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Abstract. Affective and human-centered computing have attracted a lot of 
attention during the past years, mainly due to the abundance of environments 
and applications able to exploit and adapt to multimodal input from the users. 
The combination of facial expressions with prosody information allows us to 
capture the users’ emotional state in an unintrusive manner, relying on the best 
performing modality in cases where one modality suffers from noise or bad 
sensing conditions. In this paper, we describe a multi-cue, dynamic approach to 
detect emotion in naturalistic video sequences, where input is taken from nearly 
real world situations, contrary to controlled recording conditions of audiovisual 
material. Recognition is performed via a recurrent neural network, whose short 
term memory and approximation capabilities cater for modeling dynamic 
events in facial and prosodic expressivity. This approach also differs from 
existing work in that it models user expressivity using a dimensional 
representation, instead of detecting discrete ‘universal emotions’, which are 
scarce in everyday human-machine interaction. The algorithm is deployed on an 
audiovisual database which was recorded simulating human-human discourse 
and, therefore, contains less extreme expressivity and subtle variations of a 
number of emotion labels. Results show that in turns lasting more than a few 
frames, recognition rates rise to 98%. 

1 Introduction 

The introduction of the term ‘affective computing’ by R. Picard [46] epitomizes the 
fact that computing is no longer considered a ‘number crunching’ discipline, but 
should be thought of as an interfacing means between humans and machines and 
sometimes even between humans alone. To achieve this, application design must take 
into account the ability of humans to provide multimodal input to computers, thus 



moving away from the monolithic window-mouse-pointer interface paradigm and 
utilizing more intuitive concepts, closer to human niches ([47], [48]). A large part of 
this naturalistic interaction concept is expressivity [49], both in terms of interpreting 
the reaction of the user to a particular event or taking into account their emotional 
state and adapting presentation to it, since it alleviates the learning curve for 
conventional interfaces and makes less technology-savvy users feel more 
comfortable. In this framework, both speech and facial expressions are of great 
importance, since they usually provide a comprehensible view of users’ reactions; 
actually, Cohen commented on the emergence and significance of multimodality, 
albeit in a slightly different human-computer interaction (HCI) domain, in [55] and 
[56], while Oviatt [50] indicated that an interaction pattern constrained to mere 
‘speak-and-point’ only makes up for a very small fraction of all spontaneous 
multimodal utterances in everyday HCI [51]. In the context of HCI, [54] defines a 
multimodal system as one that ‘responds to inputs in more than one modality or 
communication channel’ abundance, while Mehrabian [52] suggests that facial 
expressions and vocal intonations are the main means for someone to estimate a 
person’s affective state [53], with the face being more accurately judged, or 
correlating better with judgments based on full audiovisual input than on voice input 
([54], [57]). This fact led to a number of approaches using video and audio to tackle 
emotion recognition in a multimodal manner ([3], [58] - [63], [67]), while recently the 
visual modality has been extended to include facial, head or body gesturing ([64] and 
[65], extended in [66]). 

Additional factors that contribute to the complexity of estimating expressivity in 
everyday HCI are the fusion of the information extracted from modalities ([50]), the 
interpretation of the data through time and the noise and uncertainty alleviation from 
the natural setting ([4], [71]). In the case of fusing multimodal information [72], 
systems can either integrate signals at the feature level ([73]) or, after coming up with 
a class decision at the feature level of each modality, by merging decisions at a 
semantic level (late identification, [73] and [74]), possibly taking into account any 
confidence measures provided by each modality or, generally, a mixture of experts 
mechanism [6]. 

Regarding the dynamic nature of expressivity, Littlewort [76] states that while 
muscle-based techniques can describe the morphology of a facial expression, it is very 
difficult for them to illustrate in a measurable (and, therefore detectable) manner the 
dynamics, i.e. the temporal pattern of muscle activation and observable feature 
movement or deformation. She also makes a case of natural expressivity being 
inherently different in temporal terms than posed, presenting arguments from 
psychologists ([77] and [78]), proving the dissimilarity of posed and natural data, in 
addition to the need to tackle expressivity using mechanisms that capture dynamic 
attributes. As a general rule, the naturalistic data chosen as input in this work, is 
closer to human reality since intercourse is not acted and expressivity is not guided by 
directives (e.g. Neutral expression à one of the six universal emotions à neutral). 
This amplifies the difficulty in discerning facial expressions and speech patterns [70]. 
Nevertheless it provides the perfect test-bed for the combination of the conclusions 
drawn from each modality in one time unit and use as input in the following sequence 
of audio and visual events analyzed. 



The current work aims to interpret sequences of events by modeling the user’s 
behavior in a natural HCI setting through time. With the use of a recurrent neural 
network, the short term memory provided through its feedback connection, works as a 
memory buffer and the information remembered is taken under consideration in every 
next time cycle. Theory on this kind of network backs up the claim that it is suitable 
for learning to recognize and generate temporal patterns as well as spatial ones [1]. In 
addition to this, results show that this approach can capture the varying patterns of 
expressivity with a relatively low-scale network, which is not the case with other 
works operating on acted data.  

The paper is structured as follows: in Section 2 we provide the fundamental 
notions upon which the remaining presentation is based. This includes the overall 
architecture of our approach as well as the running example which we will use 
throughout the paper in order to facilitate the presentation of our approach. In Section 
3 we present our feature extraction methodologies, for both the visual and auditory 
modalities. In Section 4 we explain how the features extracted, although 
fundamentally different in nature, can be used to drive a recursive neural network in 
order to acquire an estimation of the human’s state. In Section 5 we present results 
from the application of our methodology on naturalistic data and in Section 6 we list 
our concluding remarks. 

2 Fundamentals  

2.1 Emotion representation 

When it comes to recognizing emotions by computer, one of the key issues is the 
selection of appropriate ways to represent the user’s emotional states. The most 
familiar and commonly used way of describing emotions is by using categorical 
labels, many of which are either drawn directly from everyday language, or adapted 
from it.  This trend may be due to the great influence of the works of Ekman and 
Friesen who proposed that the archetypal emotions correspond to distinct facial 
expressions which are supposed to be universally recognizable across cultures 
[34][35].  

On the contrary psychological researchers have extensively investigated a broader 
variety of emotions. An extensive survey on emotion analysis can be found in [20]. 
The main problem with this approach is deciding which words qualify as genuinely 
emotional. There is, however, general agreement as to the large scale of the emotional 
lexicon, with most lists of descriptive terms numbering into the hundreds; the 
Semantic Atlas of Emotional Concepts lists 558 words with ‘emotional connotations’. 
Of course, it is difficult to imagine an artificial systems being able to match the level 
of discrimination that is implied by the length of this list. 

Although the labeling approach to emotion representation fits perfectly in some 
contexts and has thus been studied and used extensively in the literature, there are 
other cases in which a continuous, rather than discrete, approach to emotion 
representation is more suitable. At the opposite extreme from the list of categories are 



dimensional descriptions, which identify emotional states by associating them with 
points in a multidimensional space. The approach has a long history, dating from 
Wundt’s [21] original proposal to Schlossberg’s reintroduction of the idea in the 
modern era [22]. For example, activation-emotion space as a representation has great 
appeal as it is both simple, while at the same time makes it possible to capture a wide 
range of significant issues in emotion [23]. The concept is based on a simplified 
treatment of two key themes: 
§ Valence: The clearest common element of emotional states is that the person is 

materially influenced by feelings that are valenced, i.e., they are centrally 
concerned with positive or negative evaluations of people or things or events.  

§ Activation level: Research from Darwin forward has recognized that emotional 
states involve dispositions to act in certain ways. A basic way of reflecting that 
theme turns out to be surprisingly useful. States are simply rated in terms of the 
associated activation level, i.e., the strength of the person’s disposition to take 
some action rather than none.  

 
Figure 1. The activation/valence dimensional representation [30] 

There is general agreement on these two main dimensions. Still, in addition to 
these two, there are a number of other possible dimensions, such as power-control, or 
approach-avoidance. Dimensional representations are attractive mainly because they 
provide a way of describing emotional states that is more tractable than using words. 
This is of particular importance when dealing with naturalistic data, where a wide 
range of emotional states occur.  Similarly, they are much more able to deal with non 
discrete emotions and variations in emotional state over time.   

In this work we have focused on the general area in which the human emotion lies, 
rather than on the specific point on the diagram presented in Figure 1. One of the 
reasons that has lead us to this decision is that it is not reasonable to expect human 
annotators to be able to discriminate between an extra pixel to the left or to the right 
as being an indication of a shift in observed emotional state, and therefore it does not 
make sense to construct a system that attempts to do so either. Thus, as is also 



displayed in Figure 1, we have segmented the emotion representation space in broader 
areas. 

As we can see in the figure, labels are typically given for emotions falling in areas 
where at least one of the two axes has a value considerably different than zero. On the 
other hand, the beginning of the axes (the center of the diagram) is typically 
considered as the neutral emotion. For the same reasons as mentioned above, we find 
it is not meaningful to define the neutral state so strictly. Therefore, we have added to 
the more conventional areas corresponding to the four quadrants a fifth one, 
corresponding to the neutral area of the diagram, as is depicted in Figure 1.  

 
Label Location in FeelTrace [75] diagram 
Q1 positive activation, positive evaluation (+/+) 
Q2 positive activation, negative evaluation (+/-) 
Q3 negative activation, negative evaluation (-/-) 
Q4 negative activation, positive evaluation (-/+) 
Neutral close to the center 

Table 1: Emotion classes 

2.2 Methodology outline 

As we have already mentioned, the overall approach is based on a multimodal 
processing of the input sequence. ‘Multimodal processing’ is a general term referring 
to the combination of multiple input queues in order to enhance the operation of a 
system. In fact, there are two different methodologies that fall under this general 
label; decision-level and feature-level.  

In the first one, independent systems are developed, each one considering one of 
the available information queues. The results of the different systems are then 
considered as independent sources of evidence concerning the optimal result, and the 
overall output of the system is computed through some averaging approach. This 
approach has the benefit of being very easy to implement when the independent 
systems are already available in the literature. 

In the second approach, a single system considers all input queues at the same time 
in order to reach a single conclusion. This approach has the drawback of being often 
difficult to implement, as different information queues are often different in nature 
and are thus difficult to incorporate in one uniform processing scheme. On the other 
hand, when successfully realized, the feature level approach produces systems that are 
able to achieve considerably better performances [36]. 

Our approach is of the latter type; the general architecture of our approach is 
depicted in Figure 2.  
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Figure 2. Graphical outline of the proposed approach 

The considered input sequence is split into the audio and visual sequences. The 
visual sequence is analyzed frame by frame using the methodology presented in 
Section 3 and the audio sequence is analyzed as outlined in Section 3.2 and further 
explained in [3]. Visual features of all corresponding frames are fed to a recurrent 
network as explained in Section 4, where the dynamics in the visual channel are 
picked up and utilized in classifying the sequence to one of the five considered 
emotional classes mentioned in Table 1. Due to the fact that the features extracted 
from the audio channel are fundamentally different in nature than those extracted 
from the visual channel, the recurrent network structure is altered accordingly in order 
to allow both inputs to be fed to the network at the same time, thus allowing for a 
truly multimodal classification scheme. 

The evaluation of the performance of our methodology includes statistical analysis 
of application results, quantitative comparisons with other approaches focusing on 
naturalistic data and qualitative comparisons with other known approaches to emotion 
recognition, all listed in Section 5. 

2.3 Running Example 

In developing a multimodal system one needs to integrate diverse components 
which are meant to deal with the different modalities. As a result, the overall 
architecture comprises a wealth of methodologies and technologies and can often be 
difficult to grasp in full detail. In order to facilitate the presentation of the multimodal 
approach proposed herein for the estimation of human emotional state we will use the 
concept of a running example.  

Our example is a sample from the dataset on which we will apply our overall 
methodology in section 5. In Figure 3 we present some frames from the sequence of 
the running example.  



 
Frame: 00815 

 
Frame: 00820 

 
Frame: 00825 

 
Frame: 00830 

 
Frame: 00835 

 

Figure 3. Frames from the running example 

3 Feature Extraction 

3.1 Visual Modality 

3.1.1 State of the art 
Automatic estimation of facial model parameters is a difficult problem and although a 
lot of work has been done on selection and tracking of features [37], relatively little 
wp1p1ork has been reported [38] on the necessary initialization step of tracking 
algorithms, which is required in the context of facial feature extraction and expression 
recognition. Most facial expression recognition systems use the Facial Action Coding 
System (FACS) model introduced by Ekman and Friesen [34] for describing facial 
expressions. FACS describes expressions using 44 Action Units (AU) which relate to 
the contractions of specific facial muscles.  

Additionally to FACS, MPEG-4 metrics [26] are commonly used to model facial 
expressions and underlying emotions. They define an alternative way of modeling 
facial expressions and the underlying emotions, which is strongly influenced by 
neurophysiologic and psychological studies. MPEG-4, mainly focusing on facial 
expression synthesis and animation, defines the Facial Animation Parameters (FAPs) 
that are strongly related to the Action Units (AUs), the core of the FACS. A 
comparison and mapping between FAPs and AUs can be found in [39].  



Most existing approaches in facial feature extraction are either designed to cope 
with limited diversity of video characteristics or require manual initialization or 
intervention. Specifically [38] depends on optical flow, [40] depends on high 
resolution or noise-free input video, [41] depends on color information, [42] requires 
two head-mounted cameras and [43] requires manual selection of feature points on 
the first frame. Additionally very few approaches can perform in near-real time. In 
this work we combine a variety of feature detection methodologies in order to 
produce a robust FAP estimator, as outlined in the following. 

3.1.2 Face localization 
The first step in the process of detecting facial feature is that of face detection. In this 
step the goal is to determine whether or not there are faces in the image and, if yes, to 
return the image location and extent of each face [7]. Face detection can be performed 
with a variety of methods [8][9][10]. In this paper we have chosen to use 
nonparametric discriminant analysis with a Support Vector Machine (SVM) which 
classifies face and non-face areas, thus reducing the training problem dimension to a 
fraction of the original with negligible loss of classification performance [11]. 

In order to train the SVM and fine-tune the procedure we used 800 face examples 
from the NIST Special Database 18. All these examples were first aligned with 
respect to the coordinates of the eyes and mouth and rescaled to the required size and 
then the set was extended by applying small scale, translation and rotation 
perturbations to all samples, resulting in a final training set consisting of 16695 
examples. 

The accuracy of the feature extraction step that will follow greatly depends on head 
pose, and thus rotations of the face need to be removed before the image is further 
processed. In this work we choose to focus on roll rotation, since it is the most 
frequent rotation encountered in real life video sequences. So, we need to first 
estimate the head pose and then eliminate it by rotating the facial image accordingly. 
In order to estimate the head pose we start by locating the two eyes in the detected 
head location.  

For this tack we utilize a multi-layer perceptron (MLP). As activation function we 
choose a sigmoidal function and for learning we employ the Marquardt-Levenberg 
learning algorithm [12]. In order to train the network we have used approximately 100 
random images of diverse quality, resolution and lighting conditions from the ERMIS 
database [13], in which eye masks were manually specified. The network has 13 input 
neurons; the 13 inputs are the luminance Y, the Cr & Cb chrominance values and the 
10 most important DCT coefficients (with zigzag selection) of the neighboring 8x8 
pixel area. The outputs are 2, one for eye and one for non eye regions. Through 
pruning, the remaining architecture of the MLP has been trimmed and optimized to 
comprise two hidden layers of 20 neurons each. 

The locations of the two eyes on the face are initially estimated roughly using the 
approximate anthropometric rules presented in Table 2 and then the MLP is applied 
separately for each pixel in the two selected regions of interest. For rotations up to 30 
degrees, this methodology is successfully at a rate close to 100% in locating the eye 
pupils accurately. 



 
Figure 4. Eye location using the MLP 

 
Figure 5. Detail from Figure 4 

 
In Figure 4 and Figure 5 we see the result of applying the MLP in the first frame of 

the running example. Once we have located the eye pupils, we can estimate the head 
roll rotation by calculating the angle between the horizontal plane and the line defined 
by the eye centers. We can then rotate the input frame in order to bring the head in the 
upright position. Finally, we can then roughly segment the rotated frame into three 
overlapping rectangle regions of interest which include both facial features and facial 
background; these three feature-candidate areas are the left eye/eyebrow, the right 
eye/eyebrow and the mouth. The segmentation is once more based on the approximate 
anthropometric rules presented in Table 2.  

 



  

Figure 6. Frame rotation based on eye locations 
 

Segment Location Width Height 
Left eye and 

eyebrow Top left 0.6 x (width of 
face) 0.5 x (height of face) 

Left eye and 
eyebrow Top right 0.6 x (width of 

face) 0.5 x (height of face) 

Mouth and 
nose Bottom center width of face 0.5 x (height of face) 

Table 2: Anthropometric rules for feature-candidate facial areas [3] 

 
Figure 7. Regions of interest for facial feature extraction 

3.1.3 Nose localization 
The nose is not used for expression estimation by itself, but is a fixed point that 
facilitates distance measurements for FAP estimation (see Figure 21). Thus, it is 



sufficient to locate the tip of the nose and it is not required to precisely locate its 
boundaries. The most common approach to nose localization is starting from nostril 
localization; nostrils are easily detected based on their low intensity. In order to 
identify candidate nostril locations we apply the threshold nt  on the luminance 
channel of the area above the mouth region 

( )
3
min2 nn

n
LLt +

=  

where nL  is the luminance matrix for the examined area and nL  is the average 
luminance in the area. The result of this thresholding is presented in Figure 8. 
Connected objects in this binary map are labeled and considered as nostril candidates. 
In poor lighting conditions, long shadows may exist along either side of the nose, 
resulting in more than two nostril candidates appearing in the mask. Using statistical 
anthropometric data about the distance of left and right eyes (bipupil breadth, Dbp) we 
can remove these invalid candidate objects and identify the true nostrils. The nose 
centre is defined as the midpoint of the nostrils. 

 
Figure 8. Candidate nostril locations 

3.1.4 Eyebrow localization 
Eyebrows are extracted based on the fact that they have a simple directional shape 
and that they are located on the forehead, which due to its protrusion, has a mostly 
uniform illumination.  

The first step in eyebrow detection is the construction of an edge map of the 
grayscale eye and eyebrow region of interest. This map is constructed by subtracting 
the dilation and erosion of the grayscale image using a line structuring element. The 
selected edge detection mechanism is appropriate for eyebrows because it can be 
directional, preserves the feature’s original size and can be combined with a threshold 
to remove smaller skin anomalies such as wrinkles. This procedure can be considered 
as a special case of a non-linear high-pass filter.  



  

Figure 9. Eyebrow detection steps 
 
Each connected component on the edge map is then tested against a set of filtering 

criteria that have been formed through statistical analysis of the eyebrow lengths and 
positions on 20 persons of the ERMIS database [25]. The results of this procedure for 
the left eyebrow are presented in Figure 9. The same procedure is also applied for the 
right eyebrow. 

3.1.5 Eye localization 
A wide variety of methodologies have been proposed in the literature for the 
extraction of different facial characteristics and especially for the eyes, in both 
controlled and uncontrolled environments. What is common among them is that, 
regardless of the overall success rate that they have, they all fail in some set of cases, 
due to the inherent difficulties and external problems that are associated with the task. 
As a result, it is not reasonable to select a single methodology and expect it to work 
optimally in all cases. In order to overcome this, in this work we choose to utilize 
multiple different techniques in order to locate the most difficult facial features, i.e. 
the eyes and the mouth.  
§ MLP based mask 

This approach refines eye locations extracted by the MLP network that was used in 
order to identify the eye pupils in the eye detection phase. It builds on the fact that 
eyelids usually appear darker than skin due to eyelashes and are almost always 
adjacent to the iris. Thus, by including dark objects near the eye centre, we add the 
eyelashes and the iris in the eye mask. The result is depicted in Figure 10 
§ Edge based mask 

This is a mask describing the area between the upper and lower eyelids. Since the 
eye-center is almost always detected correctly from the MLP, the horizontal edges of 
the eyelids in the eye area around it are used to limit the eye mask in the vertical 
direction. For the detection of horizontal edges we utilize the Canny edge operator 
due to its property of providing good localization. Out of all edges detected in the 
image we choose the ones right above and below the detected eye center and fill the 
area between them in order to get the final eye mask. The result is depicted in Figure 
11 



  
Figure 10 The MLP based eye mask Figure 11. The edge based eye mask 

§ Region growing based mask 
This mask is created using a region growing technique; the latter usually gives very 

good segmentation results corresponding well to the observed edges. The construction 
of this mask relies on the fact that facial texture is more complex and darker inside the 
eye area and especially in the eyelid-sclera-iris borders, than in the areas around them. 
Instead of using an edge density criterion, we utilize a simple yet effective new 
method to estimate both the eye centre and eye mask. 

For each pixel in the area of the center of the eye we calculate the standard 
deviation of the luminance channel in its 3x3 neighborhood and then threshold the 
result by the luminance of the pixel itself. This process actually results in the area of 
the center of the eye being extended in order to include some of its adjacent facial 
characteristics. The same procedure is also repeated for 5x5 neighborhoods; by using 
different block sizes we enhance the procedure’s robustness against variations of 
image resolution and eye detail information. The two results are then merged in order 
to produce the final mask depicted in Figure 12. The process is found to fail more 
often than the other approaches we utilize, but it is found to perform very well for 
images of very-low resolution and low color quality. The overall procedure is quite 
similar to that of a morphological bottom hat operation, with the difference that the 
latter is rather sensitive to the structuring element size. 

  
Figure 12. The standard deviation based eye 

mask 

Figure 13. The luminance based eye mask 

§ Luminance based mask 
Finally, a second luminance based mask is constructed for eye and eyelid border 

extraction, using the normal probability of luminance using a simple adaptive 
threshold on the eye area. The result is usually a blob depicting the boundaries of the 
eye. In some cases, though, the luminance values around the eye are very low due to 



shadows from the eyebrows and the upper part of the nose. To improve the outcome 
in such cases, the detected blob is cut vertically at its thinnest points on either side of 
the eye centre; the resulting mask’s convex hull is depicted in Figure 13. 
§ Mask fusion 

The reason we have chosen to utilize four different masks is that there is no 
standard way in the literature based on which to select the ideal eye localization 
methodology for a given facial image. Consequently, having the four detected masks 
it is not easy to judge which one is the most correct and select it as the output of the 
overall eye localization module. Instead, we choose to combine the different masks 
using a committee machine.  

Given the fact that each one of the different methodologies that we have utilized 
has some known strong and weak points, the committee machine that is most suitable 
for the task of mask fusion is the mixture of experts dynamic structure, properly 
modified to match our application requirements [6]. The general structure of this 
methodology is presented in Figure 14. It consists of k supervised modules called the 
experts and a gating network that performs the function of a mediator among the 
experts. The main assumption is that each one of the experts operates best in different 
regions of the input space in accordance with a probabilistic model that is known a 
priori, hence the need of the gating network.  

 
Figure 14. Mixture of experts architecture 

The role of the gating network is to estimate, based on the input, the probability ig  
that each individual expert i  operates correctly, and to provide these estimations to 
the output combiner module. The gating network consists of a single layer of softmax 
neurons; the choice of softmax as the activation function for the neurons has the 
important properties of 
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i.e. it allows for the estimations to be interpreted as probabilities. In our work we 
have 4=k  experts; the implementations of the eye detection methodologies 



presented earlier in the section. The gating network favors the color based feature 
extraction methods in images of high color and resolution, thus incorporating the a 
priori known probabilities of success for our experts in the fusion process.  

Additionally, the output combiner module which normally operates as egy ⋅= , 
where e is the vector of expert estimations, is modified in our work to operate as  

f
efgy ⋅⋅

=  

where f  is the vector of confidence values associated with the output of each 
expert, thus further enhancing the quality of the mask fusion procedure. Confidence 
values are computed by comparing the location, shape and size of the detected masks 
to those acquired from anthropometric statistical studies.  

The modified combiner module fuses the four masks together by making pixel by 
pixel decisions. The result of the procedure for the left eye in the frame of the running 
example is depicted in Figure 15. 

 
Figure 15. The final mask for the left eye 

3.1.6 Mouth localization 
Similarly to the eyes, the mouth is a facial feature that is not always detected and 

localized successfully, mainly due to the wide range of deformations that are observed 
in it in sequences where the human is talking, which is the typical case in our chosen 
field of application. In this work we utilize the following methodologies in order to 
estimate the location and boundaries of the mouth: 
§ MLP based mask 

An MLP neural network is trained to identify the mouth region using the neutral 
image. The network has similar architecture as the one used for the eyes. The train 
data are acquired from the neutral image. Since the mouth is closed in the neutral 
image, a long region of low luminance region exists between the lips. Thus, the 
mouth-candidate region of interest is first filtered with Alternating Sequential 
Filtering by Reconstruction (ASFR) to simplify and create connected areas of similar 
luminance. Luminance thresholding is then used to find the area between the lips. 

This area is dilated vertically and the data depicted by this area are used to train the 
network. 

The MLP network that has been trained on the neutral expression frame is the one 
used to produce an estimate of the mouth area in all other frames. The output of the 
neural network on the mouth region of interest is thresholded in order to form a binary 
map containing several small sub-areas. The convex hull of these areas is calculated 



to generate the final mask for the mouth. The result of this procedure is depicted in 
Figure 16. 

  
Figure 16. The MLP based mouth mask Figure 17. Edge based mouth mask 

§ Edge based mask 
In this second approach, the mouth luminance channel is again filtered using ASFR 

for image simplification. The horizontal morphological gradient of the mouth region 
of interest is then calculated. Since the position of the nose has already been detected, 
and, as we have already explained, the procedure of nose detection rarely fails, we can 
use the position of the nose to drive the procedure of mouth detection. Thus, the 
connected elements that are too close to the nose center to be a part of the mouth are 
removed. From the rest of the mask, very small objects are also removed. A 
morphological closing is then performed and the longest of the remaining objects in 
the horizontal sense is selected as the final mouth mask. The result of this procedure 
is depicted in  
§ Lip corner based mask 

The main problem of most intensity based methods for the detection of the mouth 
is the existence of the upper teeth, which tend to alter the saturation and intensity 
uniformity of the region. Our final approach to mouth detection takes advantage of 
the relative low luminance of the lip corners and contributes to the correct 
identification of horizontal mouth extent which is not always detected by the previous 
methods.  

The image is first thresholded providing an estimate of the mouth interior area, or 
the area between the lips in case of a closed mouth. Then, we discriminate between 
two different cases: 

1. there are no apparent teeth and the mouth area is denoted by a cohesive dark 
area 
2. there are teeth and thus two dark areas appear at both sides of the teeth 

In the first case mouth extend is straightforward to detect; in the latter mouth centre 
proximity of each object is assessed and the appropriate objects are selected. The 
convex hull of the result is then merged through morphological reconstruction with an 
horizontal edge map to include the upper and bottom lips.  

In order to classify the mouth region in one of the two cases and apply the 
corresponding mouth detection methodology we start by selecting the largest 
connected object in the thresholded input image and finding its centroid. If the 
horizontal position of the centroid is close to the horizontal position of the tip of the 
nose, then we assume that the object is actually the interior of the mouth and we have 
the first case where there are no apparent teeth. If the centroid is not close to the 
horizontal position of the nose then we assume that we have the second case where 
there are apparent teeth and the object examined is the dark area on one of the two 
sides of the teeth.  



The result from the application of this methodology on the running example frame 
is depicted in Figure 19. 
§ Mask fusion 

The fusion of the masks is performed using a modified mixture of experts model 
similar to the one used for the fusion of the different masks for the eyes. The main 
difference here is that we cannot assess the probability of success of either of the 
methods using information readily available in the input, such as resolution or color 
depth, and therefore the gating network has the trivial role of weighting the three 
experts equally.  

This does not mean that the output combiner module is also trivial. Quite the 
contrary, we still utilize the modified version of the module, where anthropometric 
statistics are used to validate the three masks and the degree of validation is utilized in 
the process of mask fusion. The resulting mask for the mouth for the examined frame 
is depicted in Figure 18. 

  

Figure 18. The final mask for the mouth Figure 19.The lip corner based mouth mask 

3.1.7 Feature points and FAPs 
The facial feature masks detected in the previous section are not used directly for 

the emotion recognition procedure. They are merely the basis from which other, more 
refined, information elements will be drawn. Specifically, we utilize the masks in 
order to detect the marginal points of the studied elements on the face. Table 3 
presents the complete list of points detected on the human face; these are a subset of 
the complete list of facial feature points defined in the MPEG-4 standard [26]. For 
example, Figure 20 depicts the feature points detected on the frame of the running 
example. 

Feature 
Point 

MPEG-4 Description 

1 4.5 Outer point of Left eyebrow 
2 4.3 Middle point of Left eyebrow 
3 4.1 Inner point of Left eyebrow 
4 4.6 Outer point of Right eyebrow 
5 4.4 Middle point of Right eyebrow 
6 4.2 Inner point of Right eyebrow 
7 3.7 Outer point of Left eye 
8 3.11 Inner point of Left eye 
9 3.13 Upper point of Left eyelid 
10 3.9 Lower point of Left eyelid 
11 3.12 Outer point of Right eye 
12 3.8 Inner point of Right eye 
13 3.14 Upper point of Right eyelid 
14 3.10 Lower point of Right eyelid 



15 9.15 Nose point 
16 8.3 Left corner of mouth 
17 8.4 Right corner of mouth 
18 8.1 Upper point of mouth 
19 8.2 Lower point of mouth 

Table 3: Considered feature points 

 
Figure 20. Feature points detected on the input frame 

 
Figure 21: Feature Point Distances 



As people change their facial expression their face is altered and the position of 
some of these points is changed (see Figure 22). Therefore, the main information unit 
we will consider during the emotion classification stage will be the set of FAPs that 
describe a frame.  

  

  
Figure 22. Feature points detected from frames belonging to different sequences 

 
In order to produce this set we start by computing a 25-dimensional distance vector 

d  containing vertical and horizontal distances between the 19 extracted FPs, as 
shown in Figure 21. Distances are not measured in pixels, but in normalized scale-
invariant MPEG-4 units, i.e. ENS, MNS, MW, IRISD and ES [26]; unit bases are 
measured directly from FP distances on the neutral image, for example ES is 
calculated as the distance between FP9 and FP13 (distance between eye pupils). The 
first step is to create the reference distance vector nd  by processing the neutral frame 
and calculating the distances described in Figure 21 and then a similar distance vector 

id  is created for each examined frame i . FAPs are calculated by comparing nd  

and id .  

3.2 Auditory Modality 

3.2.1 State of the art 
Figure 23 presents classification results from a selection of recent studies that it 

seems fair to take as representing the state of the art. They show a complex picture, 
key parts of which have not been formulated clearly. 
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Figure 23: Plot of discrimination results from key recent studies of emotion recognition – Lee 
and Narayan 2003 ([87]); Kwon et al 2003 ([86]), Zhou & Hansen 1999 ([91]), Ang 2002 
([82]), Yacoub et al 2003 ([90]), Batliner et al 2003 ([83]), McGilloway et al 2000 ([88]), and  
Nakatsu et al 1999 ([89]); against number of categories to be discriminated (horizontal axis) 

The horizontal axis shows one variable that clearly affects classification rate, that 
is, the number of categories considered. Under some circumstances, performance 
approaches 100% with two-choice classification. However, when techniques that 
achieved 90% in pairwise discriminations were used to assign samples to a set of 15 
possible emotions [90], recognition rate falls to 8.7% (though note that this is still 
above chance).  Intermediate points suggest an almost linear change between the two 
extremes. 

The implication of the fall is that the techniques used in contemporary systems 
have limitations are concealed by using pairwise discrimination as a test. Yacoub et al 
clarified the issue in elegant follow-up studies, showing that their system effectively 
discriminated two emotion clusters, happiness/hot anger and sadness/boredom. These 
strongly suggest that that the information available may be more strongly related to 
dimensions than to categories: they appear to be a high- and a low-activation group. 
Of course, when analyzers that function as activation detectors are applied to stimuli 
which are either neutral or irritated, they will appear to detect irritation with high 
reliability: but the appearance is quite misleading.    

The other major dimension, represented by the different types of symbol on the 
graph, is the extent to which the material has been stylized to simplify the task. The 
graph uses a simplified classification into three broad levels. Fully stylized speech is 
produced by competent actors, often in a carefully structured format. The second 
level, mediated speech, includes two main types: emotion simulated by people 
without particular acting skill or direction; and samples selected from a naturalistic 
database as clear examples of the category being considered. The third level includes 
speech that arises spontaneously from the speaker’s emotional state, and which 
includes naturally occurring shades, not only well-defined examples. 
 



3.2.2 Feature extraction 
An important difference between the visual and audio modalities is related to the 

duration of the sequence that we need to observe in order to be able to gain an 
understanding of the sequence’s content. In case of video, a single frame is often 
enough in order for us to understand what the video displays and always enough for 
us to be able to process it and extract information. On the other hand, an audio signal 
needs to have a minimum duration for any kind of processing to be able to be made. 

Therefore, instead of processing different moments of the audio signal, as we did 
with the visual modality, we need to process sound recordings in groups. Obviously, 
the meaningful definition of these groups will have a major role in the overall 
performance of the resulting system. In this work we consider sound samples grouped 
as tunes, i.e. as sequences demarcated by pauses. The basis behind this is that that 
although expressions may change within a single tune, the underlying human emotion 
does not change dramatically enough to shift from one quadrant to another. For this 
reason, the tune is not only the audio unit upon which we apply our audio feature 
detection techniques but also the unit considered during the operation of the overall 
emotion classification system. 

From Section 3.2.1 it is quite obvious that selecting the right set of audio features 
to consider for classification is far from a trivial procedure. Batliner et al. [92] classify 
features in categories and present a systematic comparison of different sets of features 
and combination strategies in the presence of natural, spontaneous speech. In order to 
overcome this in our work, we start by extracting an extensive set of 377 audio 
features. This comprises features based on intensity, pitch, MFCC (Mel Frequency 
Cepstral Coefficient), Bark spectral bands, voiced segment characteristics and pause 
length.  

We analyzed each tune with a method employing prosodic representation based on 
perception called Prosogram [44]. Prosogram is based on a stylization of the 
fundamental frequency data (contour) for vocalic (or syllabic) nuclei. It gives globally 
for each voiced nucleus a pitch and a length. According to a 'glissando treshold' in 
some cases we don’t get a fixed pitch but one or more lines to define the evolution of 
pitch for this nucleus. This representation is in a way similar to the 'piano roll' 
representation used in music sequencers. This method, based on the Praat 
environment, offers the possibility of automatic segmentation based both on voiced 
part and energy maxima. From this model - representation stylization we extracted 
several types of features: pitch interval based features, nucleus length features and 
distances between nuclei. 

Given that the classification model used in this work, as we will see in Section 4, is 
based on a neural network, using such a wide range of features as input to the 
classifies means that the size of the annotated data set as well as the time required for 
training will be huge. In order to overcome this we need to statistically process the 
acoustic feature, so as to discriminate the more prominent ones, thus performing 
feature reduction. In our work we achieve this by combining two well known 
techniques: analysis of variance (ANOVA) and Pearson product-moment correlation 
coefficient (PMCC). ANOVA is used first to test the discriminative ability of each 
feature. This resulting in a reduced feature set, containing about half of the features 
tested. To further reduce the feature space we continued by calculating the PMCC for 
all of the remaining feature pairs; PMCC is a measure of the tendency of two 



variables measured on the same object to increase or decrease together. Groups of 
highly correlated (>90%) features were formed, and a single feature from each group 
was selected.  

The overall process results in reducing the number of audio features considered 
during classification from 377 to only 32 [66]; all selected features are numerical and 
continuous. 

4 Multimodal Expression Classification 

4.1 The Elman net 

In order to consider the dynamics of displayed expressions we need to utilize a 
classification model that is able to model and learn dynamics, such as a Hidden 
Markov Model or a recursive neural network In this work we are using a recursive 
neural network; see Figure 24. This type of network differs from conventional feed-
forward networks in that the first layer has a recurrent connection. The delay in this 
connection stores values from the previous time step which can be used in the current 
time step, thus providing the element of memory. 
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Figure 24. The recursive neural network  
Although we are following an approach that only comprises a single layer of 

recurrent connections, in reality the network has the ability to learn patterns of a 
greater length as well, as current values are affected by all previous values and not 
only by the last one. 

Out of all possible recurrent implementations we have chosen the Elman net for 
our work [1][2]. This is a two-layer network with feedback from the first layer output 
to the first layer input. This recurrent connection allows the Elman network to both 
detect and generate time-varying patterns.  

The transfer functions of the neurons used in the Elman net are tan-sigmoid for the 
hidden (recurrent) layer and purely linear for the output layer. More formally 
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where 1
ia  is the activation of the i-th neuron in the first (hidden) layer, 1

ik  is the 

induced local field or activation potential of the i-th neuron in the first layer, 2
ja  is the 

activation of the j-th neuron in the second (output) layer and 2
jk  is the induced local 

field or activation potential of the j-th neuron in the second layer. 
The induced local field in the first layer is computed as: 
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where x  is the input vector, 1
i

w  is the input weight vector for the i-th neuron,  1a  

is the first layer’s output vector for the previous time step, ir  is the recurrent weight 

vector and 1
ib  is the bias. The local field in the second layer is computed in the 

conventional way as: 
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where 2
i

w  is the input weight and 2
jb  is the bias. 

This combination of activation functions is special in that two-layer networks with 
these transfer functions can approximate any function (with a finite number of 
discontinuities) with arbitrary accuracy. The only requirement is that the hidden layer 
must have enough neurons ([32] and [33]).  

As far as training is concerned, the truncated back-propagation through time 
(truncated BPTT) algorithm is used [6]. 

The input layer of the utilized network has 57 neurons (25 for the FAPs and 32 for 
the audio features). The hidden layer has 20 neurons and the output layer has 5 
neurons, one for each one of five possible classes: Neutral, Q1 (first quadrant of the 
Feeltrace [75] plane), Q2, Q3 and Q4. The network is trained to produce a level of 1 
at the output that corresponds to the quadrant of the examined tune and levels of 0 at 
the other outputs. 

4.1.1 Dynamic and non dynamic inputs 
In order for the network to operate we need to provide as inputs the values of the 

considered features for each frame. As the network moves from one frame to the next 
it picks up the dynamics described by the way these features are changed and thus 
manages to provide a correct classification in its output. 

One issue that we need to consider, though, is that not all of the considered inputs 
are dynamic. Specifically, as we have already seen in section 3.2, as far as the 
auditory modality is concerned the tune is seen and processed as a single unit. Thus, 
the acquired feature values are referring to the whole tune and cannot be allocated to 
specific frames. As a result, a recurrent neural network cannot be used directly and 
unchanged in order to process our data. 



In order to overcome this, we modify the simple network structure of Figure 24 as 
shown in Figure 25. In this modified version input nodes of two different types are 
utilized: 

1. For the visual modality features we maintain the conventional input neurons 
that are met in all neural networks 

2. For the auditory modality features we use static value neurons. These 
maintain the same value throughout the operation of the neural network.  

The auditory feature values that have been computed for a tune are fed to the 
network as the values that correspond to the first frame. In the next time steps, while 
visual features corresponding to the next frames are fed to the first input neurons of 
the network, the static input neurons maintain the original values for the auditory 
modality features, thus allowing the network to operate normally. 
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Figure 25. The modified Elman net 

One can easily notice that although the network has the ability to pick up the 
dynamics that exist in its input, it cannot learn how to detect the dynamics in the 
auditory modality since it is only fed with static values. Still, we should comment that 
the dynamics of this modality are not ignored. Quite the contrary, the static feature 
values computed for this modality, as has been explained in section 3.2, are all based 
on the dynamics of the audio channel of the recording. 

4.2 Classification 

The most common applications of recurrent neural networks include complex tasks 
such as modeling, approximating, generating and predicting dynamic sequences of 
known or unknown statistical characteristics. In contrast to simpler neural network 
structures, using them for the seemingly easier task of input classification is not 
equally simple or straight forward. 



The reason is that where simple neural networks provide one response in the form 
of a value or vector of values at their output after considering a given input, recurrent 
neural networks provide such inputs after each different time step. So, one question to 
answer is at which time step the network’s output should be read for the best 
classification decision to be reached. 

As a general rule of thumb, the very first outputs of a recurrent neural network are 
not very reliable. The reason is that a recurrent neural network is typically trained to 
pick up the dynamics that exist in sequential data and therefore needs to see an 
adequate length of the data in order to be able to detect and classify these dynamics. 
On the other hand, it is not always safe to utilize the output of the very last time step 
as the classification result of the network because: 

1. the duration of the input data may be a few time steps longer than the 
duration of the dominating dynamic behavior and thus the operation of the 
network during the last time steps may be random 

2. a temporary error may occur at any time step of the operation of the network 
For example, in Figure 26 we present the output levels of the network after each 

frame when processing the tune of the running example. We can see that during the 
first frames the output of the network is quite random and changes swiftly. When 
enough length of the sequence has been seen by the network so that the dynamics can 
be picked up, the outputs start to converge to their final values. But even then small 
changes to the output levels can be observed between consecutive frames.  
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Figure 26. Individual network outputs after each frame 
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Figure 27. Margin between correct and next best output 

Although these are not enough to change the classification decision (see Figure 27) 
for this example where the classification to Q1 is clear, there are cases in which the 
classification margin is smaller and these changes also lead to temporary 
classification decision changes. 
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Figure 28. The Elman net with the output integrator 

In order to arm our classification model with robustness we have added a 
weighting integrating module to the output of the neural network which increases its 
stability. Specifically, the final outputs of the model are computed as: 

( ) ( ) ( )112 −⋅−+⋅= tocacto jjj  

where ( )to j  is the value computed for the j-th output after time step t, ( )1−to j  is 
the output value computed at the previous time step and c  is a parameter taken from 
the (0,1] range that controls the sensitivity/stability of the classification model. When 
c  is closer to zero the model becomes very stable and a large sequence of changed 
values of 2

jk  is required to affect the classification results while as c  approaches one 
the model becomes more sensitive to changes in the output of the network. When 

1=c the integrating module is disabled and the network output is acquired as overall 
classification result. In our work, after observing the models performance for different 
values of c , we have chosen 5.0=c . 

In Figure 29 we can see the decision margin when using the weighting integration 
module at the output of the network. When comparing to Figure 27 we can clearly see 
that the progress of the margin is more smooth, which indicates that we have indeed 
succeeded in making the classification performance of the network more stable and 
less dependent on frame that is chosen as the end of a tune. 

Of course, in order for this weighted integrator to operate, we need to define output 
values for the network for time step 0, i.e. before the first frame. It is easy to see that 
due to the way that the effect of previous outputs wares off as time steps elapse due to 
c , this initialization is practically indifferent for tunes of adequate length. On the 
other hand, this value may have an important affect on tunes that are very short. In 
this work, we have chosen to initialize all initial outputs at  

( ) 00 =o  

Another meaningful alternative would be to initialize ( )0o  based on the 
percentages of the different output classes in the ground truth data used to train the 
classifier. We have avoided doing this in order not to add a bias towards any of the 



outputs, as we wanted to be sure that the performance acquired during testing is due 
solely to the dynamic and multimodal approach proposed in this work.  
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Figure 29. Decision margin when using the integrator 

It is worth noting that from a modeling point of view it was feasible to include this 
integrator in the structure of the network rather than having it as an external module, 
simply by adding a recurrent loop at the output layer as well. We have decided to 
avoid doing so, in order not to also affect the training behavior of the network, as an 
additional recurrent loop would greatly augment the training time and size and 
average length of training data required. 

5 Experimental Results 

5.1 The case for naturalistic data 

As Douglas-Cowie mentions in [79], the easiest way to collect emotional data is to 
have actors simulate it; the data produced in such experiments lends itself to 
extremely high recognition rates possibly in the high 70s [80]. However, this kind of 
intercourse is very rare in everyday human-human or human-computer interaction 
contexts and this is attributed to a number of reasons: 
§ acted experiments usually involve reading a passage or uttering a specific phrase, 

which produces speech recordings with particular qualities. Older theoretical 
([68], [69]), as well as some recent works [81] deal with picking out spontaneous 
or posed behavior 

§ turn-based interaction results in associations between expressivity and stimulus: 
e.g. participants express anger at a particular cue or their computer freezing, thus 
catering for annotation of context, in addition to expressivity. An initial view of 
context can be the relation of an expressive utterance to answers to the W-
questions (‘who?’, ‘when?’, ‘where?’, ‘why?’) 



§ speech and facial expressivity hardly follow a specific pattern; in addition to this, 
some parameters may be stable, e.g. the valence of the observed emotion, while 
activation may change to indicate semantic emphasis. Most ‘regular’ databases 
provide samples of participants moving from neutral to highly expressive and 
back 

Since the aim of this work is to emphasize on the ability to classify sequences with 
naturalistic expressions, we have chosen to utilize the SAL database for training and 
testing purposes [5]. Recordings were based on the notion of the “Sensitive Artificial 
Listener”, where the SAL simulates what some interviewers and good listeners do, i.e. 
engages a willing person in emotionally colored interaction on the basis of stock lines 
keyed in a broad way to the speaker’s emotions. Although the final goal is to let the 
SAL automatically assess the content of the interaction and select the line with which 
to respond, this had not yet been fully implemented at the time of the creation of the 
SAL database and thus a “Wizard of Oz” approach was used for the selection of the 
SAL’s answers [45]. 

A point to consider in natural human interaction is that each individual’s character 
has an important role on the human’s emotional state; different individuals may have 
different emotional responses to similar stimuli. Therefore, the annotation of the 
recordings should not be based on the intended induced emotion but on the actual 
result of the interaction with the SAL. Towards this end, FeelTrace was used for the 
annotation of recordings in SAL [24]. This is a descriptive tool that has been 
developed at Queen’s University Belfast using dimensional representations, which 
provides time-sensitive dimensional representations.  It lets observers track the 
emotional content of a time-varying stimulus as they perceive it. Figure 1, illustrates 
the kind of display that FeelTrace users see.  

The space is represented by a circle on a computer screen, split into four quadrants 
by the two main axes. The vertical axis represents activation, running from very 
active to very passive and the horizontal axis represents evaluation, running from very 
positive to very negative. It reflects the popular view that emotional space is roughly 
circular. The centre of the circle marks a sort of neutral default state, and putting the 
cursor in this area indicates that there is no real emotion being expressed.  A user uses 
the mouse to move the cursor through the emotional space, so that its position signals 
the levels of activation and evaluation perceived by her/him, and the system 
automatically records the co-ordinates of the cursor at any time. 

For reasons outlined in Section 2.1 the x-y coordinates of the mouse movements on 
the two-dimensional user interface are mapped to the five emotional categories 
presented in Table 1. Applying a standard pause detection algorithm on the audio 
channel of the recordings in examination, the database has been split into 477 tunes, 
with lengths ranging from 1 frame up to 174 frames. A bias towards Q1 exists in the 
database, as 42,98% of the tunes are classified to Q1, as shown in Table 4. 

 
 Neutral Q1 Q2 Q3 Q4 Totals 

Tunes 47 205 90 63 72 477 
Percentages 9,85% 42,98% 18,87% 13,21% 15,09% 100,00% 

Table 4: Class distribution in the SAL dataset 



5.2 Statistical results 

From the application of the proposed methodology on the data set annotated as 
ground truth we acquire a measurement of 81,55% for the system’s accuracy. 
Specifically, 389 tunes were classified correctly, while 88 were misclassified. Clearly, 
this kind of information, although indicative, is not sufficient to fully comprehend and 
assess the performance of our methodology.  

 Neutral Q1 Q2 Q3 Q4 Totals 
Neutral 34 1 5 3 0 43 

Q1 1 189 9 12 6 217 
Q2 4 3 65 2 1 75 
Q3 4 6 7 39 3 59 
Q4 4 6 4 7 62 83 

Totals 47 205 90 63 72 477 
Table 5: Overall confusion matrix 

Towards this end, we provide in Table 5 the confusion matrix for the experiment. 
In the table rows correspond to the ground truth and columns to the system’s 
response. Thus, for example, there were 5 tunes that were labeled as neutral in the 
ground truth but were misclassified as belonging to Q2 by our system.  

 
  Neutral Q1 Q2 Q3 Q4 Totals 
Neutral 79,07% 2,33% 11,63% 6,98% 0,00% 100,00% 

Q1 0,46% 87,10% 4,15% 5,53% 2,76% 100,00% 
Q2 5,33% 4,00% 86,67% 2,67% 1,33% 100,00% 
Q3 6,78% 10,17% 11,86% 66,10% 5,08% 100,00% 
Q4 4,82% 7,23% 4,82% 8,43% 74,70% 100,00% 

Totals 9,85% 42,98% 18,87% 13,21% 15,09% 100,00% 
Table 6: Overall confusion matrix expressed in percentages 

Given the fact that our ground truth is biased towards Q1, we also provide in Table 
6 the confusion matrix in the form of percentages so that the bias is removed from the 
numbers. There we can see that the proposed methodology performs reasonably well 
for most cases, with the exception of Q3, for which the classification rate is very low. 
What is more alarming is that more than 10% of the tunes of Q3 have been classified 
as belonging to the exactly opposite quadrant, which is certainly a major mistake. 

Still, in our analysis of the experimental results so far we have not taken into 
consideration a very important factor: that of the length of the tunes. As we have 
explained in section 5, in order for the Elman net to pick up the expression dynamics 
of the tune an adequate number of frames needs to be available as input. Still, there is 
a number of tunes in the ground truth that are too short for the network to reach a 
point where its output can be read with high confidence.  

In order to see how this may have influence our results we present in the following 
separate confusion matrices for short and normal length tunes. In this context we 
consider as normal tunes that comprise at least 10 frames and as short tunes with 
length from 1 up to 9 frames. 



First of all, we can see right away that the performance of the system, as was 
expected is quite different in these two cases. Specifically, there are 83 errors in just 
131 short tunes while there are only 5 errors in 346 normal tunes. Moreover, there are 
no severe errors in the case of long tunes, i.e. there are no cases in which a tune is 
classified in the exact opposite quadrant than in the ground truth. 

 Neutral Q1 Q2 Q3 Q4 Totals 
Neutral 29 0 0 0 0 29 

Q1 0 172 3 0 0 175 
Q2 1 1 54 0 0 56 
Q3 0 0 0 30 0 30 
Q4 0 0 0 0 56 56 

Totals 30 173 57 30 56 346 
Table 7: Confusion matrix for normal tunes 

Overall, the operation of our system in normal operating conditions (as such we 
consider the case in which tunes have a length of at least 10 frames)  is accompanied 
by a classification rate of 98,55%, which is certainly very high, even for controlled 
data, let alone for naturalistic data. 

 
 Neutral Q1 Q2 Q3 Q4 Totals 

Neutral 100,00% 0,00% 0,00% 0,00% 0,00% 100,00% 
Q1 0,00% 98,29% 1,71% 0,00% 0,00% 100,00% 
Q2 1,79% 1,79% 96,43% 0,00% 0,00% 100,00% 
Q3 0,00% 0,00% 0,00% 100,00% 0,00% 100,00% 
Q4 0,00% 0,00% 0,00% 0,00% 100,00% 100,00% 

Totals 8,67% 50,00% 16,47% 8,67% 16,18% 100,00% 
Table 8: Confusion matrix for normal tunes expressed in percentages 

5.3 Quantitative comparative study 

In a previous work we have proposed a different methodology to process naturalistic 
data with the goal of estimating the human’s emotional state [3]. In that work a very 
similar approach is followed in the analysis of the visual component of the video with 
the aim of locating facial features. FAP values are then fed into a rule based system 
which provides a response concerning the human’s emotional state. 

In a later version of this work, we evaluate the likelihood of the detected regions 
being indeed the desired facial features with the help of anthropometric statistics 
acquired from [29] and produce degrees of confidence which are associated with the 
FAPs; the rule evaluation model is also altered and equipped with the ability to 
consider confidence degrees associated with each FAP in order to minimize the 
propagation of feature extraction errors in the overall result [4].  

When compared to our current work, these systems have the extra advantages of  
1. considering expert knowledge in the form of rules in the classification 

process  



2. being able to cope with feature detection deficiencies and.  
On the other hand, they are lacking in the sense that  

3. they do not consider the dynamics of the displayed expression and  

4. they do not consider other modalities besides the visual one.  
Thus, they make excellent candidates to compare our current work against in order 

to evaluate the practical gain from the proposed dynamic and multimodal approach. In 
Table 11 we present the results from the two former and the current approach. Since 
dynamics are not considered, each frame is treated independently in the preexisting 
systems. Therefore, statistics are calculated by estimating the number of correctly 
classified frames; each frame is considered to belong to the same quadrant as the 
whole tune. 

It is worth mentioning that the results are from the parts of the data set that were 
selected as expressive for each methodology. But, whilst for the current work this 
refers to 72,54% of the data set and the selection criterion is the length of the tune, in 
the previous works only about 20% of the frames was selected with a criterion of the 
clarity with which the expression is observed, since frames close to the beginning or 
the end of the tune are often too close to neutral to provide meaningful visual input to 
a system.  

Methodology Classification rate 
Rule based 78,4% 

Possibilistic rule 
based 65,1% 

Dynamic and 
multimodal 98,55% 

 

Methodology Classification rate 
Rule based 27,8% 

Possibilistic rule 
based 38,5% 

Dynamic and 
multimodal 98,55% 

 
Table 9: Classification rates on parts of the 
naturalistic data set 

Table 10: Classification rates on the 
naturalistic data set 

5.4 Qualitative comparative study 

As we have already mentioned, during the recent years we have seen a very large 
number of publications in the field of the estimation of human expression and/or 
emotion. Although the vast majority of these works is focused on the six universal 
expressions and use sequences where extreme expressions are posed by actors, it 
would be an omission if not even a qualitative comparison was made to the broader 
state of the art. 

In Table 11 we present the classification rates reported in some of the most 
promising and well known works in the current state of the art. Certainly, it is not 
possible or fair to compare numbers directly, since they come from the application on 
different data sets. Still, it is possible to make qualitative comparisons base on the 
following information: 
1. The Cohen2003 is a database collected of subjects that were instructed to display 

facial expressions corresponding to the six types of emotions. In the Cohn–
Kanade database subjects were instructed by an experimenter to perform a series 



of 23 facial displays that included single action units and combinations of action 
units. 

2. In the MMI database subjects were asked to display 79 series of expressions that 
included either a single AU  or a combination of a minimal number of AUs or a 
prototypic combination of AUs (such as in expressions of emotion). They were 
instructed by an expert (a FACS coder) on how to display the required facial 
expressions, and they were asked to include a short neutral state at the beginning 
and at the end of each expression. The subjects were asked to display the required 
expressions while minimizing out-of-plane head motions. 

3. The original instruction given to the actors has been taken as the actual displayed 
expression in all abovementioned databases, which means that there is an 
underlying assumption is that there is no difference between natural and acted 
expression. 

As we can see, what is common among the datasets most commonly used in the 
literature for the evaluation of facial expression and/or emotion recognition is that 
expressions are solicited and acted. As a result, they are generally displayed clearly 
and to their extremes. In the case of natural human interaction, on the other hand, 
expressions are typically more subtle and often different expressions are mixed. Also, 
the element of speech adds an important degree of deformation to facial features 
which is not associated with the displayed expression and can be misleading for an 
automated expression analysis system. 

Consequently, we can argue that the fact that the performance of the proposed 
methodology when applied to a naturalistic dataset is comparable to the performance 
of other works in the state of the art when applied to acted sequences is an indication 
of its success. Additionally, we can observe that when extremely short tunes are 
removed from the data set the classification performance of the proposed approach 
exceeds 98%, which, in current standards, is very high for an emotion recognition 
system. 

Methodology Classification rate Data set 
TAN 83,31% Cohen2003 

Multi-level HMM 82,46% Cohen2003 
TAN 73,22% Cohn–Kanade 

PanticPatras2006 86,6% MMI 
Proposed methodology 81,55% SAL Database 

Proposed methodology 98,55% Normal section of the 
SAL database 

Table 11: Classification rates reported in the broader state of the art [27],[28] 

6 Conclusions 

In this work we have focused on the problem of human emotion recognition in the 
case of naturalistic, rather than acted and extreme, expressions. The main elements of 
our approach are that i) we use multiple algorithms for the extraction of the “difficult” 



facial features in order to make the overall approach more robust to image processing 
errors, ii) we focus on the dynamics of facial expressions rather that on the exact 
facial deformations they are associated with, thus being able to handle sequences in 
which the interaction is natural or naturalistic rather than posed or extreme and iii) we 
follow a multimodal approach where audio and visual modalities are combined, thus 
enhancing both performance and stability of the system. 

From a more technical point of view, our contributions include: i) A modified input 
layer that allows the Elman net to process both dynamic and static inputs at the same 
time. This is used to fuse the fundamentally different visual and audio inputs in order 
to provide for a truly multimodal classification scheme. ii) A modified output scheme 
that allows the Elman that integrates previous values, with value significance 
decreasing exponentially through time. This allows the network to display augmented 
stability. iii) a modified mixture of experts module that, additionally to characteristics 
drawn from the experts’ input, can also draw information from the experts’ output in 
order to drive the output mediation step. This is used in order to incorporate the 
results from the statistical anthropometric evaluation of the acquired masks in the 
operation of the output combiner module. 

Practical application of our methodology in a ground truth data set of naturalistic 
sequences has given a performance of 98,55% for tunes that are long enough for 
dynamics to be able to be picked up in both the visual and the audio channel.  

For our future work, we intend to further extend our work in multimodal 
naturalistic expression recognition by considering more modalities such as posture 
and gestures and by incorporating uncertainty measuring and handling modules in 
order to maximize the system’s performance and stability in difficult and uncontrolled 
environments. 
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