∆I → [0, 1],
3. A role name R ∈ R to a membership function RI : ∆I ×∆I → [0, 1],
4. An ordinary predicate q ∈ Q of l-arity to a membership function qI :
∆I × . . .×∆I

︸ ︷︷ ︸

l

→ [0, 1],

5. Finally, we make the unique names assumption, i.e. for each tuple of elements
a, b ∈ I, aI 6

.
= bI holds.

The semantics of concept descriptions are given by the equations in table 2
where a, b ∈ ∆I and C,D are concept descriptions, R is a role description and
A is a concept name. Terminological component satisfiability: An interpretation
I satisfies the terminological component T , iff

Table 2. Semantics

Syntax Semantics

A AI(a) = n where n ∈ [0, 1]

⊤ ⊤I(a) = 1

⊥ ⊥I(a) = 0

¬C (¬C)I(a) = 1 − CI(a)

C ⊓ D (C ⊓ D)I(a) = min(CI(a), DI(a))

C ⊔ D (C ⊔ D)I(a) = max(CI(a), DI(a))

∀R.C (∀R.C)I(a) = infb∈∆I{max(1 − RI(a, b), CI(b))}

∃R.C (∃R.C)I(a) = supb∈∆I{min(RI(a, b), CI(b))}

(≥ m R) (≥ mR)I(a) = supb1,··· ,bm∈∆I minm
i=1{R

I(a, bi)}

(≤ m R) (≤ mR)I(a) = infb1,··· ,bm+1∈∆I maxm+1

i=1 {1 − RI(a, bi)}

– ∀a ∈ ∆I , CI(a) 6 DI(a) for each concept inclusion axiom C ⊑ D in T ,
– ∀a ∈ ∆I , CI(a) = DI(a) for each concept definition axiom C := D in T ,
– ∀a, b ∈ ∆I , min(P I

1 (a, b), . . . , P I
k (a, b)) = RI(a, b) for each role definition ax-

iom P1 ⊓ . . . ⊓ Pk := R in T .

Horn rule satisfiability: An interpretation I satisfies a Horn rule p1(X1) ∧
. . . ∧ pk(Xk)⇒ q(Y) iff for every mapping ψ from the variables and individuals
of X1, . . . ,Xk, Y to the objects of ∆I , where each individual a is mapped to aI ,
min

(
pI1 (ψ(X1)), . . . , p

I
k (ψ(Xk))

)
≤ q(ψ(Y)) holds. The Horn rule component is

satisfied iff all rules in it are satisfied.
Ground fact component satisfiability: A fuzzy interpretation satisfies the

ground fact component A iff it satisfies all fuzzy assertions in A as described
in table 3. In this case we say I is a model of A and it is denoted as I |= A. If
A has a model we then say that it is consistent.

Table 3. Fuzzy assertion satisfiability

I satisfies iff

(a : C) ⊲⊳ n CI(aI) ⊲⊳ n

(〈a, b〉 : R � n) RI(aI , bI) � n

(〈a1, . . . , ak〉 : q � n) qI(a1
I , . . . , ak

I) � n

In fuzzy CARIN we consider that each concept assertion is in its positive
inequality formal, negation normal, normalized form i.e. only concept assertions
of the form (a : C) ≥ n are allowed, where C is in its negation normal form. The
same applies for role and ordinary predicate assertions.

Negative assertions can be converted to their Positive Inequality Normal
Form (PINF) by applying the fuzzy complement in both sides of the inequality

as described in [22]. For example (a : C) ≤ n and (a : C) < n are being
transformed into (a : ¬C) ≥ 1− n and (a : ¬C) > 1− n.

We also assume that all concepts are in their Negation Normal Form. A
concept can be transformed into its NNF by pushing negation inwards making
use of the following concept equivalences [16, 17]:

¬(C ⊔D) ≡ (¬C ⊓ ¬D) ¬(C ⊓D) ≡ (¬C ⊔ ¬D)
¬∃R.C ≡ ∀R.(¬C) ¬∀R.C ≡ ∃R.(¬C)
¬ ≥ p1R ≡ ≤ (p1 − 1)R ¬ ≤ p2R ≡ ≥ (p2 + 1)R
¬¬C = C

where p1 ∈ N
∗ and p2 ∈ N in the above equations.

Normalized assertions, are assertions where > is eliminated with ≥. This can
be achieved by introducing a positive, infinitely small value ǫ which, from an
analysis point of view, would be equal to 0+. Following [23] each concept assertion
a : C > n is normalized to a : C ≥ n+ ǫ. The same kind of normalization holds
for role and ordinary predicate assertions. It has been proven in [23] that each
model I of K is also a model of K’s normalized form and vice versa.

Finally following [17] a conjugated pair of fuzzy assertions is a pair of asser-
tions whose semantics are contradicted. If φ represents a crisp concept assertion
and ¬φ its negation (e.g. if φ ≡ a : C then ¬φ ≡ a : ¬C) the instances of
conjugated pairs are seen in table 4. An ABox A with a conjugated pair of fuzzy

Table 4. Conjugated pairs of fuzzy assertions

¬φ > m ¬φ ≥ m

φ ≥ n n + m ≥ 1 n + m > 1

φ > n n + m ≥ 1 n + m ≥ 1

assertions has no model I.
Knowledge base satisfiability: An ABox A is consistent w.r.t. a TBox T and

a Horn rules component H if it has a model, I |= A, that satisfies every concept,
role inclusion and definition in T as well as each Horn rule in H. A knowledge
base K = 〈A, T ,H〉 is satisfiable when there exists such a model I which is
called a model of a knowledge base K and denoted as I |= K.

4 Reasoning

The most common inference problems addressed by previous fuzzy DL sys-
tems are the satisfiability, n-satisfiability, subsumption and the entailment prob-
lem [16]. It has been proven in [16, 17] that each one of the previous problems
can be reduced to the problem of a knowledge base satisfiability.

Another kind of inference problem interwoven with relational databases is the
conjunctive query answering problem. Following [24] we present the definition
of the conjunctive query problem for fuzzy DLs.

Definition 1 (Conjunctive Query). A conjunctive query (CQ) over a knowl-
edge base K is a set of atoms of the form

CQ = {p1(Y 1) � n1 ∧ . . . ∧ pk(Y k) � nk}

where p1, . . . , pk are either concept names in C, role names in R or ordinary
predicates in Q and Y 1, . . . , Y k are tuples of variables and individuals in I match-
ing each pi’s arity.

Similarly to assertions, conjunctive queries are also transformed to their nor-
malized form by substituting each pi(Y i) > ni in CQ with pi(Y i) ≥ ni + ǫ.

Definition 2 (Union of Conjunctive Queries). A union of conjunctive queries
(UCQ) over a knowledge base K is a set of conjunctive queries:

UCQ = {Q1, . . . , Ql}

where Qi is a CQ for each 1 ≤ i ≤ l.

To say that Q is either a CQ or an UCQ, we simply say that Q is a query.
We denote by varsIndivs(Q) the set of variables and individuals in a query Q,
by vars(Q) the set of variables in Q and by Indivs(Q) the set of individuals in
Q.

Queries are interpreted in the standard way. For a CQ, we say that I models
CQ, I |= CQ, iff there exists a mapping σ : varsIndivs(CQ) → ∆I such that
σ(a) = aI for each a ∈ Indivs(CQ) and pIi (σ(Yi)) ≥ n for each p(Yi) ≥ n in CQ.
For a union of conjunctive queries UCQ = {Q1, . . . , Ql}, I |= UCQ iff I |= Qi

for some Qi ∈ UCQ. For a knowledge base K and a query Q, we say that K
entails Q, denoted K |= Q, iff I |= Q for each model I of K.

Definition 3 (Query Entailment). Let K be a knowledge base and Q a query.
The query entailment problem is to decide whether K |= Q.

It is important to notice that the query entailment, contrary to the entailment
problem, cannot be reduced to consistency checking, since the negation of a query
cannot be expressed as part of a knowledge base. For this reason consistency
checking does not suffice for answering to conjunctive queries.

5 Consistency checking for Fuzzy CARIN

To say that K |= Q it has to hold that I |= Q for each model I of K. Instead
of checking an infinite number of interpretations I satisfying K, our algorithm
checks a finite number of completion forests. A completion forest F is an ab-
straction of an interpretation I and in most tableaux algorithms a complete and
clash free F is the proof of the existence of a model of K. In 5.1 we provide an
algorithm for consistency checking in ALCNR and based on this algorithm the
conjunctive query answering problem is solved as described in 6.

5.1 ALCNR Completion Forests

The completion forest introduced is based on the completion forest presented
in [15]. As in [15] the application of the expansion rules for the completion for-
est could lead to an arbitrary number of nodes due to the existence of cyclic
concept inclusions. In order to ensure the termination of the expansion rules a
blocking condition should be adopted. Contrary to the simple blocking condi-
tion embraced by ALCNR [25] our algorithm adopts the q-blocking condition,
introduced in [15], in order to cope with union of conjunctive queries. In the
next paragraphs the notions of completion forest, q-blocking and the expansion
rules are explained in detail.

Definition 4 (Completion Tree). A completion tree for fuzzy ALCNR is a
tree, all nodes of which are variables, except from the root node which might
be an individual. Each node x is labelled with a set L(x) = {〈C,≥, n〉}, where
C ∈ sub(K) and n ∈ [0, 1]. Each edge is labelled with a set L(x, y) = {〈R,≥, n〉},
where R ∈ R are roles occurring in K.

(Completion Forest). A completion forest F is a collection of trees whose
roots, which correspond to individuals, are arbitrarily connected by arcs. As be-
fore, edges between root nodes are labelled with the set L(x, y) = {〈R,≥, n〉},
where R ∈ R.

In the previous definition sub(K) denotes the set of concepts occurring in K
along with their sub-concepts.

Example 2. In Figure 1 we see a completion forest for fuzzy ALCNR where
r1, r2 correspond to root nodes while o1, . . . , o8 are variable nodes created by
node generating rules. Each node must be labelled with a set of concepts with
degrees and each edge must be labelled with a set of roles with degrees. In this
example only nodes r1, o1 and edges 〈r1, o1〉, 〈r1, r2〉 are labelled due to space
limitations.

L(r1, r2) = {〈R1 ≥ 0.4〉}

r1

o1

L(r1, o1) = {〈R2 ≥ 0.3〉}

L(o1) = {〈Co11 > 0.3〉 . . .} o2

o3 o4

L(r1) = {〈Cr11 ≥ 0.3〉, . . . , 〈Cr1k > 0.3〉} r2

o5

o6 o7

o8

Fig. 1. A fuzzy ALCNR completion forest

Definition 5 (nodes, vars, R-successor,successor,descendant). For a com-
pletion forest F : (i) nodes(F) denotes the set of nodes in F , (ii) vars(F) denotes

the set of variable nodes in F , (iii) υ is an R≥n-successor of w when nodes υ and
w are connected by an edge 〈υ,w〉 with {〈P1,≥, n1〉, . . . , 〈Pk,≥, nk〉} ⊆ L(〈x, y〉),
R := P1 ⊓ . . .⊓ Pk and min(n1, . . . , nk) ≥ n , (iv) υ is a successor of w, when υ

is an R≥n-successor of w with n > 0, (v) descendent is the transitive closure of
successor.

Example 3. In figure 1, o1 is a R2≥0.3 successor of r1.

Definition 6 (q-tree equivalence). The q-tree of a variable υ is the tree that
includes the node υ and its successors, whose distance from υ is at most q direct-
successors arcs. We denote the set of nodes in the q-tree of υ by Vq(υ). Two nodes
υ,w ∈ F are said to be q-tree equivalent in F if there exists an isomorphism
ψ : Vq(υ)→ Vq(w) such that (i) ψ(υ) = w, (ii) for every s ∈ Vq(υ), 〈C,≥, n〉 ∈
L(s) iff 〈C,≥, n〉 ∈ L(ψ(s)) (iii) for every s, t ∈ Vq(υ), 〈R,≥, n〉 ∈ L(〈s, t〉) iff
〈R,≥, n〉 ∈ L(〈ψ(s), ψ(t)〉). Intuitively, two variables are q-tree equivalent if the
trees of depth q of which they are roots are isomorphic.

Definition 7 (q-Witness). A node υ is the q-witness of a node w when (i) υ
is an ancestor of w, (ii) υ and w are q-tree equivalent, (iii) w 6∈ Vn(υ).

Definition 8 (q-blocking). A node x is q-blocked when it is the leaf of a q-tree
in F whose root w has a q-witness υ and w ∈ vars(F) or when L(x) = ∅.

Example 4. In Figure 2 o1 is a 1-witness of o4, since the 1-tree of o1 is equivalent
of the 1-tree of o4 because L(o1) = L(o4), L(o2) = L(o5), L(o3) = L(o6) and
L(o1, o2) = L(o4, o5), L(o1, o3) = L(o4, o6). For this reason o5 is blocked by o2
and o3 is blocked by o6.

r1

o1

o2

L(o1, o2) = {〈R2 ≥ 0.3〉}

L(o2) = {〈CB ≥ 0.5〉} o3

L(o1, o3) = {〈R2 ≥ 0.3〉}

o4

o5 L(o5) = {〈CB ≥ 0.5〉}

L(o4, o5) = {〈R2 ≥ 0.3〉}

o6 L(o6) = {〈CC ≥ 0.7〉}

L(o4, o6) = {〈R2 ≥ 0.3〉}

L(o4) = {〈CA > 0.2〉}

L(o3) = {〈CC ≥ 0.7〉}

L(o1) = {〈CA > 0.2〉} o8

Fig. 2. Blocking Example

Definition 9 (Clash free completion forest). For a node x, L(x) contains
a clash if it contains: (i) A conjugated pair of triples. Conjugated pairs of triples

are identical to conjugated pairs of fuzzy assertions described in table 4, (ii) one
of the triples 〈⊥,>, n〉, with n > 0, or 〈C,≥, n〉 with n > 1, or (iii) some triple
〈6 pR,≥, n〉, x has p + 1 R≥n′-successors y0, . . . , yp, with n′ = 1 − n + ǫ and
yi 6= yj for all 0 ≤ i < j ≤ p. A completion forest F is clash free if none of its
nodes contains a clash.

For an ALCNR ABox A, the algorithm initializes a completion forest FK to
contain (i) a root node xi

0, for each individual ai ∈ I in A, labelled with L(xi
0)

such that {〈Ci,≥, n〉} ⊆ L(xi
0) for each assertion of the form (ai : Ci) ≥ n ∈ A,

(ii) an edge 〈xi
0, x

j
0〉, for each assertion (〈ai, aj〉 : Ri) ≥ n ∈ A, labelled with

L(〈xi
0, x

j
0〉) such that {〈Ri,≥ n〉} ⊆ L(〈xi

0, x
j
0〉), (iii) the relation 6

.
= as xi

0 6
.
= x

j
0

for each two different individuals ai, aj ∈ I and the relation
.
= to be empty. F is

expanded by repeatedly applying the completion rules from table 5.
In table 5 rules ⊓≥, ⊔≥, ∃≥, ∀≥ are first introduced in [16] and then modified

for completion forests in [4], rules ≥≥ and ≤≥ are presented in [17], while rule
⊑ is first introduced in [23]. The ≤r≥ presented in [17] cannot be applied, since
aI 6

.
= bI holds for every pair of individuals a, b ∈ I.

Definition 10 (q-complete completion forest). We denote by FK the set of
completion forests F obtained by applying the expansion rules in table 5 to FK .
A completion forest F is q-complete when none of the rules in table 5 can be
applied to it. We denote by ccf(Fq

K) the set of completion forests in FK that are
q-complete and clash free.

It can be proven that each F ∈ ccf(Fq
K) can be mapped to a model I of K and

vice versa (detailed proofs can be found in [17]). In section 6 we show how the
set ccf(Fq

K) can be exploited in order to answer to unions of conjunctive queries.

6 Union of Conjunctive queries

In this section we will introduce an algorithm for answering to union of conjunc-
tive queries over an ALCNR knowledge base K, where we exam the finite set

of clash free completion forests ccf(F
|Q|
K

). Our algorithm is first presented for
union of conjunctive queries free of ordinary predicates (6.1) and then extended
for query answering with ordinary predicates (6.2).

6.1 Answering to conjunctive queries without ordinary predicates

In order to have a complete algorithm for answering to conjunctive queries we
must add to our TBox the rule C ⊑ C for each concept name C appearing in a
conjunctive query. This ensures that in each completion forest either (x : C) ≥ n
or (x : C) < n 4 holds and consequently it can be checked if a node can be
mapped to a variable of our conjunctive query.

4 (a : ¬C) > 1 − n + ǫ is its PINF, normalized form

Table 5. Tableaux expansion rules for fuzzy ALCNR

Rule Description

⊓≥

if 1. 〈C1 ⊓ C2,≥, n〉 ∈ L(x), x is not blocked,
2. {〈C1,≥, n〉, 〈C2,≥, n〉} 6⊆ L(x)

then L(x) → L(x) ∪ {〈C1,≥, n〉, 〈C2,≥, n〉}

⊔≥

if 1. 〈C1 ⊔ C2,≥, n〉 ∈ L(x), x is not blocked,
2. {〈C1,≥, n〉, 〈C2,≥, n〉} ∩ L(x) = ∅

then L(x) → L(x) ∪ {C} for some C ∈ {〈C1,≥, n〉, 〈C2,≥, n〉}

∃≥

if 1. 〈∃R.C,≥, n〉 ∈ L(x), x is not blocked,
2. x has no R≥n-successor y with 〈C,≥, n〉 ∈ L(y)

then create a new node y with L(〈x, y〉) = {〈R,≥, n〉}, L(y) = {〈C,≥, n〉}

∀≥

if 1. 〈∀R.C,≥, n〉 ∈ L(x), x is not blocked,
2. x has an R≥n′ -successor y with n′ = 1 − n + ǫ

then L(y) → L(y) ∪ {〈C,≥, n〉}

≥≥

if 1. 〈≥ mR,≥, n〉 ∈ L(x), x is not blocked,
2. there are no m R≥n-successors y1, . . . , yp of x

3. with yi 6= yj for 1 ≤ i < j ≤ m

then create m new nodes y1, . . . , ym, with L(〈x, yi〉) = {〈R,≥, n} and
yi 6= yj for 1 ≤ i < j ≤ m

≤≥

if 1. 〈≤ mR,≥, n〉 ∈ L(x), x is not blocked,
2. there are more then m R≥n′ -successors of x with n′ = 1 − n + ǫ and

there are two of them y, z, with no y 6
.
= z,

3. y is not a root node
then (a) L(z) → L(z) ∪ L(y)

(b) L(〈x, z〉) → L(〈x, z〉) ∪ L(〈x, y〉)
(c) L(〈x, y〉) → ∅, L(y) → ∅
(d) Set u 6

.
= z for all u with u 6

.
= y

⊑

if 1. C ⊑ D ∈ T and
2. {〈¬C,≥, 1 − n + ǫ〉, 〈D,≥, n〉} ∩ L(x) = ∅ for n ∈ NA a

then L(x) → L(x) ∪ {E} for some E ∈ {〈¬C,≥, 1 − n + ǫ〉, 〈D, �, n〉}

a NA denotes the set of degrees in ABox assertions as well as the set of
degrees in conjunctive queries.

Additionally we have to show why q-blocking is adopted instead of simple
blocking. A conjunctive query CQ as presented in definition 1 can be mapped
to a graph GCQ whose nodes correspond to variables and individuals, each node
is labelled with a set L(x) = {〈C,≥, n〉} and each edge is labelled with a set
L(x, y) = {〈R,≥, n〉} where C and R are concepts and roles in CQ. Suppose
that dxy is the length of the lengthiest acyclic path between nodes x and y, we
define |CQ| to be the maximum dxy between the set of pairs of connected nodes
in CQ. Naturally we deduce that a conjunctive query CQ cannot be mapped to
a subtree of a completion forest F that has more than |CQ| arcs height. The
|CQ|-blocking condition ensures that a possible mapping from CQ to F wont
be blocked. In case of a union of conjunctive queries UCQ we will consider that
|UCQ| coincidents with the value of the maximum |CQ|.

Example 5. The conjunctive query:

CQ =

friend(John, x) ≥ 0.3, tall(x) ≥ 0.7,
likes(x,Mary) ≥ 0.2, friend(John, y) ≥ 0.6,
hates(y,Mary) ≥ 0.8, loves(z, w) ≥ 0.4

5

is represented by the graph in figure 3. For this conjunctive query |CQ| = 2.

Fig. 3. Conjunctive query mapped to a graph

x {〈tall,≥, 0.7〉 . . .}

{...} John Mary {. . . }

y

{. . . } z w {. . . }

{〈friend,≥, 0.3〉, . . .}

{〈friend,≥, 0.6〉, . . .}

{〈likes,≥, 0.2〉, . . .}

{〈hates,≥, 0.8〉, . . .}

{〈loves,≥, 0.7〉, . . .}

Definition 11. Suppose we have a query Q = C1(x1) ≥ n1 ∧ . . . ∧ Ck(xk) ≥
nk∧R1(y1, z1) ≥ nk+1∧ . . .∧Rl(yl, zl) ≥ nk+l. For a completion forest F we say
that Q →֒ F iff there exists a mapping σ : varsIndivs(Q)→ nodes(F) such that
{〈Ci,≥, ni〉} ∈ L(σ(xi)) and σ(yj) is an R≥nj

-successor of σ(zj) for each 1 ≤
i ≤ k and k+1 ≤ j ≤ l. For a union of conjunctive queries UCQ = {Q1, . . . , Ql}
we say that UCQ →֒ F iff Qi →֒ F for some Qi ∈ UCQ.

It can be proven that if a mapping Q →֒ F exists for each F ∈ ccf(F
|Q|
K

), then
K |= Q.

6.2 Answering to Conjunctive Queries with ordinary predicates

Initially, we will consider conjunctive queries containing no assertions about
ordinary predicates, in such a case it holds:

Proposition 1. Suppose that we have a conjunctive query of the form Q =
{p1 ≥ n1 ∧ . . .∧ pk ≥ nk ∧ . . .∧ pm ≥ nm} and a set of Horn Rules related to pk:

Hpk
=

pk ← p11 ∧ . . . ∧ p1l1 ,
...

pk ← pm1 ∧ . . . ∧ pmlm

Q can be replaced with a union of conjunctive queries UCQ = {Q1, . . . , Qm}
where in each Qj, pk ≥ nk is replaced with pk1 ≥ mk ∧ . . . ∧ pklk ≥ mk.

5 Here we claim that someone may like, hate, love or be a friend of someone else at
certain degree

Fuzzy assertions about ordinary predicates can be introduced by the use of
pseudo-roles and pseudo-concepts. For example an assertion about an ordinary
predicate q(a1, . . . , am) ≥ n can be substituted by a set of role assertions Aq =
{Rq1(a1, a2) ≥ n, . . . , Rq(m−1)(am−1, am) ≥ n} and a Horn rule q ← Rq1 ∧ . . . ∧
Rq(m−1). In such a case conjunctive queries and union of conjunctive queries can
be recurrently stretched to union of conjunctive queries containing only concepts
and roles (pseudo or not) since only acyclic Horn Rules are allowed in H. So the
problem is reduced to the problem described in section 6.1.

7 Conclusions

Till now we have presented the integration of fuzzy logic, description logics and
Horn rules, into fuzzy CARIN. The acquired system matches the benefits of its
ancestors, providing a very expressive language for handling uncertainty and
imprecision, with the counterweight of its high complexity, resulting from the
high complexity of its structural elements. Future directions concern the study of
fuzzy CARIN’s complexity and its extension with more expressive DLs (a guide
towards that direction is provided in [24]). It should also be extended to answer
to other kind of inference problems, originating from the fuzzy DL domain, such
as glb queries [16].

Acknowledgement.

This work was partially supported by the European Commission under projects
X-Media (FP6-26978) and K-space (IST-2005-027026). The work of Giorgos Stoi-
los was partially supported by the Greek Secretariat of Research and Technology
(PENED Ontomedia 03 ED 475).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
In Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: Description Logic Handbook, Cambridge University Press (2003)

2. Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information
retrieval. J. ACM 48 (2001) 909–970

3. Goble, C.A., Haul, C., Bechhofer, S.: Describing and classifying multimedia using
the description logic grail. In: Storage and Retrieval for Image and Video Databases
(SPIE). (1996) 132–143

4. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy description
logic for multimedia knowledge representation, Proc. of the International Workshop
on Multimedia and the Semantic Web (2005)

5. Golbreich, C., Bierlaire, O., Dameron, O., Gibaud, B.: Use case: Ontology with
rules for identifying brain anatomical structures. In: Rule Languages for Interop-
erability, W3C (2005)

6. I. Herman, J.H.: Web ontology language (OWL). technical report (2004)
http://www.w3.org/2004/OWL/.

7. Herman, I.: Semantic web. technical report (2007) http://www.w3.org/2001/sw/.
8. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In Kaelbling, L.P.,

Saffiotti, A., eds.: IJCAI, Professional Book Center (2005) 364–369
9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In Doherty,

P., Mylopoulos, J., Welty, C.A., eds.: KR, AAAI Press (2006) 57–67
10. Antoniou, G., Damasio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J.,

Patel-Schneider, P.F.: Combining rules and ontologies. a survey (2006)
11. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-

bining logic programs with description logic. In: WWW. (2003) 48–57
12. Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In

Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E., eds.: WWW, ACM (2004)
723–731

13. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Al-log: Integrating datalog
and description logics. J. Intell. Inf. Syst. 10 (1998) 227–252

14. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. J. ACM 42 (1995) 741–843

15. Levy, A.Y., Rousset, M.C.: Combining horn rules and description logics in carin.
Artif. Intell. 104 (1998) 165–209

16. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. (JAIR)
14 (2001) 137–166

17. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: The fuzzy de-
scription logic f − SHIN . In da Costa, P.C.G., Laskey, K.B., Laskey, K.J., Pool,
M., eds.: ISWC-URSW. (2005) 67–76

18. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the semantic web. In Eiter, T., Franconi, E., Hodgson, R., Stephens, S., eds.:
RuleML, IEEE Computer Society (2006) 89–96

19. Straccia, U.: Fuzzy description logic programs. In: Proceedings of the 11th Inter-
national Conference on Information Processing and Management of Uncertainty
in Knowledge-Based Systems, (IPMU-06). (2006) 1818–1825

20. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics
for description logic programs in the semantic web. In Antoniou, G., Boley, H.,
eds.: RuleML. Volume 3323 of Lecture Notes in Computer Science., Springer (2004)
81–97

21. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Volume
567 of [26]

22. Straccia, U.: Description logics with fuzzy concrete domains. In Bachus, F.,
Jaakkola, T., eds.: 21st Conference on Uncertainty in Artificial Intelligence (UAI-
05), (Edinburgh, Scotland) 559–567

23. Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions
influzzy description logics. In Brewka, G., Coradeschi, S., Perini, A., Traverso, P.,
eds.: ECAI, IOS Press (2006) 457–461

24. Ortiz, M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive
query answering in expressive description logics. In: AAAI, AAAI Press (2006)

25. Baader, F., Hollunder, B.: A terminological knowledge representation system with
complete inference algorithms. [26] 67–86

26. Boley, H., Richter, M.M., eds.: Processing Declarative Knowledge, International
Workshop PDK’91, Kaiserslautern, Germany, July 1-3, 1991, Proceedings. In Bo-
ley, H., Richter, M.M., eds.: PDK. Volume 567 of Lecture Notes in Computer
Science., Springer (1991)

