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Abstract. The last couple of years it is widely acknowledged that un-
certainty and fuzzy extensions to ontology languages, like Description
Logics (DLs) and OWL, could play a significant role in the improvement
of many Semantic Web (SW) applications. Many of the tasks of SW like
trust, matching, merging, ranking usually involve confidence or truth
degrees that one requires to represent and reason about. Fuzzy DLs are
able to represent vague concepts such as a “Tall” person, a “Hot” place,
a “MiddleAged” person, a “near” destination and many more. In the
current paper we present a fuzzy extension to the DL SHZN . First, we
present the semantics while latter a detailed reasoning algorithm that de-
cides most of the key inference tasks of fuzzy-SHZN . Finally, we briefly
present the fuzzy reasoning system FiRE, which implements the pro-
posed algorithm and two use case scenarios where we have applied fuzzy
DLs through FiRE.

1 Introduction

The last decade a significant amount of research has been focused in the devel-
opment of the Semantic Web [1]. Semantic Web actually consists of an extension
of the current Web where information, that lies in databases, web pages, etc.,
would be semantically accessible, enabling complex tasks to be performed in an
(semi)automatic way. For example, Semantic Web agents would be able to ac-
complish tasks like a holiday organization, a doctor appointment, the retrieval
of images depicting specific events etc. in a semantic and (semi)automatic way.
In order to accomplish this goal it is widely recognized that information on the
web should be structured in a machine understandable way, by using knowledge
representation languages and forming ontologies [I]. For those reasons w3 has
standardized a number of ontology (knowledge representation) languages for the
Web. One of the most important and expressive ones is OWL [2]. The logical
underpinnings of OWL consist of very expressive Description Logics [3] and more
precisely, the OWL DL species of OWL is equivalent to SHOZN (DY), while
OWL Lite is equivalent to SHZF(D™).
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Although, Description Logics are relatively expressive, they are based on two-
valued (Boolean) logics, which consider everything either true or false, thus they
are unable to represent truth degrees, which are important in representing vague
(fuzzy) knowledge. For example, they are unable to correctly represent concepts
like a “tall” man, a “fast” car, a “blue” sky and many more. Moreover, many Se-
mantic Web applications, like knowledge based information retrieval and ontology
matching [4], also involve degrees of equivalence or similarity, which are important
to represent and reason about. For those reasons fuzzy Description Logics [5][6]
and fuzzy OWL [7] have been proposed as languages capable of representing and
reasoning with vague knowledge in the Semantic Web. With fuzzy DLs one usu-
ally is able to provide the same schema information as classical (crisp) DLs. For
example, one can still define the concept of a MiddleAged person as someone that
is either in his/her Forties or Fifties with the following axiom:

MiddleAged = Forties LI Fifties

On the other hand, one is able to state that John is in his fifties to a degree at
least 0.6 (since he is 46 years old) by writing (john : Fifties) > 0.6, while he is also
tall to a degree at least 0.8 (since he is 190cm), writing (john : Tall) > 0.8. Apart
from representing fuzzy knowledge one should be able to also reason about, and
for example infer that John is middle aged to a degree at least 0.8.

In the current paper we report on some recent results obtained about rea-
soning in very expressive fuzzy Description Logics and more precisely about
reasoning with the fuzzy DL fx p-SHZN [68910]. First, we present a tableaux
reasoning algorithm for fx p-SHZN . Then, we report on an implementation of
the algorithm which gave rise to the FiRE fuzzy DL system and consists of an
extension of the tool presented in [8]. FIRE provides a graphical user interface
that can be used to load and reason with fuzzy DL ontologies. Furthermore,
FiRE is able to store a fuzzy knowledge into a triple store and query about it
using very expressive fuzzy conjunctive queries [I1]. The rest of the paper is
organized as follows. Section 2] presents the syntax and semantics of the fuzzy
extension of SHZN . Then, in Section [3] we provide all the technical details for a
reasoning algorithm that decides most of the inference problems of fuzzy-SHIN .
Subsequently, Section [ provides a brief presentation of the FiRE system. Then,
Section [f] presents two Use Case scenarios where we have applied FiRE and we
discuss its potentials and future directions. Finally, Section [@ provides a discus-
sion about state-of-the-art work in fuzzy DLs, while it also presents a list of
important open problems related to the area of fuzzy Description Logics.

2 Syntax and Semantics of fSHZIN

In this section we introduce the DL f~SHZN . As usual we have an alphabet of
distinct concept names (C), role names (R) and individual names (I). -SHZN-
roles and f-SHZN-concepts are defined as follows:
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Definition 1. Let RN € R be a role name, R an f-SHIN -role. f-SHIN -roles
are defined by the abstract syntax: R ::= RN | R™. The inverse relation of
roles is symmetric, and to avoid considering roles such as R~ , we define a
function Inv, which returns the inverse of a role, more precisely Inv(R) := RN~
if R= RN and Inv(R) := RN if R=RN".

The set of -SHIN -concepts is the smallest set such that:

1. every concept name CN € C is an f-SHIN -concept,

2. if C and D are f-SHIN -concepts and R is an f-SHIN -role, then (C U D),
(CN D), (=C), (VR.C) and (3R.C) are also f-SHIN -concepts,

3. if Risa simpleﬂ J-SHIN -role and p € N, then (> pR) and (< pR) are also
F-SHIN -concepts.

Although the definition of SHZN-concepts and roles is the same with the
one of fuzzy-SHIN-concepts and roles the semantics of f-SHZN are signifi-
cantly extended. This is because semantically we have to provide a fuzzy mean-
ing/interpretation to the building blocks of our language, like concepts, roles
and constructors. For that reason the semantics of fuzzy DLs are defined with
the help of fuzzy interpretations [5]. A fuzzy interpretation is a pair Z = (A%, -T)
where the domain AZ is a non-empty set of objects and -T is a fuzzy interpreta-
tion function, which maps:

1. an individual name a € I to an element a® € AZ,
2. a concept name A € C to a membership function AT : AT — [0, 1],
3. arole name RN € R to a membership function R : AT x AT — [0,1].

Intuitively, an object (pair of objects) can now belong to a fuzzy concept (role)
to any degree between 0 and 1. For example, HotPIaceI(AthensZ) = 0.7, means
that Athens? is a hot place to a degree equal to 0.7. Additionally, a fuzzy inter-
pretation function can be extended in order to provide semantics to any complex
f-SHIN-concept and role by using the operators of fuzzy set theory. More pre-
cisely, in the current setting we use the Lukasiewicz negation (¢(a) = 1—a), Godel
conjunction (min(a, b)) and disjunction (max(a, b)) and the Kleene-Dienes fuzzy
implication (max(1 — a,b)). Then, since C' U D represents a disjunction (union)
between concepts C' and D we can use max and provide the semantic function
for disjunction: (C U D)% (a) = u(C%(a), D¥(a)). The complete set of semantics
for f-SHIN-concepts and roles is depicted in Table [l We remark that due to
the operators we use we call our language fx p-SHIN .

An fgp-SHIN TBozx T is a finite set of terminological axioms. Let C and D
be two fx p-SHIN -concepts. Axioms of the form C C D are called fuzzy concept
inclusion axioms or fuzzy concept subsumptions or simply subsumptions, while
axioms of the form C' = D are called fuzzy concept equivalence axioms. A fuzzy
interpretation Z satisfies an axiom C' C D if Va € AZ, C%(a) < D*(a) while it
satisfies an axiom C = D if C%Z(a) = D*(a). Finally, a fuzzy interpretation T

2 A role is called simple if it is neither transitive nor has any transitive sub-roles.
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Table 1. Semantics of fx p-SHZN -concepts and fx p-SHIN -roles

Constructor Syntax Semantics

top T Ta) =1

bottom 1 1%(a)=0

general negation -C (=) (a) =1 = C*(a)

conjunction cnbD (C 1 D)% (a) = min(C*(a), D*(a))

disjunction cub (C U D) (a) = max(C*(a), D¥ (a))

exists restriction JR.C (3R.C)* (a) = sup,ec oz {min(R*(a,b),C* (b))}

value restriction VR.C (YR.C)*(a) = inf,c px {max(1 — R*(a,b), CT(b))}

at-most restriction <pR (< pR)*(a) = inf 1%3;{1 — R¥(a,b:)}
bisesbpy1 €AT =1

at-least restriction >pR (> pR)%(a) =  sup m][;n{RI(a7 bi)}
bi,...,bpeAT =1

inverse roles R~ (R™)%(b,a) = R*(a,b)

satisfies an fxp-SHZN TBox 7 if it satisfies every axiom in 7. Then we say
that 7 is a model of T.

An fip-SHIN RBox R is a finite set of fuzzy role axioms. Axioms of the
form Trans(R) are called fuzzy transitive role axioms, while axioms of the form
R C S are called fuzzy role inclusion axioms. A fuzzy interpretation 7 satisfies
an axiom Trans(R) if Va,c € AT, R*(a,c) > supyc ar {min(R%(a,b), R*(b,c))}
while it satisfies R C S if V(a,b) € AT x AT RZ(a,b) < S%(a,b). Finally,
7 satisfies an fxp-SHZN RBox if it satisfies every axiom in R. In that case
we say that Z is a model of R. A set of fuzzy role inclusion axioms defines
a role hierarchy Rp. Additionally, we note that the semantics of role inclu-
sion axioms imply that if R T S, then also Inv(R) C Inv(S), like in the
classical case.

An {gxp-SHIN ABox A is a finite set of fuzzy assertions [5] of the form
(a: C)y<n or ((a,b) : R)x<in, where < stands for >, >, < and <, and n € [0, 1] or
of the form a # b. Intuitively, a fuzzy assertion of the form (a : C') > n means
that the membership degree of the individual a to the concept C' is at least equal
to n. We call assertions defined using inequalities >, > positive, while those using
<, < negative. Formally, given a fuzzy interpretation Z,

7T satisfies (a: C) > n if CZ(al)>n,
T satisfies (a: C) <n if C%(al) < n,
T satisfies ((a,b) : R) > n if RZ(a®,b?) > n,
T satisfies ((a,b) : R) <n if RZ(aT,b?)<n
T satisfies a #Z b if ot # bT.

)

The satisfiability of fuzzy assertions with >, < is defined analogously. Observe
that, we can also simulate assertions of the form (a : C') = n by considering two
assertions of the form (a : C') > n and (a : C) < n. A fuzzy interpretation 7
satisfies an fx p-SHZN ABox A iff it satisfies all fuzzy assertions in A; in this
case, we say that Z is a model of A.
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Without loss of generality, we assume that no negative assertions exist. Neg-
ative assertions of the form (a : C') < n and (a : C')) < n can be transformed into
their positive inequality normal form (PINF), by applying a fuzzy complement
in both sides getting, (a : =C') > 1 —n and (a: =C) > 1 —n (similarly with role
assertions), respectively. Furthermore, we assume that a fuzzy ABox has been
normalized [12], i.e. fuzzy assertions of the form (a : C') > n are replaced by
assertions of the form (a : C') > n + ¢, where € is a small number converging
to 0. Please note that in a normalized fuzzy KB with only positive inequalities
degrees range over [+¢,1 + €. Also note that a fuzzy ABox is consistent iff the
normalized one is [13]. For a fuzzy ABox we define the set of relative degrees as

NA=1{0,05,1YU{l—n,n|(a:C>n)e Aor ((a,b): R) >nec A}

An {p-SHIN knowledge base (KB) is defined as X' = (7, R,.A). An inter-
pretation Z satisfies an fx p-SHZN knowledge base X if it satisfies every axiom
in 7, R and A. In that case Z is called a model of X.

Now we define the inference services of fx p-SHZN. .

— KB Satisfiability: An fxp-SHZN knowledge base X = (7, R, A) is satis-
fiable (unsatisfiable) iff there exists (does not exist) a fuzzy interpretation 7
which satisfies all axioms in X.

— Concepts n-satisfiabilty: An fx p-SHZN -concept C' is n-satisfiable w.r.t.
X iff there exists a model Z of X in which there exists some a € AT such
that CZ(a) = n, and n € (0, 1].

— Concept Subsumption: A fuzzy concept C is subsumed by D w.r.t. X iff
in every model Z of X we have that Vd € AT, C%(d) < D*(d).

— ABox Consistency: An fxp-SHIN A is consistent (inconsistent) w.r.t.
a TBox 7 and an RBox R if there exists (does not exist) a model Z of T
and R which satisfies every assertion in A.

— Entailment: Given a concept or role axiom or a fuzzy assertion, ¥, we say
that X' entails ¥, writing X = ¥ iff every model Z of X' satisfies ¥.

— Greater Lower Bound (glb): The greatest lower bound of an assertion ¢
w.r.t. X is defined as,

glb(X,®) = sup{n | ¥ =& > n}, where supf) = 0.

As we note glb, actually consists of a set of entailment tests.

The problems of concept n-satisfiability, subsumption and entailment w.r.t.
a knowledge base X can be reduced to the problem of knowledge base satis-
fiability X [5L[6]. Here, the reductions are slightly modified due to PINF and
normalization. More precisely, a concept C is n-satisfiable w.r.t. 7 and R iff
{(a : C) > n} is consistent w.r.t. 7 and R. Moreover, for ¥ = (T, R, A), and
a PINF assertion ¢ > n, where ¢ is a classical SHZN assertion, X = ¢ > n iff
Y =(T,R,AU{=¢ > 1 —n + €}) is unsatisfiable. Furthermore, X' = C C D
it (T,R,AU{(a : C) > n,(a : =D) > 1 — n + €}) is unsatisfiable, for both
n € {ni,na}, n1 € (0,0.5] and ny € (0.5,1].
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3 Reasoning with fxp-SHIN

In the previous section we show that all inference problems of fuzzy DLs, can be
reduced to the problem of knowledge base satisfiability. Consequently, we have
to construct an algorithm that decides such a reasoning problem. Our method
will be based on tableaux algorithms.

Without loss of generality, we assume all concepts C' occurring in assertions
to be in their negation normal form (NNF) [3], denoted by ~ C}; i.e., negations
occur in front of concept names only. An fx p-SHZN -concept can be transformed
into an equivalent one in NNF by pushing negations inwards making use of the
De Morgan laws and the dualities between 3 and V, and between concepts >
and <.

Definition 2. For every concept D we inductively define the set of sub-concepts
of (sub(D)) as,

sub(A) = {A} for every atomic concept A € C,
sub(C D) {C N D} U{sub(C)}U{sub(D)},
sub(CUD) = {CUD}U{sub(C)}U{sub(D)},

sub(3R.C) = {3IR.C} U {sub(C)},
sub(VR.C) {VR.C} U {sub(C)},
sub(> nR) {>nR}
sub(<nR) = {<nR}

Definition 3. For a fuzzy concept D and an RBox R we define cl(D,R) as the
smallest set of fi p-ST-concept which satisfies the following:

— D ecd(D,R),
— cl(D,R) is closed under sub-concepts of D and ~ D, and
— if VR.C € cl(D,R) and Trans(P) with P G R, then VP.C € cl(D,R)

Finally we d UAR) = o\ UDR).
nally we eﬁnec( ) (a:D)ZneAC( )

When R is clear from the context we simply write cl(A).

Definition 4. If ¥ = (T, R, A) is an fx p-SHIN knowledge base, R 4 is the set
of roles occurring in X together with their inverses, 14 is the set of individuals
in A, a fuzzy tableau T for X is defined to be a quadruple (S, L, £, V) such that:
S is a set of elements, L : S x cl(A) — [0,1] maps each element and concept to
the membership degree of that element to the concept, € : Rqy x Sx § — [0,1]
maps each role of R4 and pair of elements to the membership degree of the pair

to the role, and V : 14 — S maps individuals occurring in A to elements of S.
Forall s,t € S, C,FE € cl(A), n €[0,1] and R € R, T satisfies:

1. L(s,L)=0and L(s,T) =1 for all s € S,
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If L(s,—mA) =n, then L(s,A) =1 —n,

If E(—R, (s,t)) = n, then E(R, (s,t)) =1 —mn,

If L(s,CTE) > n, then L(s,C) >n and L(s,E) > n

If L(s,CUE)>n, then L(s,C) >n or L(s,E) >n

If L(s,YR.C) > n, then either E(—R, (s,t)) >n or L(¢t,C) >n

If L(s,3R.C") > n, then there exists t € S such that E(R,(s,t)) > n and
L(t,C)>n

8. If L(s,VR.C) > n, then either E(—P,(s,t)) > n, for P & R with Trans(P) or
L(t,VP.C)>n

9. E(R, (s,t)) > n iff E(Inv(R), (t,s)) > n,

10. If E(R,(s,t)) > n and RE S, then £(S, (s,t)) > n,
11. If L(s,> pR) > n, then tRT (s,>,n) > p,
12. If L(s,< pR) > n, then tRT (s,>,1 —n+¢) <p,

13. If CE D € T, then either L(s,C) > 1—n+e¢€ or L(s,D) >n, for alls € S
and n € N4,

14. If (a: C) > n € A, then L(V(a),C) >
15. If ((a,b) : R) > n € A, then E(R, (V(a ) V(b)) > n,
16. If a #b e A, then V(a) # V(b).

NS v oo

where § denotes the cardinality of a set, RT(s,>,n) = {t € S| £(R, (s,t)) > n}
returns the set of elements t € S that participate in R with some element s with
a degree, greater or equal or greater than a given degree n.

Lemma 1. An fip-SHIN knowledge base X is satisfiable iff there exists a
fuzzy tableau for X.

For a detailed proof of the above lemma as well as the intuition behind the
properties of Definition Bl the reader is referred to [6] and [12].

The above lemma establishes a connection between the satisfiability of a
knowledge base (existence of a model) and the existence of a fuzzy tableaux
for Y. Thus, it suggests that in order to decide the key inference problems of
fxp-SHIN we have to develop an algorithm that given an fxp-SHZIN KB ¥
it constructs a fuzzy tableau for X.

3.1 The Tableaux Algorithm

In order to decide knowledge base satisfiability a procedure that constructs a
fuzzy tableau for an fx p-SHIN knowledge base has to be determined. In the
current section we will provide the technical details for such an algorithm.

Definition 5. A completion-forest F for an fip-SHIN knowledge base is a
collection of trees whose distinguished roots are arbitrarily connected by edges.

Fach node x is labelled with a set L(x) = {(C,>,n)}, where C € cl(A) and
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n € [+e,1+ €]. Each edge (x,y) is labelled with a set L({x,y)) = {(R,>,n)},
where S := R | —R, and R € R4 is a (possibly inverse) role occurring in A.

If nodes x and y are connected by an edge (x,y) with (P,>,n) € L({z,y)), and
P ER, theny is called an R>y-successor of x and x is called an R>,-predecessor
of y. If y is an R>p-successor or an Inv(R)>,,-predecessor of x, then y is called
an R>p-neighbour of x. Let y be an Rsp-neighbour of x. Then, the edge {(x,y)
is conjugated with triples (—R,>,m) if n +m > 1. Similarly, we can extend
it to the case of R>y-neighbours. As usual, ancestor is the transitive closure of
predecessor.

For two roles P, R, a node x in F, an inequality > and a membership degree
n € [0,1] we define: RE(x,>,n) = {y | y is an R>n/-neighbour of =, and (x,y)
is conjugated with (~R,>,n)}.

A node x is blocked iff it is not a root node and it is either directly or indirectly
blocked. A mode x is directly blocked iff none of its ancestors is blocked, and it
has ancestors x', y and y' such that:

y 1S not a root node,

x 18 a successor of ¥’ and y a successor of y’,

L(z) = L(y) and L(z') = L(Y') and,

L((z', ) = LY )

In this case we say that y blocks x. A node y is indirectly blocked iff one of its

ancestors is blocked, or it is a successor of a node x and L({(z,y)) = 0.
For a node x, L(x) is said to contain a clash if it contains one of the following:

o v o~

— two conjugated pairs of triples,

— one of (L,>,n), withn >0 or (C,>,14+¢), or

— some triple (< pR,>,n) and x has p+1 R>,, -neighbours yo, ..., Yp, (T, y:)
is conjugated with (~R,>,n) and y; # y;, ni,n € [0,1], for all0 <i<j<p

Moreover, for an edge (z,y), L({z,y)) is said to contain a clash if (i) it contains
two conjugated triples, or (i) it contains the triple (R, >, 1+¢€), or (iii) L({x, y))U
{{Inv(R),>,n) | (R,>,n) € L({y,x))}, where z,y are root nodes, contains two
congugated triples.

For an fxp-SHIN knowledge base, the algorithm initialises a forest F to
contain

i. a Toot node x,,, for each individual a; € I 4 occurring in the ABox A, labelled

with L(x4,) such that: L(zq,) = {(C,>,n) | (a; : C) > n € A},

i. an edge (Tq,,Ta,), for each assertion ((a;,aj) : R) > n € A, labelled with
L((xa,,Ta,;)) such that: L((Ta,,2q,)) = {(R,>,n) | (R,>,n) € A},

iii. the relation # as x4, # Ta; if a; # aj € A and the relation = to be empty.

Finally, the algorithm expands R by adding role inclusion azioms Inv(P) C
Inv(R), for all P T R € R and by adding Trans(Inv(R)) for all Trans(R) € R.
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Table 2. Expansion rules for fxp-SHIN

Rule

Description

=

if 1. (C1 M C2,>,n) € L(x), x is not indirectly blocked, and
2. {(Clv >7n>7 <027 >, n)} g ‘C(CC)

then L(z) — L(z) U {(C1,>,n), (Ca,>,n)}

if 1. (C1 U C2,>,n) € L(z), x is not indirectly blocked, and
2. {{C1,2,n),(Co,>,m)} N L(z) =0
then L(z) — L(z) U{C} for some C € {{C1,>,n),(Cz,>,n)}

if 1. (3R.C, >,n) € L(x), x is not blocked, and
2. = has some R>n-neighbour y with (C,>,n) € L(y)
then create a new node y with L({z,vy)) = {(R,>,n)}, L(y) = {(C,>,n)}

if 1. (VR.C,>,n) € L(z), x is not indirectly blocked,
2. z has an R>/,s-neighbour y with (C,>,n) ¢ L(y) and
3. (x,y) conjugates with (—=R,> n)

then £(y) — £(y) U {(C, >,m)}

V4

if 1. (VS.C,>,n) € L(z), = is not indirectly blocked,
2. there exists some role R, with Trans(R) and R E S,
3. z has an R>/,s-neighbour y with (VR.C, >,n) ¢ L(y), and
4. (z,y) conjugates with (—R, > n)

then L(y) — L(y) U{(VR.C,>,n)}

Y

if 1. (> pR,>,n) € L(z), x is not blocked,
2. there are no p R> ,-neighbours yi,...,y, of =
withy; #y; for 1 <i<j<p
then create p new nodes y1, ..., yp, with £L((z,y:)) = {(R,>,n)} and
yiAy;for1<i<j<p

IN

if 1. (< pR,>,n) € L(z), z is not indirectly blocked,
2. 4RE (x,>,n) > p, there are two of them y, z, with no y # z and
3. y is neither a root node nor an ancestor of z
then 1. £(z) — L(z) U L(y) and
2. if z is an ancestor of x
then £((z,2)) —» £((z3)) UInv(L((x,9)))
else L({(z,2)) — L((z,2)) UL((z,y))
3. L({z,y)) — 0 and set u # z for all u with u # y

IN
Y

if 1. (< pR, >,n) € L(x),

iR}

2. 4RE (z,>,n) > p, there are two of them y, z, both root nodes, with no y # z and

then 1. £(z) — L(z) U L(y) and
2. For all edges (y, w):
i. if the edge (z,w) does not exist, create it with £({z,w)) =0
i £((z,w)) — £((z,w)) U L((y, w))
3. For all edges (w, y):
i. if the edge (w, z) does not exist, create it with £L({(w, z)) =0
it £((w, 2)) — £((w,2)) U L((w, 1))
4. Set L(y) = 0 and remove all edges to/from y
5. Set u # z for all u with u # y and set y = z

-

if 1. C E D € 7, x is not indirectly blocked, and
2. {(—=C,>,1—n+e),(D,>n)}NL(x)=0 forn e N*
then L(z) — L(z) U{E} for some E € {(-C,<,1—n+¢),(D,>,n)}
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F is then expanded by repeatedly applying the completion rules from Table [
The completion-forest is complete when, for some node x, L(x) contains a clash,
or none of the completion rules is applicable. The algorithm stops when a clash
occurs; it answers ‘X is satisfiable’ iff the completion rules can be applied in
such a way that they yield a complete and clash-free completion-forest, and ‘X
s unsatisfiable’ otherwise.

Lemma 2. Let X be an fip-SHIN knowledge base. Then

1. when started for X the tableaux algorithm terminates
2. X has a fuzzy tableau if and only if the expansion rules can be applied to X
such that they yield a complete and clash-free completion forest.

Finally, we conclude this section with an illustrative example that shows how
the tableaux algorithm works.

Ezample 1. Consider the knowledge base X = (7, R, .A) where:

7T = {Arm C 3isPartOf.Body, Body C JisPartOf.Human}
R = {Trans(isPartOf)}

A = {((o1, 02) : isPartOf) > 0.8, ((02,03) : isPartOf) > 0.9,
(02 : Body) > 0.85, (01 : Arm) > 0.75}

Now we want to use our reasoning algorithm to see if

X |= (o3 : JInv(isPartOf).Body M Inv(isPartOf).Arm) < 0.75.

First we transform this negative assertion into its equivalent PINF form and
then into its NNF form having finally the assertion (og : VInv(isPartOf).—Body L
Vinv(isPartOf).—Arm) > 0.25. Subsequently, entailment checking is reduced to
consistency of A" = AU {(o3 : VInv(isPartOf).-Body U VInv(isPartOf).—=Arm) >
0.25}, w.rt. R and 7. According to Definition [ the algorithm initializes a
completion-forest to contain the following triples:

(1) (isPartOf,>,0.8) € L((zo,,T0,))

(2) (isPartOf,>,0.9) € L({(z0,, o))

(3) (Body, >,0.85) € L(zo,)

(4) (Arm,>,0.75) € L(zo,)

(5) (VisPartOf ~.—Body U VisPartOf ~.—Arm, >, 0.25) € L(zo,)

Furthermore, the algorithm expands R by adding the axiom Trans(isPartOf ™).
Subsequently, by applying expansion rules from Table [2] we have the following
steps:

(6) (VisPartOf ~.—Body, >,0.25) € L(x0,)|(VisPartOf ~.=Arm, >, 0.25)eL(xo,) U

Hence at this point we have two possible completion forests. For the first one we
have:
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(61) (VisPartOf~.—Body, >,0.25) € L(zo,)
(71) (—-Body, >,0.25) € L(z0,) V:(61),(2)
(81) clash (71) and (3)

while for the second possible completion-forest we have:

(62) (VisPartOf~.—Arm, >,0.25) € L(z0,)

(72) (=Arm,>,0.25) € L(zo,) v (62),(2)
(82) (VisPartOf ~.Arm, <,0.75) € L(x0,) V4 :(62),(2)
(92) (=Arm,>,0.25) € L(zo,) v (82), (1)

(102) clash (92) and (4)

Thus, since all possible expansions result to a clash, A’ is inconsistent and the
knowledge base entails the fuzzy assertion.

4 FiRE: A Prototype fxp-SHIN Reasoning System

FiRE is a JAVA implementation of a fuzzy DL reasoning engine for vague knowl-
edge. Currently it implements the tableaux reasoning algorithm for fx p-SHIN
we presented in the previous section. Apart from the fx p-SHZN reasoner, FiRE
is also able to serialize a fuzzy KB into RDF triples and store it in the Sesame
RDF triple store [14]. Then it is able to query Sesame using very expressive fuzzy
conjunctive query languages [I1]. In this section the graphical user interface, the
syntax and the inference services of FiRE are briefly introduced.

4.1 FiRE Interface

FiRE can be found at http://www.image.ece.ntua.gr/~nsimou/FiRE
together with installation instructions and examples. Figure [I] depicts the main
GUI of FiRE. Its user interface consists of the editor panel, the inference ser-
vices panel and the output panel. The user can create or edit an existing fuzzy
knowledge base using the editor panel. The inference services panel allows the
user to make different kinds of queries to the knowledge base (entailment, sub-
sumption and glb) and also to query a Sesame repository using fuzzy conjunctive
queries [I1]. Finally, the output panel consists of four different tabs, each one dis-
playing information depending on the user operation, like a trace of the tableaux
expansion, possible syntax errors of the KB, classification of the KB (computing
the subsumption hierarchy), and more.

4.2 FiRE Syntax

The current version of FiRE is using the Knowledge Representation System
Specification (KRSS) proposaﬁ. Since as we show in the previous sections we

3http://dl.kr.org/krss—spec.ps
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Fig. 1. The FiRE user interface: the editor panel (upper left), the inference services
panel (upper right) and the output panel (bottom)

impose no syntactic changes to concept and role axioms, a user is capable of
specifying concept and roles axioms using the standard KRSS syntax. So for
example, one can define the concept MiddleAged with the following axiom:

(complete MiddleAged (or Forties Fifties))

using the keywords complete for specifying equivalence (=) and or for spec-
ifying disjunction (U). Similarly we can specify subsumption axioms using the
keyword implies or role axioms using the keywords transitive, parent and in-
verse for transitive role axioms, role inclusion axioms or specifying the inverse
of a role, respectively.

On the other hand individual axioms (assertion) of KRSS need to be extended
in order to capture confidence degrees. More precisely, fuzzy concept and role
assertions are specified by using the following patterns:

(instance ind Concept ineqType n)
(related indl ind2 Role ineqType n)

where ineqType is one of “>=" “>7 “<=" <’ “=" and n € (0,1] is a
degree. Thus, in the first syntax we use the keyword instance to declare a fuzzy
assertion between an individual and a concept with some inequality type and
degree n; similarly with role assertions and keyword related.
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Ezample 2. The syntax of the assertions alice : Female, (paul : (Tall M Thin) >
0.8) and ((frank,paul) : has — friend) > 0.7 are shown below in FiRE syntax.

(instance alice Female)
(instance paul (and Tall Thin) > 0.8)
(related frank paul has-friend >= 0.7)

4.3 Inference Services

FiRE offers all the fuzzy DL inference services we introduced in Section 2] plus
a global glb service and answering conjunctive queries over RDF repositories,
described below. More precisely, it allows to check ABox consistency. If the
ABox is consistent w.r.t. to a TBox and an RBox, FiRE provides the user with
a sample model of the knowledge base in the Model tab of the output panel. If
the ABox is not consistent then a “not satisfiable” message is reported in
the tableaux tab.

Then, FiRE offers a number of specialized tabs in the inference services panel
that implement many services. More precisely, it offers an Entailment inference
tab that allows users to ask for the entailment of fuzzy assertions. The syntax
for such queries is the same as the syntax of specifying concept assertions. For
example, in order to check whether X = (a : C) > n the user should enter
the statement instance a C >= n in the entailment tab. On the other hand
subsumption queries are specified in the Subsumption inference tab. Their syntax
is of the following form (conceptl) (concept2) where conceptl and concept2
are fx p-SHIN -concepts.

Subsequently, FiRE offers for computing the glb of an individual to a concept
w.r.t. a knowledge base Y. Glb queries are evaluated by FiRE performing entail-
ment queries for all the degrees contained in the ABox, using the binary search
algorithm in order to reduce the entailment tests. The syntax of glb queries is of
the form individual (concept) where concept can be an fx p-SHZN -concept.
Besides glb queries, FiRE offers for computing the global glb of a knowledge base.
More precisely, it computes the glb of all the individuals in the ABox with all
the defined concepts of the TBox. Roughly speaking, this process materializes
(almost) all the relevant implied knowledge that is entailed by the knowledge
base, i.e. the one that involves the defined concepts.

Finally, besides the standard inference services of fuzzy DLs, FiRE also of-
fers the Queries inference tab, which can be used in order to issue expressive
fuzzy conjunctive queries over a Sesame repository. More precisely, the user
can issue conjunctive threshold queries (CTQs) or generalized fuzzy conjunc-
tive queries (GFCQs), like fuzzy threshold queries, fuzzy aggregation queries and
fuzzy weighted t-norm queries, as these have been defined and implemented for
fuzzy-DL-Lite in [II]. An example GFCQ is the following;:

x <- Goodlooking(x):0.6 ~ has-hairLength(x,y):1 ~ Long(y):0.8

asking for all x that are good looking and have long hair. We see that in such
queries the user is capable of also specifying weights in query atoms.
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(0)

Fig. 2. Input image (left) and its segmentation (right)

5 Two Usage Scenarios

In the current Section we will present two application scenarios where we have
tested FiRE and its potentials.

5.1 Multimedia Analysis and Scene Interpretation

One of the main research problems in multimedia analysis is how one could
extract and represent all the underlying information and knowledge that exist
within an image or a video. For example, an image could depict an event, a
landscape, people, etc. that need to be represented in order for end-users to be
able to query about them. Manual annotation is obviously very difficult and ex-
pensive hence (semi)automatic ways are explored. First, we apply image analysis
algorithms, which are based on color, texture and shape criteria to group pixels
and create segments which (possibly) depict an object. Subsequently, we apply
a recognition system which ideally would be able to assign a semantic label to
each region. Generally, this task is very difficult since moving from low-level fea-
tures to high-level semantic descriptions, like complex objects is far from trivial.
For those reasons proposals for knowledge-based multimedia analysis have been
proposed [I5L[16]. Using DLs one can provide definitions of high-level concepts
and events that might exist in an image or video in order to assist the process
of recognition. For example, we could have the following DL axioms:

Leaves = GreenColored
Tree = BrownColored M JisConnected.Leaves
MuddyRoad = BrownColored N CoarseTextured

Image analysis is generally a process that involves a huge amount of uncertain
and vague knowledge, hence we would prefer to use extended frameworks like
fuzzy DLs as the underlying logical framework. Consider for example Figure[2fa)
which shows a sample input image, while Figure[2(b) shows its segmentation. We
see that the algorithm has identified several regions in the image for which we
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Table 3. Semantic labelling

|Region||[Extracted Concept|Degree|Inferred Concept|Degree]

regiony GreenColored 0.80 Leaves 0.80

regions || LightGreenColored 0.78 Grass 0.78

regions || LightGreenColored 0.71 Grass 0.71
. BrownColored 0.69

regona CoarseTextured 0.80 MuddyRoad 0.69
. CoarseTextured 0.30

reglons LightBrownColored 0.85 ClayRoad 0-30
. BrownColored 0.67

regions CoarseTextured 0.80 MuddyRoad 0.67
. LightGrayColored 0.72

regrong SmoothTextured 0.70 TarRoad 0.70

can extract their MPEG-7 visual descriptorsﬂ These are numerical values which
provide information about the texture, shape and color of a region. Obviously,
these values are very low-level and provide no semantic information. Neverthe-
less, one could use them in order to move from low-level descriptions to more
high-level ones. For example, if reg;’s green component in the RGB color model
was equal to 243, we can be based on a mapping (fuzzy partition) function [17]
and deduce that reg; is GreenColored to a degree at least 0.8. On the other hand
another region with a green component of 200 could be GreenColored to a degree
0.77. Similarly, we can extract additional fuzzy assertions using other MPEG-7
descriptors, like texture or shape. For example, in the leftmost part of Table 3]
we see some fuzzy assertions extracted for a specific region and a concept, using
MPEG-7 descriptors. Subsequently, we can use FiRE’s global glb service in or-
der to extract all the implied knowledge for the specific image [I8]. The inferred
assertions are depicted in the rightmost part of Table Bl We see that fuzzy DL
reasoning can be used to provide more sophisticated labelling, but please note
that these are still some very preliminary results and the current example is by
no means complete.

5.2 Knowledge Based Information Retrieval and Recommendation

FiRE has been applied in an industrial strength Use Case scenario from a Greek
National project. In this Use Case scenario we consider a production company,
which has a knowledge base that consists of videos and images about persons
(which usually are actors or models). This company wants to publish its con-
tent on the (Semantic) Web so as other advertisement or production compa-
nies can use this knowledge base to look for persons to be employed for ad-
vertisements (casting). Each entry in the knowledge base contains a photo or
a video, and some specific information like body and face characteristics, age
or profession-like characteristic. A user can query the knowledge base providing

4hhttp://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
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information like the name, the height, the type of the hair, the body, age range,
and more.

Usually casting people want to query such a knowledge base using some high
level concepts like “Thirties”, “MiddleAged”, “Teen”, “Kid”, “Slim”, “Tall”,
“StudentLooking”, “TeacherLooking” and more, which can be used in commer-
cials of respective context. Obviously, most of these concepts are vague (fuzzy)
as for example the concepts of middle aged or tall persons cannot be precisely
defined. In order to tackle the above Use Case scenario we have followed the
next steps [18]:

1. Database (DB) fuzzification: First, we fuzzify fields of the database, in order
to provide symbolic information from the existing numerical one. For exam-
ple, the “age” field provides very low level information which can be used in
order to define (fuzzy) concepts, like “Teen”, “Twenties”, “Thirties”, “Old”
etc. These concepts are defined as functions (fuzzy sets) that map the age
value of a person a to the membership degree of a to them. Thus, we can
crate fuzzy assertions. For example, the DB has that john180 is 34 years
old, thus the function of “Thirties” tells us that john180 : Thirties > 0.6.

2. Ontology construction: Using the above concepts, together with additional
ones of our domain, we can construct an ontology for human actors (models)
focusing on appearance, that is important for casting tasks. For example, we
can define the concept of student looking, tall child and scientist as:

StudentLooking C Kid LI Teen
TallChild Child 11 (Short LI Normal_Height)
Scientist Male M Classic 1 (50s LI 60s)r1
Serious I Jhas-eyeCondition.Glasses

C
C

using already defined concepts. Please note that if we hadn’t created the
fuzzy concepts Kid, Teen, Child, Short and Normal_Height in step 1, which ini-
tially did not exist in the database, we would not be able to define the
above concepts. Similarly, we can define more concepts, like GrandParent,
FishermanLooking and more.

3. Ezxtracting implied knowledge: The ontology together with the fuzzy asser-
tions that are produced by step 1, due to fuzzification, as well as the crisp
assertions that exist in the database (e.g. john180 is a Male, Latin, etc.) is
loaded into FiRE. Then we compute the global glb of the knowledge base
in order to extract implied knowledge. Subsequently, knowledge is serialized
and stored into Sesame.

4. Querying the KB: Finally, end-users can issue very expressive fuzzy con-
junctive queries over Sesame through the FiRE platform in order to retrieve
actors. For example, for a TV commercial for hair dyes one might want to
retrieve all female models, that are in their twenties, have long, good qual-
ity hair and nice eyes, or for an MP3 player commercial one might want a
student looking model.
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6 Discussion and Open Problems

It has been widely approved that fuzzy DLs could play an important role in
the Semantic Web by serving as a mathematical framework for knowledge rep-
resentation and reasoning in applications that face vague knowledge, like image
analysis and understanding [19], ontology searching [I1], semantic portals [20]
multimedia retrieval [21] and negotiation [22]. But still the full potential of fuzzy
DLs has not been exhaustively explored, since they could be used in a wealth
of tasks and applications in order to enhance automation and handle degrees of
confidence, membership and truth that emerge by matching, retrieval, recom-
mendation, negotiation or recognition systems.

After the first ideas about extending classical two-valued Description Logics
with fuzzy Set Theory, by Yen in [23], Tresp and Molitor [24] and Straccia [5],
there has been an increasing research effort on fuzzy Description Logics. The last
couple of years research is focused on providing reasoning support for very ex-
pressive fuzzy DLs, in order to support reasoning in a full fuzzy extension of the
OWL web ontology language. Towards this direction, recently Stoilos et. al. [6]
presented a reasoning algorithm for the fuzzy DLs fxp-SZ and fxp-SHIN,
while also in another work Stoilos et. al. [I2] presented an algorithm for rea-
soning with General Concept Inclusion axioms, which was an open problem in
fuzzy DLs. Interestingly, these results gave rise to the FiRE fuzzy DL systems,
presented in section Ml (also a preliminary version was reported in [8]). Further-
more, the study of reasoning algorithms for fuzzy DLs that use other norm
operation is also beginning to flourish, although still most results are focused on
rather basic DLs like ALC. More precisely, Straccia [25] presented an algorithm
for f-ALC(D), and recently Bobillo and Straccia [26] a reasoning algorithm
for fp-ALCS (D) (ALC with functional role axioms). Also these algorithms are
supported by the fuzzyDL system [27].

On the other hand, a recent trend in DL research is mainly focused in studying
efficient and scalable (tractable) Description Logics, compared to the NEXPTIME-
complete OWL DL. Following this trend Straccia proposed a fuzzy extension of
DL-Lite [28]. DL-Lite [29] is an interesting lightweight ontology language, since it
can answer conjunctive queries in a very efficient way, by using existing database
technologies. Later Pan et al. [I1] proposed some very expressive extensions
to the conjunctive queries of f-DL-Lite. The algorithms for these queries were
implemented in the system ONTOSEARCHZ and evaluation showed that these
can still be answered in a very efficient way. Other interesting tractable DLs
are those of the ££ family, like ££4 [30], which provide efficient algorithms for
classifying big terminologies. Recently, Stoilos et. al. [31] presented an algorithm
for fg-EL+ which classifies terminologies that also use fuzzy subsumption [25].
An overview of the field of fuzzy Description Logics can also be found in [32].

As we see from the above, regarding the theoretical side, fuzzy DLs have
been studied relatively enough and their logical and mathematical properties are
beginning to get quite understood. Another important side is the development

5http://dipper.csd.abdn.ac.uk/OntoSearch/


http://dipper.csd.abdn.ac.uk/OntoSearch/

Reasoning with the Fuzzy DL {~-SHZN: Theory, Practice and Applications 279

of tools and systems that would provide a flexible and efficient way to build and
manage fuzzy knowledge. Although this aspect has not been explored much yet,
there are again some first works towards this direction. We have reported about
one such work in the current paper, and more precisely the FiRE system, which
consists of (i) a beta fuzzy DL reasoner for fxp-SHZN, (ii) a GUI for editing
and creating fuzzy KBs using the KRSS format and (iii) a module that provides
persistent storage of large amounts of fuzzy knowledge bases in the RDF triple
store Sesame and implements very expressive fuzzy conjunctive queries [I1] over
it, by extending Sesame’s SeRQL query.

Still there is plenty of way to go until we can provide adequate support for
fuzzy knowledge engineering and management. First, no support for parsing
RDF/XML files that contain fuzzy assertions (as these have been described
in [7]) exists. Moreover, there is currently no evidence about the scalability of
the existing expressive fuzzy DL reasoning systems. In other words optimization
techniques need to be investigated; some preliminary investigations have been
carried out in [33] but still no evaluation or fuzzy DL system has been reported.
Most important of all, besides the very basic manual support provided by current
systems, there are currently no available graphical tools for assisting end users
to (semi) automatically create fuzzy knowledge bases from raw numerical data.
All these issues are very important in order for fuzzy DL technologies to be more
widely adoptable in the Semantic Web.

Acknowledgements

The work of Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras and Nick Simou
was partially supported by EU projects X-Media (FP6-26978) and BOEMIE
(FP6-027538). We would also like to thank Thanos Athanasiadis for providing
the image and segmentation figures.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

2. Horrocks, 1., Patel-Schneider, P.F., van Harmelen, F.: From and RDF to OWL:
The making of a web ontology language. Journal of Web Semantics 1 (2003)

3. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic
Handbook: Theory, implementation and applications. Cambridge Uni. Press, Cam-
bridge (2002)

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

5. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research 14, 137-166 (2001)

6. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Reasoning with very
expressive fuzzy description logics. Journal of Artificial Intelligence Research 30,
273-320 (2007)

7. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: Fuzzy OWL: Uncer-
tainty and the semantic web. In: Proc. of the International Workshop on OWL:
Experiences and Directions (2005)



280

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

G. Stoilos et al.

Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web.
IEEE Intelligent Systems 21, 84-87 (2006)

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: A fuzzy descrip-
tion logic for multimedia knowledge representation. In: Proc. of the International
Workshop on Multimedia and the Semantic Web (2005)

Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J., Horrocks, I.: The fuzzy description
logic . In: Proc. of the International Workshop on Uncertainty Reasoning for the
Semantic Web, pp. 67-76 (2005)

Pan, J., Stamou, G., Stoilos, G., Thomas, E.: Scalable querying services over
fuzzy ontologies. In: Proceedings of the International World Wide Web Confer-
ence (WWW 2008), Beijing (2008)

Stoilos, G., Straccia, U., Stamou, G., Pan, J.: General concept inclusions in fuzzy
description logics. In: Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI 2006), pp. 457-461 (2006)

Li, Y., Xu, B., Lu, J., Kang, D.: Discrete tableau algorithms for FSHZ. In: Pro-
ceedings of the International Workshop on Description Logics (DL 2006), Lake
District, UK (2006)

Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Proceedings of the First Internation
Semantic Web Conference, pp. 54-68 (2002)

Sciascio, E.D., Donini, F.: Description logics for image recognition: a preliminary
proposal. In: International Workshop on Description Logics, DL 1999 (1999)
Neumann, B., Méller, R.: On scene interpretation with description logics. In: Chris-
tensen, H.I., Nagel, H.-H. (eds.) Cognitive Vision Systems. LNCS, vol. 3948, pp.
247-278. Springer, Heidelberg (2006)

Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall, Englewood Cliffs (1995)

Simou, N., Stoilos, G., Pardalis, K., Tzouvaras, V., Stamou, G., Kollias, S.: Storing
and querying fuzzy knowledge in the semantic web, Technical Report (2008)
Simou, N., Athanasiadis, T., Tzouvaras, V., Kollias, S.: Multimedia reasoning with
. In: 2nd International Workshop on Semantic Media Adaptation and Personaliza-
tion, London, December 17-18 (2007)

Holi, M., Hyvonen, E.: Fuzzy view-based semantic search. In: Asian Semantic Web
Conference (2006)

Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information re-
trieval. Journal of the ACM 48, 909-970 (2001)

Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.: Vague knowledge
bases for matchmaking in p2p e-marketplaces. In: Franconi, E., Kifer, M., May, W.
(eds.) ESWC 2007. LNCS, vol. 4519, pp. 414-428. Springer, Heidelberg (2007)
Yen, J.: Generalising term subsumption languages to fuzzy logic. In: Proc of the
12th Int. Joint Conf on Artificial Intelligence (IJCAI 1991), pp. 472477 (1991)
Tresp, C., Molitor, R.: A description logic for vague knowledge. In: Proc of the
13th European Conf. on Artificial Intelligence, ECAI 1998 (1998)

Straccia, U.: Description logics with fuzzy concrete domains. In: 21st Conf. on
Uncertainty in Artificial Intelligence (UAI 2005), Edinburgh (2005)

Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: Pro-
ceedings of the IEEE International Conference on Fuzzy Systems (Fuzz-IEEE
2007), London (2007)

Straccia, U.: FuzzyDl: An expressive fuzzy description logic reasoner. In: Proceed-
ings of the International Conference on Fuzzy Systems, Fuzz-IEEE 2008 (2008)



28

29.

30.

31.

32.

33.

Reasoning with the Fuzzy DL {~-SHZN: Theory, Practice and Applications 281

. Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the

11th International Conference on Information Processing and Management of Un-
certainty in Knowledge-Based Systems (IPMU 2006), pp. 2238-2245 (2006)
Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Dl-lite:
Tractable description logics for ontologies. In: Proceedings of the 20th National
Conference on Artificial Intelligence, AAAI 2005 (2005)

Baader, F., Lutz, C., Suntisrivaraporn, B.: Is tractable reasoning in extensions
of the description logic £L useful in practice? Journal of Logic, Language and
Information, Special Issue on Method for Modality (to appear, 2008)

Stoilos, G., Stamou, G., Pan, J.: Efficient classification of fuzzy subsumption with
fuzzy-EL+. In: Proceedings of the 21st International Workshop on Description
Logics (DL 2008), Dresden (2008)

Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics (2008)

Haarslev, V., Pai, H.I., Shiri, N.: Optimizing tableau reasoning in ALC extended
with uncertainty. In: Proceedings of the 20th International Workshop on Descrip-
tion Logics (DL 2007), pp. 307-314 (2007)



	Introduction
	Syntax and Semantics of f-SHIN
	Reasoning with fKD-SHIN
	The Tableaux Algorithm

	FiRE: A Prototype fKD-SHIN Reasoning System
	FiRE Interface
	FiRE Syntax
	Inference Services

	Two Usage Scenarios
	Multimedia Analysis and Scene Interpretation
	Knowledge Based Information Retrieval and Recommendation

	Discussion and Open Problems


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


