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Abstract. Fuzzy Description Logics (f-DLs) are extensions of classic
DLs that are capable of representing and reasoning about imprecise and
vague knowledge. Though reasoning algorithms for very expressive fuzzy
DLs have been explored, an open issue in the fuzzy DL community is the
study of tractable systems. In this paper we introduce the fuzzy extension
of EL++, we provide its syntax and semantics together with a reasoning
algorithm for the fuzzy concept subsumption problem, in which other
problems related to fuzzy DLs can be reduced.

1 Introduction

Fuzzy Description Logics (f-DLs) [5] are extensions of classic DLs capable of
representing and reasoning about imprecise and vague knowledge. Following the
progress in the classic DL community, reasoning algorithms for tractable fuzzy
DLs have been explored. In [7] Straccia et al. introduced a fuzzy extension of
the DL-Lite language while Pan et al. [3] presented the very �rst e�cient and
scalable system for f-DL-Lite which is able to answer expressive fuzzy conjunc-
tive queries over millions of data. The current bibliography includes two fuzzy
extensions of EL. First Vojtá² presented a fuzzy extension of EL [8] which dif-
fers from most fuzzy DL languages because it interprets conjunction as a fuzzy
aggregation rather than fuzzy intersection while in [4] Stoilos et al. examined a
fuzzy extension of the tractable algorithm EL+.

In this paper we introduce the fuzzy extension of EL++. Similar to the fuzzy
EL+ language, fuzzy EL++ allows for concept axioms with degrees of truth i.e.
fuzzy subsumption axioms [6]. Furthermore it allows for nominals and the bot-
tom concept increasing in that way its expressiveness compared to its previous
extensions.

2 The Fuzzy EL++ Language

The structural elements of the fuzzy EL++ language are concept names NC ,
role names NR and individuals NI . As usual individuals represent the objects of
our universe, concept names represent fuzzy sets of individuals and role names
represent binary fuzzy relationships between individuals. The semantics of fuzzy
EL++ are given via a fuzzy interpretation I =

(
∆I , ·I

)
that is consisted of a

domain ∆I which is a non empty set of individuals and a fuzzy interpretation



function ·I which maps each a ∈ NI to an element aI ∈ ∆I , each A ∈ NC

to a membership function AI : ∆I → [0, 1] and each r ∈ NR to a membership
function rI : ∆I ×∆I → [0, 1].

Fuzzy EL++ allows us to inductively de�ne complex concept descriptions
using the constructors shown in the table below, along with their semantics.
Our language, similar to [4], allows for fuzzy general concept inclusions (fuzzy
GCIs, �rst introduced in [6]) of the form C vd D and role inclusion axioms
(RIs) of the form r1 ◦ . . .◦rk v s. The semantics of fuzzy GCIs and RIs are given
in the same table where the operator ◦t corresponds to the sup-t composition
described in [4]. The set of fuzzy GCIs and RIs is called a constraint box (CBox)
C (similar to [1]). An interpretation I is a model of a CBox C i�, for each GCI
and RI in C, the conditions described in the middle part of table are satis�ed.

The fuzzy EL++ language also allows for an assertional box (ABox) A i.e. a
�nite set of concept and role assertions that are used to describe a snapshot of
our world. The syntax along with the semantics, of concept and role assertions,
is described in the table below. An interpretation I is a model of an ABox A i�,
each concept and role assertion in A is satis�ed.

Finally an interpretation I is a model of a fuzzy knowledge base K = {A, C}
consisting of an ABox A and a CBox C i� it is, at the same time, a model of A
and C.

Name Syntax Semantics

top > >I(x) = 1

bottom ⊥ ⊥I(x) = 0

nominal {a} {a}I (x) =

{
1 when x = aI

0 otherwise

conjunction C uD (C uD)I (x) = min
(
CI(x), DI(x)

)
existential restriction ∃r.C (∃r.C)I (x) = supy∈∆I

(
min

(
rI (x, y) , CI (y)

))
GCI C vd D min

(
CI (x) , d

)
≤ DI (x)

RI r1 ◦ . . . ◦ rk v s
[
rI1 ◦t . . . ◦t rIk

]
(x, y) ≤ sI (x, y)

concept assertion C(a) ≥ d CI (aI) ≥ d

role assertion r (a, b) ≥ d rI
(
aI , bI

)
≥ d

3 Deciding Subsumption in fuzzy EL++

The Fuzzy EL++ is an algorithm for deciding fuzzy concept subsumption. Fol-
lowing to [1] other problems can be reduced to the fuzzy concept subsumption
problem. The proposed algorithm, similar to that presented in [1], demands for
a normalized form of CBoxes. The normalization process operates similarly to
that described in [1], having as main di�erence the use of fuzzy general concept
inclusions instead of concept inclusions.

In order to decide for fuzzy subsumption between two concept names C
and D w.r.t. a normalized CBox C i.e. C vd

C D, it is su�cient to decide for
fuzzy subsumption between a nominal {o} and a concept B w.r.t. a CBox C′ =



C ∪{{o} v C,D v B}, where o is a new individual name and B is a new concept
name not appearing in BCC .

Let RC denote the set of all role names in C, where C is the normal form of the
CBox to be classi�ed. Our algorithm similar to [1,4] is based on two mappings, a
mapping S from BCC×BCC to [0, 1] and a mapping R from RC×BCC×BCC to
[0, 1] . Intuitively each of these two mappings has the purpose of making implicit
fuzzy subsumption relationships, explicit as follows: S (C,D) = d implies that
C vd

C D and R (r, C,D) = d implies that C vd
C ∃r.D.

In the initialization of S we have that S (C,D) := 1 if D = C or D = >,
otherwise S (C,D) = 0 for each C,D ∈ BCC ∪ {⊥}. In the initialization of
R we have that R (r, C,D) = 0 for each r ∈ RC , C,D ∈ BCC ∪ {⊥}. After
the initialization our algorithm proceeds with the application of the following
completion rules, until no rule can be applied.

CR1 If S (C, C′) = d1, C′ vd2 D ∈ C and S (C, D) < min (d1, d2)
then S (C, D) = min (d1, d2)

CR2 If S (C, C1) = d1, S (C, C2) = d2 , C1 u C2 vd3 D ∈ C,
and S (C, D) < min (d1, d2, d3)
then S (C) := min (d1, d2, d3)

CR3 If S (C, C′) = d1, C′ vd2 ∃r.D ∈ C and R (r, C, D) < min (d1, d2)
then R (r, C, D) := min (d1, d2)

CR4 If R (r, C, D) = d1, S (D, C′) = d2, ∃r.C′ vd3 E ∈ C
and S (C, E) < min (d1, d2, d3)
then S (C, E) = min (d1, d2, d3)

CR5 If R (r, C, D) > 0, S (D,⊥) > 0 and S (C,⊥) = 0,
then S (C,⊥) = 1

CR6 If S (C, {a}) = 1, S (E, {a}) = 1 and C  d E,
then for each D ∈ BCC , if S (C, D) < min (d, S (E, D))
S (C, D) := min (d, S (E, D))

CR7 If R (r, C, D) = d, r v s ∈ C and R (s, C, D) < d
then R (s, C, D) := d

CR8 If R (r1, C, D) = d1, R (r2, D, E) = d2, r1 ◦ r2 v r3 ∈ C
and R (r3, C, E) < min (d1, d2)
then R(r3, C, D) := min (d1, d2)

CR9 If S (C, {a}) > 0 for some nominal {a} and S (C, {a}) < 1
then S (C, {a}) := 1

De�nition 1. The abbreviation  d used in rule CR6 is similar to the abbrevia-
tion adopted in [1]. The relation C  d E between two concept names C,E ∈ BCC
indicates that there exists a set of concept names C1, . . . , Ck+1 ∈ BCC and
role name r1, . . . , rk ∈ RC, such that it holds that min (R (r1, C1, C2) , . . . ,
R (rk, Ck, Ck+1)) = d where Ck+1 = E and either C1 = C or C1 = {a}, where
{a} is a nominal in BCC.

Lemma 1. Let S be the mapping obtained after the exhaustive application of
rules for a normalized CBox C and let {o} be a nominal and B be a concept
name in C. Then {o} vd

C B holds i� S ({o} , B) ≥ d or there is some nominal
{a} ∈ BCC such that S ({a} ,⊥) > 0 .

Theorem 1. The algorithm we have developed for fuzzy subsumption between a
nominal and a concept is sound and complete and operates in polynomial time.



4 Conclusions and Future Work

In this paper we have presented a fuzzy extension of the tractable DL language
EL++, fuzzy-EL++. The main contributions of our algorithm compared to the
one of fuzzy-EL+ is that we introduce nominals and the bottom concept. The
introduction of nominals allows for reasoning w.r.t. some assertional knowledge
in contrast to the fuzzy-EL+ language which only allowed for a CBox. Therefore
the instance problem w.r.t. to some ABox and some CBox can be described
and solved in fuzzy EL++. Additionally the presence of the bottom concept
permits concept satis�ability and ABox consistency reasoning services. Finally
the presence of the bottom concept allows to imply disjointness between concepts
i.e. CuD v ⊥ and along with the existence of nominals allows to express unique
name assumption between two individuals i.e. {a} u {b} v ⊥.

Further extensions of our language would be lead by the extensions of the
corresponding crisp language. We could examine if an extension of our language
with concrete domains is possible and the way in which this would a�ect its com-
plexity. Furthermore we could also examine if our language could be extended,
retaining its tractability, with the existence of domain and range properties re-
strictions similarly to the extension of the crisp algorithm presented in [2].
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