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ABSTRACT
This work focuses on two of the research problems com-
prising automatic sign language recognition, namely robust
computer vision techniques for consistent hand detection
and tracking, while preserving the hand shape contour which
is useful for extraction of features related to the handshape
and a novel classification scheme incorporating Self-organizing
maps, Markov chains and Hidden Markov Models. Geodesic
Active Contours enhanced with skin color and motion infor-
mation are employed for the hand detection and the extrac-
tion of the hand silhouette, while features extracted describe
hand trajectory, region and shape. Extracted features are
used as input to separate classifiers, forming a robust and
adaptive architecture whose main contribution is the opti-
mal utilization of the neighboring characteristic of the SOM
during the decoding stage of the Markov chain, representing
the sign class.

Categories and Subject Descriptors
I.4.6 [Computing Methodologies]: Segmentation; I.5.4
[Computing Methodologies]: Pattern RecognitionAppli-
cations
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1. INTRODUCTION
Sign languages is correctly considered as the top of the ges-
ture hierarchical taxonomy. The importance of such a group
of languages establishes the automatic recognition of sign
languages as a research challenge for various disciplines in-
cluding computer vision, machine learning, human action
understanding and natural language processing. Sign lan-
guage is the least standardized, largely symbolic and refer-
ential, highly structured amongst the gesture classes. Fea-
tures comprising co-articulation of several signals such as
hand/arm gestures, facial expressions, head movements, body
postures and torso movements makes the task of recogniz-
ing isolated or continuous signing a highly complex one and
although a large number of approaches have been proposed,
robust automatic sign language recognition still remains an
open problem.

There are several factors that impede the task of automatic
sign language recognition. Sign languages are highly in-
flected, resulting in too many appearances of inflectional
variants to model them all separately. Many signs can be
modified according to some grammatical function, such as
number, subject-verb agreement, and verb-object agreement.
They can also be modified to indicate aspect (e.g., fast,



slow), repetition, and duration. Furthermore, events occur
both sequentially and simultaneously. Unlike speech recog-
nition, sign language recognition cannot consider all possi-
ble combinations of simultaneous events explicitly, because
of their sheer number.

The structure of this paper is as follows. A brief overview of
work in the broad research area of automatic sign language
recognition is presented in section 2. Section 3 describes the
adopted methodology, both at the level of computer vision
techniques for hand detection, tracking and feature extrac-
tion (section 3.1) and at the level of recognition employing
different models for various streams of information (section
3.2) and fusing the outputs at the decoding stage. Finally,
section 4 summarizes the proposed architecture and future
work is presented.

2. RELATED WORK
An extensive review of several techniques is presented both
in [7] and [15]. The first focuses mainly on SL recognition
and classification issues, while examining closely hand lo-
calization and tracking, and on various feature extraction
techniques related to automatic analysis of manual sign-
ing. In addition, it addresses the linguistic aspect of SL
and non manual signals, along with methodologies to in-
corporate these in the SL recognition chain. On the other
hand, Wu and Huang delve more into works related to hand
modeling (shape analysis, kinematics chain and dynamics)
and computer vision, and pattern recognition issues associ-
ated to hand localization and feature extraction from image
sequences. Classification schemes involve several methods,
depending on the features and the stages of the procedure.
Methods used include neural networks and variants, hidden
markov models and variants, principal component analysis,
and numerous other machine learning methods or combina-
tions (decision trees, template matching, etc.).

One of the most commonly proposed approaches involves
feature extraction from the input signal and utilization of
these features as input for a fine tuned HMM [11]. In ad-
dition, variations of the previous group have been widely
adopted [9], [13]. Other approaches employ alternate ma-
chine learning and artificial intelligence techniques such as
recurrent fuzzy network , time delay neural network [16],
finite state machines [12], Bayesian classifiers [14], etc. Fi-
nally, there have been several efforts combining more than
one technique. Mantyla et al. [6] present a system for
static gestures recognition using a self-organizing mapping
scheme, while a hidden Markov model is used to recognize
dynamic gestures. Black and Jepson [1] present an exten-
sion of the “condensation” algorithm, modeling gestures as
temporal trajectories of the velocity of the tracked hands.
Fang et al. [4] present an additional layer enhancing the
HMM architecture with SOFM and improving their recog-
nition rate by 5%, while introducing a fuzzy decision tree in
an attempt to reduce the search space of recognized classes
without loss of accuracy.

3. PROPOSED ARCHITECTURE
The overall system consists of two main modules, image pro-
cessing and classification. Geodesic Active Regions models
enhanced with color and motion cues evolve, minimizing an
error function, to fit the hand regions and features relevant

to hand location, region and shape are extracted. The lat-
ter are used as inputs for classifiers based on hand location,
motion direction, region based features, Fourier descriptors,
shape moments and curvature coefficients. The outputs of
the classifiers are then fused accordingly and a final classifi-
cation decision is made.

3.1 Computer Vision
3.1.1 Hand detection and tracking
In order for a feature vector to be extracted from the sign
language videos, a stage of visual processing is required. In
this stage, each video frame is segmented in order to iso-
late the signer’s hands, from which the relevant information
can be extracted. For the segmentation of the video frames
we shall use the geodesic active regions model, introduced
by Paragios et al in [10], and based on the geodesic active
contour (GAC) model proposed by Caselles et al. in [2].
The GACs are deformable two-dimensional contours, which
evolve to minimize a suitable energy function, designed to
meet the specific needs of the segmentation process. The
process results in a robust and reliable hand detection and
tracking as can be shown in figure 3.1.1.

The Geodesic Active Region (GAR) model. Let C be a
planar curve with arclength parameter s and length L(C),

and let ~C(s) = [x(s), y(s)] : [0, L(C)] → R2 be its arc-length
parametrization. In the GAC model we aim to minimize the

function E =
∫ L(C)

0
g(I(~C(s)))ds, where I is the intensity

image we wish to segment. The function g : [0, +∞] → R2

is a stopping function, designed to assume minima at image
edges, with the property g(r) → 0 as r → +∞. It can be
proven that the selected energy function ensures that the
stable state of the curve will satisfy some smoothness crite-
ria and will also tend to locate itself in regions of the image
where the image gradient magnitude is relatively large (i.e.
on the image edges). The minimization of the energy func-
tion is conducted by means of the steepest descent method,
resulting in an Euler-Lagrange PDE for the evolution of the
curve.

In order for the numerical solution of this PDE to allow
topological changes to the curve, the GAC model is usually
combined with the level-sets method, introduced by Osher
and Sethian in [8]. In the level-set framework, the contour
C is defined implicitly as the zero level set, at each time
step, of an embedding scalar function u defined on the image
plane: C(t) = {(x, y) : u(x, y, t) = λ}. A commonly used
embedding surface is the signed distance function from the
evolving contour. Once we have defined the contour in terms
of the embedding function, we can extend the evolution PDE
for the contour to obtain the evolution PDE for the function
u:

∂u

∂t
= div

(
g(I)

∇u

‖∇u‖ + F (u)

)
‖∇u‖ (1)

The GAC model can be enhanced with the addition of ex-
ternal forces, represented by F (u) in eq.(1), to the evolu-
tion PDE. An example is the Geodesic Active Region model
([10]), in which the image is partitioned into two or more re-
gions, which are assumed to be homogenous with respect to



some particular statistically modeled image feature. When
the image consists of only two regions, A and Ac, we obtain
the following equation for the evolution of u:

∂u

∂t
= div

[
g(I)

∇u

‖∇u‖ + α log

(
PA(I)

PAc(I)

)]
‖∇u‖ (2)

where P (A) denoted the probability of pixel x belonging to
region A, based on the statistical model for this region. In
the above equation, which we will extensively use through-
out the paper, the evolution is guided by a region based force
and an edge based force.

Combining skin color information with the GAR model.
Skin color segmentation is feasible because the human skin
has a color distribution that usually differs from that of the
background. The intensity image I can thus be partitioned
into two separable regions, one being the union of the skin-
colored regions, and the other consisting of the rest of the
image pixels, which will be referred to as “background”. We
may therefore adapt the geodesic active region model to in-
troduce a new force for skin segmentation:

Fcolor = log

(
Ps(~x)

Pb(~x)

)
+ cg(I) (3)

where Ps, Pb denote the probability of a certain pixel be-
longing to the skin or background regions, respectively. The
above force consists of the region-based statistical color force
and a second force, known as “balloon force” ([2]) which
speeds up the evolution procedure by attempting to mini-
mize the surface of the embedded curve.

We estimate the probability Ps via a skin color model. This
model is constructed by utilizing the color information, in
terms of the (a, b) color coefficients in the Lab color space, of
several skin colored regions cropped from real input images.
The background probability is derived straightforwardly as
Pb = 1 − Ps. Our proposed force ensures that the curve
will eventually converge to those image edges that separate
skin regions from the background. The use of the geodesic
active region framework eliminates any issues concerning the
continuity of the skin regions detected by the color model, as
the smooth curve will enclose the whole skin region, provided
that these discontinuities are not too large. On the other
hand, the statistical force makes the segmentation model
more robust with respect to weak or false intensity edges.

Incorporation of motion information. While color infor-
mation is a major cue that assists in the detection of hands
in images, motion information is equally crucial when the
goal is to recognize human gestures. The employment of
motion information in the segmentation module may prove
to be extremely effective in such cases; as far as sign lan-
guage recognition is concerned, it may help to resolve the
well-known problems arising in the presence of hand-face or
hand-hand occlusions, given that the signer’s face remains
relatively motionless while the hands move vividly. In this
work we exploit the available motion information by using
the geodesic active region model, in a way similar to the skin
color segmentation described in the section 3.1.1. Namely,
we will again use a statistical force of the logarithmic form
presented in previous section, with the image at hand now

being partitioned into two regions, the one comprising of
the moving pixels and the other of the pixels whose position
remains the same.

The motion information is provided from the optical flow
field, derived with the well-known Lucas-Kanade algorithm
([5]). The magnitude of the optical flow field could be used
to obtain the probability of a certain image pixel belong-
ing to either the static or the moving component. Thus,
we introduce a new evolution force for the active contour,
according to the following steps:

1) Estimation of the optical flow field OF, its magnitude
|OF (x, y)| =

√
V 2

x + V 2
y and the moving region probability

Pmov(x, y) = |OF (x, y)|/ max(|OF |),

2) Motion force: Fmov(x, y) = log
(

Pmov(x,y)
Pstat(x,y)

)

where Pstat(x, y) = 1 − Pmov(x, y) is the probability of the
pixel at location (x, y) belonging to the static region (“back-
ground”).

This new motion force operates in an analogous way to the
color force. It leads the evolving contour to converge so as
to include regions, where motion is detected. This could be
used to locate the hands in an image and discriminate them
from the face region, which will also be detected by the skin
color model. Thus, we can diminish or eliminate errors in
the estimation of the hands’ positions in the presence of
occlusions. The overall force at point ~x is:

F (~x) = log

(
Pskin(~x)

Pnonskin(~x)

)
+log

(
Pmov(~x)

Pstat(~x)

)
+cg(I(~x)) (4)

Figure 1: Image processing segmentation and track-
ing results

3.1.2 Feature extraction
A variety of features can be used for sign language recogni-
tion. In this work we use features that primarily describe
the shape of the segmented signer’s hands, in order to rep-
resent the handshapes used by the signer, which are the
main source of information with regard to the interpreta-
tion of a specific sign. Motion information is also extracted
by following the trajectory of the hands’ centroids, as will
be described in the following sections.

As shape features we use a variety of descriptors, both boundary-
based (Fourier descriptors, Curvature features) and region-
based (Moments, Moment-Based Features).



Fourier Descriptors. The extraction of the Fourier de-
scriptors for a given shape is based on the notion that any
digital shape boundary can be represented by a periodic
complex function zi = z(i) = xi + jyi, where xi, yi, i =
0, 1, ..., N − 1 are the horizontal and vertical position coor-
dinates of each of the N boundary points. Such a function
can be transformed into a Fourier series

Zk =

N−1∑
n=0

zne−2πjkn/N , k = 0, 1, 2, . . . , N − 1 (5)

The Fourier descriptors are derived straightforwardly from
the coefficients Zk of the above Fourier series. Namely, the
coefficients Z0, Z1 are ignored and the rest of the coefficients
are divided by |Z1|, yielding the Fourier descriptors C of the
shape

Ck−2 =
‖Zk‖
‖Z1‖ , k = 2, 3, . . . , N − 1 (6)

It can be easily proven that this form of the coefficients en-
sures that the resulting shape decriptors remain unaffected
by shape translations, rotations, scalings and changes of the
starting point on the boundary.

Curvature Cepstrum Coefficients. This set of shape de-
criptors are based on the computation of the cepstrum of
the shape’s curvature, in a way directly analogous to the ex-
traction of the MFCC features from voice signals. Namely,
the first stage involves the extraction of the curvature from
the binary shape of the hand, by means of Freeman’s chain
code method. Next, the cepstrum of the curvature signal is
extracted, and the largest NC coefficients are selected and
included in the feature vector. Extensive experimentation
has shown that the curvature function can be sufficiently
reconstructed by a fairly small set of cepstrum coefficients,
thus obtaining a compression of the original signal length by
over 90%.

Shape Moments. Invariant shape moments are also exten-
sively used in shape representation and recognition, since
they achieve significant data compression. The pqth-order
central (i.e., with respect to the center of mass (µx, µy)) mo-
ment of a binary shape I is defined by the following equation:

µij =

N∑
x=1

N∑
y=1

(x− µx)i(y − µy)jI(x, y) (7)

thus yielding the normalized central moments

ηij =
µij

µγ
00

, γ =
i + j

2
+ 1 (8)

The above moments can be used to obtain a set of seven
scaling, translation and rotation invariant measures, given

by the following equations:

φ1 = η20 + η02

φ2 = (η02 − η20)
2 + 4η2

11

φ3 = (η30 − 3η12)
2 + (3η21 + η03)

2

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (9)

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)

2 − 3(η03 + η21)
2] +

+ (3η21 − η03)(η03 + η21)
[
3(η30 + η12)

2 − (η03 + η21)
2]

φ6 = (η20 − η02)
[
(η30 + η12)

2 − (η03 + η21)
2] +

+ (η20 − η02) [4η11(η30 + η12)(η03 + η21)]

φ7 = (3η21 + η03)(η30 + η12)
[
(η30 + η12)− 3(η03 + η21)

2] +

+ (η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2 − (η21 + η03)
2]

Other Region-Based Features. In the feature vector we
also added a set of other region-based features, related to
the moments described above. These include: the area of
the shape, its eccentricity, its compactness, its minor
and major axis lengths, and its orientation.

3.2 Sign language Recognition
Sign recognition is performed by fusing separate component
models for sign trajectory and hand shape cues. A novel ap-
proach is introduced by applying a combination of self orga-
nizing maps and markov models for sign trajectory classifi-
cation. The extracted features used in the trajectory module
include the trajectory of the hand and the direction of mo-
tion in the various stages of the gesture. This classification
scheme is based on the transformation of a sign representa-
tion from a series of coordinates and movements to a sym-
bolic form and on building probabilistic models using these
transformed representations. Concerning hand shape, Hid-
den Markov Models are used to classify each sign instance
into one of the models created by training a unique model
for every corresponding class. Our study indicates that, al-
though each of the two sets of features (trajectory and hand
shape information) can provide distinctive information in
most cases, only an appropriate combination can result in
robust and confident user independent sign language recog-
nition.

The steps of the introduced procedure, which is depicted in
figure 2, begin with the image processing module described
in section 3.1. Following, each isolated sign instance is rep-
resented by a time series of points, representing the hand’s
location with respect to the head of the signer and a set of
features aiming to describe the distinct handshapes. Con-
sequently, a sign Gi containing l points can de expressed as
an ordered set of points:

Gi = {(x1, y1), (x2, y2), . . . , (xl, yl)} (10)



Figure 2: System architecture

HSi = {HSa
i HSf

i HSm
i HSc

i }

HSa
i = HSarea

i =




HSregion
i1..l

HSeccentricity
i1..l

HSorientation
i1..l

HSratio
i1..l

HScompactness
i1..l




HSf
i = HSfourier

i = {HSC1..20
i1..l

}
HSm

i = HSmoments
i = {HSφ1..7

i1..l
}

HSc
i = HScurvature

i = {HSN1..31
i1..l

}

(11)

where l varies across different sign classes. The system’s
input is a set of sign instances D, assigned to c different sign
categories.

The proposed modeling scheme is based on the transfor-
mation of a sign representation from a series of coordinates
and movements to a symbolic form which, in turn, is used to
build the respective probabilistic models. The first transfor-
mation is based on the relative position of the hand during
the sign and is achieved using a self-organizing map model.
Despite the fact that the map units are treated as symbols,
the map’s neighborhood function provides a distance met-
ric between them, that is used during the classification of
an unlabeled gesture. Additionally, this enables the use of
the Levenshtein distance metric for the comparison between
these sequences of symbols and the definition of a ‘mean’
string of symbols representing e.g. the signs included in a
Dj set.

An additional transformation is based on the optical flow of
the gesture, aiming to describe the hand direction changes

during signing. The symbols generated from this transfor-
mation constitute the set of angles of the hand’s trajectory.
This set is limited to quantized values that are treated as
symbols in order to be used for the creation of an addi-
tional set of Markov models.Furthermore, hand shape fea-
tures aiming to describe both the hand configuration and
the palm orientation are used to train continuous HMMs
Gaussian mixture components.

For the classification of an unlabeled sign instance, all the
above mentioned trained models are tested against this in-
stance and participation probabilities are fused, balanced us-
ing weights calculated according to the isolated recognition
rates, thus achieving a robust recognition scheme tackling
cases of low confidence or ambiguity.

Figure 3: A more intuitive system architecture
overview

3.2.1 Building Sign Models
The coordinates of all the points from all the gestures are
used to train a hexagonal, two-dimensional grid SOM with
the batch mode learning procedure. The points are fed to
the map in an unordered form, inconsequently to the ges-
ture instance they belong to and to their ranking position
into the gesture. Following training, each point is assigned
to the respective best matching unit (BMU) on the map,
i.e. the unit of the map closer to the point in the input data
space, according to the Euclidean distance of the two vec-
tors. Thus, a gesture Gi can be transformed from a series
of points to a series of map units.

T (Gi) = (u1, u2, . . . , ul): ui = BMU(xi, yi) (12)

Function BMU(xi, yi) returns the index of the best-matching
unit for point (xi, yi) and T (Gi) is the modified gesture rep-
resentation. Given that ui is the index of a map unit, this
function can be is declared as BMU : R2 → S, where S is
the set of the indices of all map units and can be treated
as a set of symbols. In many cases, the ui value of conse-
quent points of a gesture remains the same since, although
the continuous movement of the hand is represented by the
distinct points, consequent points are generally close in the
input data space. Replacing consequent equal values of ui

with a single value results in the following gesture definition,

G
′
i = N(T (Gi)) = {u1, u2, . . . , um, }

: m ≤ l, ut 6= ut−1∀t ∈ [2, l]
(13)



where N is a function that removes consecutive equal ui

values and G
′
i is the transformed gesture instance. The

transformation of the gestures with the use of the SOM can
be considered a transformation of the continuous trail to a
sequence of m discrete symbols, different for every gesture
class, that define the finite states to build first order Markov
chain models.

Such a model, for each of the categories in the gestures’ data
set, is created. The sequence of the ui values into the trans-

formed gestures G
′
i of D

′
j set, will be used for the calculation

of the transition probabilities of the model MMsom
j describ-

ing the j category and for the determination of the values of
the function πsom

j , which is the first state probability func-
tion of this model. The result is a set MMsom of c Markov
models.

MMsom = {MMsom
1 , MMsom

2 , . . . , MMsom
c }

: D
′
i = {G′

1, G
′
2, . . . , G

′
n} → MMsom

i

(14)

These models are used to evaluate a new unlabeled gesture
in order to be classified in one of the c categories. Figure
4 depicts the above described transformation for a gesture
instance.

Figure 4: Correspondence of gesture trajectory
points to their respective BMUs on the SOM. These
BMUs constitute the states of the Markov models.

With the purpose of providing a more descriptive represen-
tation of each gesture instance, an additional transformation
is introduced, based on the optical flow of each gesture. This
describes the different directions that the gesture trajectory
presents instead of the spatial position of gesture points. In
order to achieve such a representation, direction vectors are
calculated from the consecutive gesture trajectory points.
These angles are then quantized in 8 different symbolic val-
ues as depicted in figure 3.2.1. The segments of coordinates
in figure 4 and 3.2.1 are considered to be a set of coordinates
that belong to the same cluster (BMU and Quantized Angle
for figure 4 and 3.2.1 respectively). In that sense, we define
the transformation of a gesture instance Gi using the OF
function as:

OF (Gi) = {v1, v2, ..., vm}
: vi = Wr(Q(arctan(

yi − yi−1

xi − xi−1
)))

(15)

where vi are the quantized values, Q the quantization func-
tion and Wr a median function applied to the values of a
fixed length window around the input value. The purpose
of the later is to smooth the quantized values against pos-
sible instabilities of the hand during the gesture. Applying
the transformation function along with function N (equa-
tion 13) for the removal of the equal consecutive values we
get

G
′′
i = N(OF (Gi)) = {v1, v2, ..., vm} (16)

The vi values define the states for a new set of Markov mod-
els MMof that is built using the transformed set D

′′
j . The

first state probability function πof
j is also calculated using

this set.

MMof = {MMof
1 , MMof

2 , ..., MMof
c }

: D
′′
i = {G′′

1 , G
′′
2 , ..., G

′′
n} → MMof

i

(17)

Figure 5: Building a Markov model for a gesture’s
optical flow

Additionally we train 4 continuous (mixture of three Gaus-
sian), left-to-right Hidden Markov Models with the train-
ing set being features describing the handshape. As can be
shown in figure 3.2.1 features describing the area of the ex-
tracted hand HMMhs1 , Fourier descriptors HMMhs2 , mo-
ments HMMhs3 and coefficients of the Curvature Cepstrum
HMMhs4 are utilized to model different combinations of fin-
ger joint angles and palm orientation.

3.2.2 Sign Decoding
The classification of an input gesture will be based on the
two sets of Markov models (equations 14 and 17). Let Gk

be a gesture instance of unknown category, and G
′
k and G

′′
k

its transformed representations. Using the MMsom set of
models, the probability of this gesture to belong in category
j can be calculated as:

P (G
′
k|MMsom

j ) =

m∑
i=1

Ssom
i

m
(18)

The above equation averages the values Ssom
i , which repre-

sent an evaluation factor for each ui value of the G
′
k trans-

formed gesture with respect to the MMsom
j Markov model.

These values are calculated as:

Ssom
i = max

z
(NF som

ui
(z)P (z|ui, MMsom

j )) (19)

ui = arg max
z

(Ssom
i ) (20)

where z is a variable that indexes the units of the trained
map, NF som

ui
(z) is the distance of the unit z as defined by the

self-organizing map Gaussian neighborhood function with
the ui unit as its center. In equation (9), the proximity be-
tween the state-unit z and the previous state-unit ut−1 of



Figure 6: Hidden Markov Models based on features
describing the handshape

the gesture is multiplied with the probability of the transi-
tion from state-unit z to state-unit ut−1. As the z variable
varies across all the units of the map, this product will pro-
vide the unit that combines a considerable transition prob-
ability from the previous state with a small distance onto
the map grid from the current state. This unit will also be
used as the previous state in the next step as defined by
equation 20. The initial values used in the sum derive from
the following equations.

Ssom
1 = max

z
(NF som

u1 (z)πsom
j (z))

: u1 = arg max
z

(Ssom
1 )

(21)

Using the MMof set of models, the probability of this ges-
ture to belong in category j can be calculated as:

P (G
′′
k |MMof

j ) =

m∑
i=1

Sof
i

m
(22)

The values Sof
i are calculated from the following equations:

Sof
i = max

z
(NF of

vi−1(z)P (z|vi−1, MMof
j ))

: vi = arg max
z

(Sof
i )

(23)

where z is a variable that indexes the different states-directions
and NF of

ui
(z) a distance function between these states. These

equations implement a search similar to the previous search
on the map grid, but in this case the search is performed
among the different possible gesture directions. The initial
values are calculated in a similar way from the following
equations.

Sof
1 = max

z
(NF of

v1 (z)πof
j (z))

: v1 = arg max
z

(Sof
1 )

(24)

In order to compare the length of the unknown gesture with

the length of the gestures included in each D
′
j set, a dis-

tance metric for the comparison of symbol strings is neces-

sary. From each set D
′
j , a Generalized Median gesture is

calculated. Let S be a set of symbol strings si. We can then
define m as a string that consists of a combination of all or
some of the symbols used in the set and which minimizes
the following expression.

∑
si

L(si, m), ∀si ∈ S (25)

where L, denotes the Levenshtein distance, one of the most
widely used string distance metric. If the search for string
m is restricted to the members of the set then m is the set
median. But if m is a hypothetical string and the search is
not restricted then m is the Generalized Median of the set.
Using the above definition we calculate the Levenshtein dis-

tance Lkj = L(G
′
k|M(D

′
j)) between G

′
k and the Generalized

median M(D
′
j) of each D

′
j set.

The category of the unknown gesture is primarily decided
using the MMsom set of models. Subsequently, the category
would be equal to:

arg max
j

P (G
′
k|MMsom

j ) (26)

In order for the category of the unknown gesture to be de-
cided by the above equation the four following conditions
must be fulfilled.

max
j

(P (G
′
k|MMsom

j )) ≥ α (27)

max
j

(P (G
′
k|MMsom

j )− 2nd max
j

(P (G
′
k|MMsom

j ) ≥ β (28)

L
k,arg max

j
(P (G

′
k
|MMsom

j )
≤ γLM(arg max

j
(P (G

′
k|MMsom

j ))

(29)

max
j

(

4∏

i=1 q∈[a,f,m,c]

P (HSq
k|HMMhsi

j )) ≥ δ (30)

The two first conditions require that the maximum proba-
bility calculated using position based models must exceed



a threshold value a, while the difference between the maxi-
mum probability and the second ranked ones must also ex-
ceed a threshold value β. These two values represent con-
fidence thresholds. The third condition applied is that the
Levenshtein distance between the gesture and the General-
ized Median of the category with the maximum probability
must be larger than the LM value of this category, multi-
plied by a user defined factor γ. This comparison is made
in order to assess the length of the unknown gesture with
respect to the average length of the gestures of the category
with the maximum probability. The last criterion denotes
that the product of the log-likelihood probabilities of the
sign instance against four types of HMM models, namely
area model HMMhs1 , Fourier descriptors model HMMhs2 ,
Moments model HMMhs3 and Curvature Cepstrum coef-
ficients model HMMhs4 , should uphold a minimum value
δ. If one of these conditions is not fulfilled then the cate-
gory of the unknown gesture is defined from a combination
of values:

arg max
j

(P (G
′
k|MMsom

j )P (G
′′
k |MMof

j )
1

Lkj

‖M(Dj)‖
Π)

: Π =

4∏

i=1 q∈[a,f,m,c]

P (HSq
k|HMMhsi

j )

(31)

This classification rule combines the evaluation provided
from both the MMsom and MMof set of Markov mod-
els with the Levenshtein distance of the gesture and the
Generalized median of the each category normalized by the
length of the Generalized median and the HMMhsm models
trained with different feature sets describing the handshape.

4. CONCLUSIONS
We propose an original automatic sign language recogni-
tion architecture which consists of robust computer vision
techniques for consistent hand detection and tracking, fea-
ture extraction of related to the hand location, shape, and
region and a novel classification scheme incorporating Self-
organizing maps, Markov chains and Hidden Markov Mod-
els. Extracted features train separate classifiers, which in
turn are fused into a decision level, committee-machine-
like setup, during the classification stage, enhancing the
proposed architecture with multimodality and robustness
against noisy and unconstrained environments or sign in-
flection.

Ongoing work includes the overall validation of the proposed
scheme, since the effectiveness of each component, forming
the recognition process, has already been tested. This vali-
dation will use as a corpus the one constructed by Efthimiou
and Fotinea in [3]. Furthermore we are willing to compare
the recognition rates against other approaches found in the
literature, either by implementing them or by applying the
proposed architecture on other corpora. Finally, we will
investigate ways to extend the platform to perform sign lan-
guage recognition on a sign-component level (signeme) and
on continuous signing.
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