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Abstract. In this paper we focus on a contextual domain ontology rep-
resentation aiding in the process of knowledge-assisted multimedia anal-
ysis. Previous work on the detection of high-level concepts within mul-
timedia documents is extended by introducing a “mid-level” ontology as
a means of exploiting the visual context of images, in terms of high-level
concepts and mid-level region types they consist of. More specifically,
we introduce a context ontology, define its components, its relations and
integrate it in our knowledge modelling approach. In previous works we
have developed algorithms to address computationally efficient handling
of visual context and extraction of mid-level characteristics and now we
expect these diverse algorithms and methodologies to be combined in or-
der to exploit the proposed knowledge model. The ultimate goal remains
that of efficient semantic multimedia analysis. Finally, a use case scenario
derived from the beach domain is also presented, in order to demonstrate
a possible application of the proposed knowledge representation.

1 Introduction

Recent advances in the research field of knowledge-assisted multimedia analysis
along with the emerge of new content and metadata representations, have driven
more and more researchers looking beyond solely low-level features (e.g. color,
texture, and shape) in pursuit of more effective high-level multimedia represen-
tation and analysis methods. Current and previous multimedia research efforts
have focused in combining both low-level descriptors computed automatically
from raw multimedia content and semantics focusing in extracting high-level
features.

The idea of combining formalized knowledge and a set of features to describe
the visual content of an image has been presented for instance in [23], where a
region-based approach using MPEG-7 visual features and ontological knowledge
is presented. Moreover, in [17] a lexicon-driven approach is introduced. Some
research works fall in the category of the “bag-of-words” approach. There, an
image is decomposed to a set of “visual words” derived after clustering or seg-
mentation of the input image. Among others, a region-based approach in content



retrieval using Latent Semantic Analysis is presented in [18], whereas a mean-
shift algorithm is used in [15], in order to extract low-level features, after the
image is clustered. In [6] images are partitioned in regions, regions are clustered
to obtain a codebook of region types, and a bag-of-regions approach is applied
for scene representation. In [5] visual categorization is achieved using a bag-of-
keypoints approach. Finally, in [13] the authors train separate shape detectors
using a shape alphabet, which is actually a dictionary of curve fragments.

Contextual information in terms of specific concepts, objects and events,
typically present in a beach, mountain or city scenery, could be a considerable
source of useful information [22]. A significant number of misclassifications usu-
ally occur because of the similarities in low-level characteristics of various object
types and the lack of such high-level contextual information, which underlies
as the major limitation of individual object detectors. Generic algorithms for
automatic object recognition and/or scene classification [21] are unfortunately
not producing reliable results and restricting the problem to a specific domain
does not provide a global and satisfactory solution.

The notion of (visual) context is introduced in [22] and [10], as an extra
source of information for both object detection and scene classification. The
truth is that the idea behind the use of such additional information refers to
the fact that not all events are relevant in all situations and this holds also
when dealing with image analysis problems. Visual context is a difficult notion
to grasp and capture and thus we restrict it herein to the notion of ontological
context, defined as part of the “fuzzified” context ontology presented in Section
3. Our choice is aligned with the clear research trend that exists in the literature
[14] towards “fuzzification” of ontology description languages, like fuzzy DL and
fuzzy OWL [20], as the representation and reasoning capabilities of fuzziness go
clearly beyond classical.

In the following, we propose our initial research progress in implementing an
RDF-based context representation approach, able to use within any knowledge-
assisted image analysis methodology. The ultimate goal is to be able to apply
our approach on top of any given image domain. We introduce a methodology
to improve the results of high-level feature extraction, based on the introduced
contextual information. In comparison to some of our previous research efforts
[1], a novel multiple domain ontological representation for context is introduced,
combining fuzzy theory and fuzzy algebra [8] with recent knowledge represen-
tation approaches, such as RDF [25] and reification [26]. In this process, the
membership degrees among the ontology concepts are re-estimated appropri-
ately, according to a context-based membership degree readjustment algorithm.

The structure of this paper is as follows: In Section 2, the proposed mid-
level conceptualization is introduced, whereas in Section 3 the overall fuzzy con-
text knowledge formalization is described, including some basic notation used
throughout the paper. Section 4 describes the utilized contextualization step.
Section 5 illustrates a preliminary use case scenario and Section 6 briefly con-
cludes our work.



Fig. 1. An input image and its coarse segmentation.

2 Mid-level Conceptualization

As already mentioned in Section 1, among our main goals with this research work
is to provide an ontological knowledge representation containing both high-level
features (i.e. high-level concepts) and mid-level features. In this section we will
describe the nature of the latter features and the way they are selected.

Generally, the visual features one can extract from an image or video docu-
ment can be divided in two major categories. The first one contains the low -level
visual features, which may provide a qualitative or quantitative description of the
visual properties. Often these features are standardized in the form of a visual
descriptor. The second category contains the high-level features, which describe
the visual content of an image in terms of its semantics. One fundamental dif-
ference between those categories is that low-level features may be calculated
directly from an image or video, while high-level features cannot be directly ex-
tracted but are often determined by exploiting the low-level features. Thus, this
problem often referred to as the “Semantic Gap”[16] attracts a lot of interest
within the research community.

In this sense, we try to enhance the notion of a visual context ontology with
mid -level concepts. These concepts may provide an in-between description, which
can be described semantically, but does not express neither a high- nor a low-
level concept. Thus, in this work we focus on a unified multimedia representation
by combining low- and high-level information in an efficient “mid-level” manner
and attach it to the context ontology by defining certain relations, as described
in Section 3.

To better understand the notion of these mid-level concepts, we present a
visual example in Figure 1. In this example, one could describe the visual content
of the image either in a high-level manner (i.e. the image contains sky, sea, sand
and vegetation) or in a lower level, but higher than a low-level description (i.e. a
“light blue” region, a “blue” region, a green region and a “grey” region. We shall
call these mid-level features region types since in our belief each image can be
intuitively and even efficiently described by a set of them. Thus, it is of crucial
importance to define this set of region types in an effective manner, that can
efficiently describe almost every image in the domain of interest.



An arbitrary large number of candidate region types is initially needed. To
gather it, a color segmentation algorithm is first applied on all images of the avail-
able training set, as a pre-processing step. This algorithm is a multi-resolution
implementation of the well-known RSST [2], tuned to produce a coarse segmen-
tation. This way, the resulting segmented regions facilitate a qualitative descrip-
tion of the image as the aforementioned of Figure 1. Then, from each region we
extract certain low-level visual features. More specifically, color and texture de-
scriptors from the MPEG-7 standard [4] are selected to capture a standardized
description of their visual content as they have been effectively applied for such
a use in various applications. For representing the color features, three MPEG-7
color descriptors are extracted: The Color Layout Descriptor, the Scalable Color
Descriptor and the Color Structure Descriptor. Moreover, for representing the
texture features, the Homogeneous Texture Descriptor is also extracted. For the
extraction of these color and texture descriptors, the MPEG-7 eXperimentation
Model (XM)[9] has been applied.

A simple observation of the training set of images and the set of the segmented
regions reveals that images containing similar semantic concepts are consisted of
similar regions. As a natural sequence of this observation we apply a hierarchical
clustering algorithm on those regions. The general structure of this algorithm,
adjusted for the problem at hand, is as follows:

1. Turn each input element into a singleton, i.e. into a cluster of a single element.
2. For each pair of clusters c1, c2 calculate a compatibility indicator CI(c1, c2).

The CI is also referred to as cluster similarity, or dissimilarity, measure.
3. Merge the pair of clusters that have the best CI. Depending on whether this

is a similarity or a dissimilarity measure, the best indicator could be the max
or min operator, respectively.

4. Continue at step 2, until the termination criterion is satisfied. The termina-
tion criterion most commonly used is the definition of a threshold for the
value of the best compatibility indicator.

After this process, we should note that each cluster may or may not represent a
high-level feature and each high-level feature may be represented by one or more
clusters; i.e. the concept sand can have many instances differing e.g. in the color
of the sand. Moreover, in a cluster that may contain instances from a semantic
entity (e.g. sea), these instances could be mixed up with parts from another
visually similar concept (e.g. sky). We select the region type that represents
each cluster as the closest region to its centroid.

A dendrogram illustrating the described hierarchical clustering and the se-
lection of the region types is depicted in Figure 2. In this simplistic example
an initial set of 14 candidate region types is clustered. Then, 6 region types are
selected to represent the mid-level features.

3 Knowledge Formalization

In this section, we further advance the proposed conceptualization; we introduce
a novel knowledge representation approach in the form of an extended context



Fig. 2. Region type selection using hierarchical clustering. Selected region types are
depicted within the red box.

ontology, initially presented in [12]. The proposed ontology is described by a set of
high-level concepts, a set of region types and a set of relations among them. The
set of concepts is defined by a domain expert. In general, this type of ontology
O may be decomposed into three parts, the set C of all high-level concepts, the
set T of all region types and the set Rxi,yj of all binary relations between any
meaningful combination of concepts and region types1. More specifically there
may exist one or several relations between two high-level concepts, two given
region types or a high-level concept and a region type. More formally:

O = {C, T, Rxi,yj}, Rxi,yj : X × Y → {0, 1}, i, j = 1 . . .m, i 6= j (1)

where X, Y ∈ C ∪ T . In other words, since the proposed ontology does not
restrict the relations to be only amongst members of C or T , it is possible that
X ∈ C and Y ∈ T or vice versa. Also, since for each applied semantic relation
its inverse exists, m = |X| = |Y |, where | • | denotes the cardinality of a set.

As it is quite common in the literature, any kind of relation may be repre-
sented by an ontology; however, herein we restrict it to the notion of a “fuzzified”
ad-hoc context ontology. In principle, given a universe U , a crisp set S of entities
on U is described by a membership function µS : U → {0, 1}. The crisp set S is
defined as S = {si}, i = 1, .., N , si ∈ S, whereas a fuzzy set F on S is described
by a membership function µF : S → [0, 1]. The “fuzzified” ontology is introduced
in order to express in an optimal way the real-world relationships that exist be-
tween the concepts and the region types of a scene. In order for this ontology
type to be highly descriptive, it must contain a representative number of dis-
tinct and even diverse relations among high-level concepts, among region types,
and among concepts and region types, so as to exploit in an optimal manner

1 In the following, we shall use the term entities when referring to either concepts or
region types.



the contextual information surrounding each one. Additionally, since modelling
of real-life information is in most cases governed by uncertainty, it is our belief
that these relations must incorporate fuzziness in their definition. Thus, we uti-
lize a set of relations (Table 1), derived from the set of MPEG-7 relations, that
are suitable for image analysis [3] and re-define them in a way to incorporate
fuzziness. A degree of confidence is associated to each relation, and assists in
discriminating between objects exhibiting similar visual characteristics. The set
of utilized relations contains both topological and semantic relations, obtained
by utilizing either a statistical approach on the training data set (used mainly
for the definition of topological relations) or an expert’s opinion (used mainly
for the definition of the semantic relations).

Table 1. Contextual relations between region types.

Name Inverse Symbol Meaning C × C T × T C × T

Similar Similar Sim(a, b) similarity between a and b •
Accompanier AccompanierOf Acc(a, b) coexistence of a and b • • •
Part PartOf P (a, b) entity a is part of entity b • • •
Component ComponentOf Comp(a, b) combines a with b • • •
Specialization Generalization Sp(a, b) b specializes the meaning of a •
Example ExampleOf Ex(a, b) b is an example of a •
Location LocationOf Loc(a, b) b is the location of a •
Property PropertyOf Pr(a, b) b is a property of a • •

Each entity may be related to another using one or more of the aforemen-
tioned contextual fuzzy relations. However, it should be clear that not all rela-
tions are appropriate between any type of entity pairs. For example, the relation
Similar does not make any sense between two high-level concepts, or between
a high-level concept and a region type, i.e. sea cannot be related to sand using
this relation. However, similarity is a meaningful measure to relate two region
types and may calculated by comparing their low-level features. The possible
relations for each pair of entities are depicted in the last three columns of Table
1.

Among the utilized relations, relation Accompanier denotes the coexistence
of two entities within an image/video. Component denotes the combination of
an entity with another, and is used when these entities combined form another
one. Two or more high-level concepts may be combined to form another high-
level concept, while two or more region types may be combined not only to form
another region type, but also a high-level concept. For instance, sky, sea and
sand, when combined, form the high-level concept beach. On the other side, it is
obvious that a combination of two region types is another region type, however
a “brown” and a “green” region type when combined form the high-level concept
tree. The PartOf relation denotes that one entity is part of another. For example,
sky may be a part of outdoor. Specialization allows to a high-level concept to
specialize the meaning of another. For instance, appletree specializes tree which
also specializes vegetation. Greece is an ExampleOf country. sand may be the
LocationOf umbrella. Finally, a “green” region may be a PropertyOf vegetation.



All the above relations form a context model, that can be seen as a graph:
every node of the graph represents a concept or region type and each edge,
between two nodes, a contextual relation between the respective entities. Addi-
tionally, a related degree of confidence is associated to each edge, expressing the
desired fuzziness within the context model. An existing edge between a given
pair of concepts is produced based on the set of contextual fuzzy relations that
are meaningful for the particular pair. For instance, the edge between concepts
rock and sand is produced by the combination of relations Location and Accom-
panier, whereas the water and sea edge utilizes relations Specialization, PartOf,
Example and Location, in order to be constructed. In the same sense, two region
types, i.e. a “green” and a “blue” may utilize the relations Similar, Accompanier
and Component.

As in [7], a fuzzy relation on T is a function Rxi,xj
: X × Y → [0, 1] and its

inverse relation is defined as Rxi,yj

−1 = Ryj ,xi
. Based on the above relations, a

domain-specific, “fuzzified” version of the proposed ontology may be described
by O:

O =
{
C, T,Rxi,xj

}
, i, j = 1, . . .m, i 6= j (2)

where C represents again the set of all high-level concepts, T the set of all
possible region types and

F (Rxi,yj ) = Rxi,xj : X × Y → [0, 1] (3)

denotes a fuzzy ontological relation amongst two entities xi, yj and

Rxi,yj = {Sim, Acc, P,Comp, Sp, Ex, Loc, Pr} (4)

A possible combination of relations

Z = (∪
i,j
Rxi,yj

pij ), pij ∈ {−1, 0, 1}, i, j = 1 . . . m, i 6= j (5)

may then be used to form a single RDF graph [25], which constitutes the abstract
contextual knowledge model formed herein and ready to be used during the
analysis phase. The value of pij is determined by the semantics of each relation
Rxi,yj used in the construction of Z. More specifically:

– pij = 1, if the semantics of Rxi,yj imply it should be considered as is
– pij = −1, if the semantics of Rxi,yj imply its inverse should be considered
– pij = 0, if the semantics of Rxi,yj do not allow its participation in the

construction of the combined relation Z.

In Figure 5 we present a fragment of the aforementioned RDF graph. Only
the relations among high-level concepts and region types are depicted, for the
sake of presentation. In the same sense, we present the relations between high-
level concepts in Figure 4(a) and those between region types in Figure 4(b). We
should note here that we omit the relations among the entities of the ontology
and the beach concept which actually is the root of the graph and all entities
are connected with it.



Fig. 3. RDF ontology fragment.

We should note here that the aforementioned graphs ,represent only a small
fragments of the whole visual context ontology, for the sake of the presentation
and the explanatory examples. That is because an ontology with 1 domain, 10
concepts and 25 region types (i.e. 36 entities) would require a maximum of 630
relations. Even though not all the semantic relations are applicable, as already
explained, such a complicated graph is difficult to be presented in a figure.

The graph of the proposed model contains nodes (i.e. high-level concepts
and region types) and edges (i.e. contextual fuzzy relations between high-level
concepts and/or region types). The degree of confidence of each edge represents
fuzziness in the model. Non-existing edges imply non-existing relations 2. As
each high-level concept and each region type have a

different probability to appear in the scene, a flat context model would not
have been sufficient in this case; quite on the contrary, entities are related to
each other, implying that the graph relations used are in fact transitive.

Since more than one fuzzy relations are often applicable for a pair of entities,
it appears difficult to visualize all of them simultaneously in a graph. Figures 5,
4(a) and 4(b) present fragments of beach context ontology, where each relation
between two entities may be either unique or a combination of more than one
relations, as depicted in eq. (5). To facilitate the visualization of the ontology, in
Table 2, we present all possible relations between a high-level concept, depicted
as C1 and all other entities of the ontology. A zero value denotes the absence of
the corresponding relation. Moreover, in Table 3 we present the corresponding
fuzzy values for each pair of entities for the Accompanier fuzzy relation, which
is applicable between any two given entities.

Table 2. Fuzzy relations between high-level concept C1 and all other entities. The
numbers indicate the fuzzy degree of confidence for each relation.

C1 C2 . . . CN T1 T2 . . . TM

Sim 0 0 . . . 0 0 0 . . . 0
Acc 1 0.5 . . . 0.9 0.7 0.8 . . . 0
P 1 0 . . . 0.3 0.7 0 . . . 0
Comp 1 0.2 . . . 0.9 0 0.5 . . . 0
Sp 0 0.8 . . . 0 0 0 . . . 0
Ex 0 0.7 . . . 0 0 0 . . . 0
Loc 0 0.9 . . . 0.8 0 0 . . . 0
Pr 0 0 . . . 0 0.5 0 . . . 0.7

2 In other words relations with zero confidence values are omitted.



(a) High-level concepts and the re-
lations among them.

(b) Region types and the relations
among them.

Fig. 4. Two fragments of the visual context ontology.The numbers indicate the fuzzy
degree of confidence for each relation.

Table 3. The degrees of the Accompanier relation for all pairs of entities.The numbers
indicate the fuzzy degree of confidence for each relation.

C1 C2 . . . CN T1 T2 . . . TM

C1 1 0.7 . . . 0 0.7 0.2 . . . 0.4
C2 0.7 1 . . . 0.8 0.6 0.7 . . . 0.5
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CN 0 0.8 . . . 1 0.6 0.7 . . . 0.8
T1 0.7 0.2 . . . 0.4 1 0.3 . . . 0.5
T2 0.6 0.7 . . . 0.5 0.3 1 . . . 0.1

.
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.
TM 0.6 0.7 . . . 0.8 0.5 0.1 . . . 1

Describing each edge’s accompanying degree of confidence may be carried
out using a variety of methods; herein, we chose to use the methodology intro-
duced by RDF reification [26]. Reification is used in knowledge representation
to represent facts that must then be manipulated in some way; for instance, to
compare logical assertions from different witnesses to determine their credibility.
The message “Ben is the leader of the group” is an assertion of truth that com-
mits the sender to the fact, whereas the reified statement, “Juliet reports that
Ben is the leader of the group” defers this commitment to Juliet. In this way,
statements may include fuzzy information (i.e. “Ben is the leader of the group
with a degree of confidence equal to 0.85”), without creating contradictions in
reasoning, since a statement is being made about the original statement, which



Fig. 5. A fragment of the visual context ontology. Only relations between high-level
concepts and region types are depicted. The numbers indicate the fuzzy degree of
confidence for each relation.

contains the degree information. Of course, the reified statement should not be
asserted automatically, a fact that proves the use of the above technique to be
acceptable. For instance, having a triple in RDF language such as: “blue partOf
green” and a degree of confidence of “0.85” for this statement, does obviously
not entail, that a blue region type will always be part of a green region type in
the scene.

4 Visual Context Optimization

Based on the principles and mathematical foundations of fuzzy algebra [8] and
the described knowledge conceptualization, we further present an ad hoc visual
context optimization step and algorithm. Its core functionality is the meaningful
readjustment of the membership degrees of each entity associated to a region or
segment of an image, obtained from any kind of image analysis module. The
novelty introduced herein deals with the context value, which is utilized in order
to tackle cases where the dominant concept and/or region type is difficult to
be identified. The problem that this step attempts to address is summarized in
the following statement: it readjusts in a meaningful manner the initial concept
and/or region type confidence values produced by an initial step of low-level
multimedia analysis. In this section, the remaining problems to be tackled in-
clude how to meaningfully readjust the initial membership degrees and how to



use visual context to influence the overall results of knowledge-assisted image
analysis towards higher performance.

An estimation of the degree of membership of each mid-level entity is derived
from direct and indirect relationships of the latter with other entities in the
constructed graph, using a meaningful compatibility indicator or distance metric.
Depending on the nature of the domains provided in the domain ontology, the
best indicator could be selected using the max or the min operator, respectively.
Of course the ideal distance metric for two concepts or region types is again
one that quantifies their semantic correlation. For the problem at hand, the
max value is a meaningful measure of correlation for both of them. The general
structure of the proposed degree of membership re-evaluation algorithm, using
the standard t-conorm and the algebraic product as the t-norm, is as follows:

1. Identify a domain similarity (or dissimilarity) measure, imposed by the na-
ture of the considered domain: dnp ∈ [0, 1].

2. For each concept, c ∈ C we describe the fuzzy set Lc, using the widely

applied [8] sum notation: Lc =
|C|∑
i=1

ci/wi = {c1/w1, c2/w2, . . . , cn/wn}, where

wi describes the membership function: wi = µLc(ci)

3. For each region type, t ∈ T we describe the fuzzy set Lt: Lt =
|T |∑
i=1

ti/wi =

{t1/w1, t2/w2, . . . , tn/wn}, where wi describes the membership function: wi =
µLt(ti)

4. For each concept ci in the fuzzy set Lc with a degree of membership wi,
obtain the particular contextual information in the form of its relations to
the set of any other entities: {Rci,xj : ci ∈ C, xj ∈ C ∪ T, i 6= j}

5. For each region type ti in the fuzzy set Lt with a degree of membership wi,
obtain the particular contextual information in the form of its relations to
the set of any other entities: {Rti,xj : ti ∈ T, xj ∈ C ∪ T, i 6= j}.

6. Calculate the new degree of membership wi, taking into account each do-
main’s similarity measure. In the case of multiple relations, relating concept
ci or region type ti to more than the root concept, an intermediate aggre-
gation step should be applied for the estimation of wi by considering the
context relevance notion introduced in [11]: crci or crti , respectively.

We express the calculation of wi for both cases with the recursive formula:

wn
i = wn−1

i − dnp(wn−1
i − crxi) (6)

where n denotes the iteration used and xi stands for either a concept ci or region
type ti. Equivalently, for an arbitrary iteration n:

wn
i = (1− dnp)n · w0

i + (1− (1− dnp)n) · crxi (7)

where w0
i represents the initial degree of membership for entity xi, xi ∈ C ∪ T .

Typical values for n reside between 3 and 5.



5 Experimental Results

In this section we will present initial results of the aforementioned knowledge
base and the visual context optimization algorithm. We will try to show the
usefulness of the visual context optimization algorithm when adopted in real
multimedia problems and prove that the contextual knowledge in the form of
the visual context ontology is able to complement the traditional approaches in
high-level concept detection tasks, facilitate their process and refine their results.

A flowchart describing the interaction between the visual context optimiza-
tion algorithm and the high-level feature detection process is depicted in Figure
6.

Fig. 6. Simple use case interaction flowchart.

We carried out experiments utilizing 287 images and 25 region types derived
from the beach domain, acquired from personal collections and the World Wide
Web. A ground truth was manually constructed, consisting of a number of region
types associated to a unique concept. We utilized 57 images (merely 20% of
the dataset) as our clustering training set and after an extensive try-and-error
process selected dnp = 0.12 as the optimal normalization parameter for the given
domain.

The problem we consider in this case is the detection of visual concepts. For
certain high-level feature detection problems, only global annotation is available.
In previous work [19] this problem has been tackled by an image representation
based on a region thesaurus (i.e. a set of region types). This work is extended here
by exploiting the visual context ontology, thus, aiming to improve the confidence
values in an iterative way by taking into account the contextual relationships
among the region types and the concepts that form the image.

An input image is depicted in Figure 7. The confidence values for all 6 region
types ti of this image are depicted in eq. (8).

T = {ti} =
[
0.89 0.62 0.21 0.68 0.67 0.31

]
(8)

The confidences for the high-level concepts, sea, sky, sand, wave and vegetation
as produced by specialized detectors are depicted in eq. (9) respectively.

C = {ci} =
[
0.32 0.91 0.12 0.87 0.35

]
(9)



Fig. 7. The input image considered for the use case example.

As obvious to a human, the input image contains the high-level concepts sea, sky
and wave. However, from the detectors’ output as depicted in eq. (9), we may
observe that the sea detector has failed to produce a significantly high confidence
value. An explanation for this behavior is that this detector was trained using
different sea positive examples than the the one of Figure 7. However, after the
context optimization algorithm, the vector that contains the confidence values
for the high-level concepts becomes the one of eq. (10).

C′ = {c′i} =
[
0.62 0.95 0.18 0.90 0.29

]
(10)

In this simplistic example we are able to understand the power of the visual con-
text optimization algorithm and its importance to multimedia analysis problems.
Since the context algorithm had the information that

– This was a beach image
– sky had a high confidence value
– wave had a high confidence value
– There exists a “blue” region type
– There exists a “white” region type
– sky and wave have a high relation with sea
– “blue” region type and “white” region type have a high relation with sea

we may observe that it increased the confidence value of sea, while for instance
the values of vegetation and sand which were small, remained small enough.
Also, the confidence values of sky and wave which were already high, remained
practically unchanged.

6 Conclusions and Future Work

The methodology presented in this paper can be exploited towards the develop-
ment of a more efficient, context-based multimedia analysis environment. Among
its core contributions, the notion of visual context interpretation utilizing a fuzzy,
RDF-based, ontological representation of knowledge, as well as a visual context
algorithm suitable for both high-level concepts and mid-level region types, forms
an innovative approach, independent from the entities used. The proposed use
case scenario indicates one of its possible utilizations. It is also the authors be-
lief that further exploitation of the proposed approach may be considered in the
fields of both multimedia knowledge representation and analysis.
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