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ABSTRACT
Head pose together with eye gaze are a reliable indication
regarding the estimate of the focus of attention of a per-
son standing in front of a camera, with applications ranging
from driver’s attention estimation to meeting environments.
As gaze indication, eye gaze in non-intrusive or non highly
specialized environments is, most times, difficult to detect
and, when possible, combination with head pose is neces-
sary. Also, in order to successfully track the rotation angles
of the head, a priori knowledge regarding the equipment set-
up parameters is needed, or specialized hardware, that can be
intrusive is required. Here, we propose a novel facial feature
tracker that uses Distance Vector Fields (DVFs) and, com-
bined with a new technique for face tracking, successfully
detects facial feature positions during an image sequence
and estimates head pose parameters. No a priori knowledge
regarding camera or environmental parameters is needed for
our technique.

Author Keywords
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INTRODUCTION
For estimating the visual focus of view, it is necessary, apart
from the eye gaze, to incorporate information coming from
head pose [10]. This means that, in order to know the ex-
act orientation of visual attention, both modalities should be
added. However, there are cases where eye gaze information
is not easy to retrieve, due to limitations coming from nec-
essary equipment or the intrusive nature of the relevant de-
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vices. On the contrary, head pose estimation has been stud-
ied more thoroughly in less intrusive environments, with off
the shelf equipment, like simple web-cameras [12]. Besides,
it has been experimentally shown that head pose alone, in
certain environments, is a very reliable criterion for deter-
mining the directionality of gaze. Typical research is the one
presented in [14], where the authors have conducted experi-
ments in a setting of four people participating in a meeting:
It was proven that head pose directionality alone is strongly
correlated with the total of gaze directionality, and can be
useful at 88.7% of the cases for inferring the focus of atten-
tion of a participant. For the above reasons, in this paper we
are focusing on the issue of automatic Head Pose Estima-
tion in environments where intrusive mechanisms are not a
prerequisite. The described work is aimed at environments
where gaze directionality can be approximated efficiently by
head pose alone.

Recent bibliography consists of a variety of methodologies
regarding the issue of estimating the rotation of a head (yaw,
pitch, roll angles). The various systems that have been pre-
sented are various in terms of algorithms or hardware / equip-
ment employed. In an un-intrusive environment (not neces-
sitating dedicated equipment like helmets, or infrared light
cameras) there might exist restrictions regarding knowledge
of environmental or camera parameters. That is, many meth-
ods require to know, e.g the approximate distance of the user
from the camera, or they need to know the camera intrinsic
parameters. Lacking such knowledge may lead these sys-
tems to erroneous estimation of head pose parameters, when
particular movements are taking place (e.g. when the user
is moving along thez-axis). Here, we will mainly deal with
methods that do not depend on specific set-ups in terms of
hardware, do not rely on any dedicated equipment and are,
as parameter-independent as possible.

A coarse classification of methodologies has proved that no
ideal group of one-camera systems exists: Each class of
methods have their advantages and disadvantages, while there
is a tendency for better results when it comes to hybridic
techniques, where the authors attempt to use the advantages
of one method to alleviate the disadvantages of the other.
Although it is not easy, and sometimes not straightforward
to categorize methods, a coarse classification is the one pre-
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sented below:

Holistic techniques: The face is aligned and compared with
trained models and, using, either regression or classifica-
tion, a final outcome regarding the pose of the test face is
acquired. These methods are usually the most accurate but
the major disadvantage of this group of approaches is the
fact that, usually, the face needs to be exactly aligned with
the models against which it will be compared, and this ne-
cessitates very good detection of the face boundaries. Typi-
cal methods are reported in [15] and [11], where the authors
use neural networks and keyframes belonging to past appear-
ances of the face during the video, respectively.

Local techniques: These approaches depend on accurate fa-
cial feature localization and tracking, as they use geometrical
relations among them to infer head pose. They make use of
the saliency of some facial features, which makes it easy to
follow them. The drawback of these approaches is that they
tend to be quite sensitive to erroneous tracking and it is not
easy to recover when some features become occluded. Typ-
ical work is the one presented in [6], where the authors use
the ration of the inter-ocular distance and the distance of the
mouth from the eyes midpoint to model the face, while [7]
has proposed models relating facial landmarks to the rest of
the face. In [13], the authors, based on expected eye posi-
tions on faces, and SVMs, detect eye features and discrimi-
nate between poses around the horizontal axis.

Facial motion recovery: Facial motion recovery usually cal-
culates motion flow between successive frames and, based
on this, estimates head pose parameters, using, e.g, cylindri-
cal models [3]. This family of methods is usually the most
robust but, most of the times, knowledge of camera intrinsic
parameters or a priori knowledge of the distance between
camera and user is needed.

Non-rigid model fitting: These methods use non-rigid trained
models, which encode information regarding shape and tex-
ture of a face [4] [5], and have drawn much attention in
the recent years. A major factor to be taken into account,
though, is the requirement for good initialization as, such
models, can easily fall into local minima.

Hybrid techniques:Many methods have also been proposed,
as attempts to overcome problems imposed by one technique,
by fusing it with other techniques. Typical example is the
one reported in [16], where the authors fuse AAMs with
cylindrical models, and the work of [11], where a static pose
estimator for the current frame, a differential tracker between
the current frame and the previous one, and a set of keyframes
of similar view to the current frame are used.

For a more extensive and analytical description of the litera-
ture on the Head Pose estimation issue, the reader is referred
to the work of Murphy-Chutorian et al [12].

Here, we propose a method for inferring head pose rotation
parameters (yaw, pitchandroll angles), that does not rely on
dedicated hardware or a priori knowledge of any parameters
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Figure 1. Overview of the method: Face/Facial feature detection and
samples of skin are extracted at start-up. Subsequently, the face area
is tracked and DVF tracking takes place. DVFs positions and face area
are used to infer Head Pose Estimation. If Head Pose Vector is almost
zero, the algorithm can re-initialize.

of the set-up. Instead, we use a monocular system, and do
not exploit any specific a-priory knowledge regarding the en-
vironment or the user. We track facial features using a novel
tracker, that employs Distance Vector Fields (DVFs) [1] and
relate features’ location to face boundaries. The tracker is
compared to the Optical Flow algorithm on raw pixel data,
to show the applicability of the method. First, the face is
detected and a skin area is used as sample for face tracking
in subsequent frames. Using face detection as a preliminary
step, allows the system to be scale-independent, as the faceis
searched for at various scales, while face tracking is adapted
to each user’s skin chrominance. In this way, we avoid using
generic thresholds but personalize skin color segmentation,
in order to improve robustness of our face tracker. Within
the segmented face region, DVFs of certain facial features
are only searched for within the face area and, based on fea-
tures’ location, head pose vector is extracted. An overview
of the method can be seen in Figure 1.

DISTANCE VECTOR FIELDS
Distance Vector Fields [1] are image representations encod-
ing the shape of a deformable area. More specifically, each
image pixel (i, j) is given a vectorv pointing to the clos-
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est edge pixel(k, l), thus, forming the Distance Vector Field
(DVF)(Equations 1,2).

v(i, j) = [k − i, l − j]T , (i, j) ∈ B (1)

(k, l) = arg min
m,n∈E

D((i, j), (m,n)) (2)

whereD is (here) the euclidean distance and E, B are the
sets of edge and image pixels respectively.

With DVFs, every shape can be reconstructed and, further-
more, every pixel in an image can be used to inform regard-
ing the shape of the object it belongs to. Furthermore, us-
ing edge maps to extract DVFs, usual variations in terms
of lighting do not introduce large differences of the appear-
ance of the corresponding DVFs. These ideas led us to using
DVFs for tracking facial feature areas.

FACIAL FEATURE DETECTION
Before Head Pose Estimation, facial features are detected.
As a pre-processing step, the face is initially detected [1].
The method described in [1] for face detection, employs
ellipse fitting for finding the exact boundaries of the face.
For the extraction of prototype Distance Vector Fields cor-
responding to eye and mouth areas, random face images of
good resolution were collected from the web. The eye ar-
eas have been cropped in such a way that the upper edge of
the eyebrows defines the upper boundary of the eye patch
and the lip upper/lower/right and leftmost points define the
boundaries of the mouth patches. The eye centers were aligned
so that they were located at the center of the eye patches. Ex-
ample training images can be seen in fig. 2. To detect facial
features, we used predefined areas of the face and compared
the mean DVF of the prototype eye and mouth patches with
the corresponding DVFs of candidate facial areas. More pre-
cisely, the right eye was first detected on the upper right
part of the face and, based on its position, the left eye was
searched for at an even more restricted area, on the left of
the detected right eye. Subsequently, the mouth is searched
for at a region under the two detected eye centers. In order
to compare features’ DVFs with facial areas’ DVFs, the face
region is brought to certain dimensions, that agree with the
scale at which prototype DVFs were extracted. After detec-
tion, the face and corresponding DVFs are brought back to
the dimensions that agree with the real face region. Further
details of the detection algorithm can be found in [1].

(a) (b)

Figure 2. a) example of eye training image; b) example of mouth train-
ing image;

FACE TRACKING
As head pose estimation will be based on tracking with DVFs
and, in order to eliminate erroneous tracking at the maxi-
mum extent, it is required to specify the boundaries beyond
which tracking will not be permitted. To this aim, the ex-
act contour of the face is searched for at each frame. Face
contour is based on tracking face areas that have skin-similar
color.

As skin color varies among people, after facial feature detec-
tion, a sample areaCskin of face is used for each person; we
used the saturation values of this area, and the saturation val-
ues of face pixelsCfp in subsequent frames are expected to
be within certain limits with regards to the mean saturation
valuesM of Cskin (Equation 3):

Cfp = {x ∈ Ω : ‖sM − sx‖ < T} (3)

whereΩ is the set of all pixels belonging to the frame,x
are candidate facial pixels,sx their corresponding saturation
values andT a threshold. Binary opening is subsequently
applied to remove small areas, falsely attributed to skin re-
gions.

The thresholdT is automatically selected for each user, at
the detection step, according to equations 4-5:

T = arg min
0<T<0.35

(
∑

x∈Ω

δ(kx) − Facesize) (4)

with

kx =

{

1, ‖sM − sx‖ ≤ T
0, ‖sM − sx‖ > T

(5)

with δ being the Kronecker delta function andFacesize the
size of the face as defined by the ellipse containing the face at
the detection step. The above procedure resulted in selecting
a threshold automatically for each user, illumination condi-
tions and face size with regards to the camera, thus, helping
the system to adapt to any conditions in terms of lighting
and user position. According to equations 4 and 5,T is cho-
sen based on the hypothesis below: it was expected that, at
the first frame, the amount of pixels with saturation values
close to the mean ofCskin is close to the amount of pixels
that account for the real face region. The above procedure is
summarized in Figure 3, where the optimum thresholdT to
be used in equation 3 is based on the size of the face at the
face detection step.

To reduce the number of candidate facial pixels, the rules
defined in [9] are used, in order for skin clusters inRGB
colorspace to be built. According to the authors in [9], a map
Csp of candidate skin pixels is built according to a series of
chrominance rules.
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T=0.05 T=0.15 T=0.25 T=0.35

Figure 3. Overview of selection of threshold T for segmenting face regions based on equation 3: Threshold T = 0.15 was decided in this sequence,
as the total number of pixels whose values are close to that of the initially selected skin region is close to the number of pixels belonging to the face
region

Cfp andCsp are combined using the logicalAND oper-
ation, and binary closing (using a10 × 10 structuring ele-
ment, accounting for a 0.13% of the frame size of the im-
ages where we conducted our experiments) is applied. This
removes small holes like the eyes. Finally, the proposed
method uses connected component labelling [8] and chooses
the largest component as the final face region. Addition-
ally, in order to avoid false alarms when estimating position
and size of the face, information from previous frames is
taken into account. More specifically, when a component is
marked as face region but does not overlap with the face at
the previous frame,the second largest component is chosen
and checked, while, if there are overlaps between the current
and the previous detected face regions but they differ sig-
nificantly in shape, the position of the face at the previous
frame is considered and the skin area (used as color predi-
cate) is expanded and a new thresholdT is calculated. The
above, multi-step procedure gave very good results at track-
ing efficiently the face region. An overview of the steps of
face tracking can be viewed in figures 3 and 4.

FACIAL FEATURE TRACKING
As mentioned earlier, head pose angles will be inferred based
on the position of the eye and mouth centers, and their rela-
tive distances from facial boundaries. For this reason, DVFs
will be used to detect facial areas at each frame, by compar-
ing a feature’s DVFfk,i at framek and positioni with the
DVF fk+1,i+x at framek + 1 and candidate areasi + x of
an extended area around its positioni at the previous frame.
Experiments showed that, at this stage, DVFs are more ro-
bust when used for eye tracking, while for mouth tracking,
we used eye positions as initialization and utilized further
features as will be discussed later on in this section.

Eye tracking
The position of the new eye area in framek + 1 is the one
that minimizes theL2 norm, and the motion vectorp for
each eye is the one described in (6):

p = arg min
x

∑

i∈Rk

‖fk,i − fk+1,i+x‖2 (6)

To reinforce correct tracking, after a new eye area is defined
at a frame, its position is updated in order to be centered
around the eye center. For this reason, when a new eye area

(a) (b)

(c) (d)

(e) (f)

Figure 4. a) Original image saturation values; b)thresholded satura-
tion values; c)Face candidate pixels Cf p, extracted after morphological
opening; d) Skin candidate pixels Csp; e) Face candidate pixels after
logical AND between Cfp and Csp; f) Final face mask after morpho-
logical operations
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is defined based on equation 6, the iris center is searched
for based on the derivative images and their projections on
the horizontal and vertical axis, as well as luminance infor-
mation [1]. More precisely, the authors in [1] search for
eye centers in eye areas by using the derivative images of
the eye areas both row-wise and column-wise and use a set
of their maximum projections on the horizontal and verti-
cal axis respectively for an initial estimate of the eye center.
Subsequently, a small window is used to search for the dark-
est region in a neighborhood close to this initial estimate.
Through experiments, it was proven that employing this up-
date step of centering the eye area around the eye center
helps to avoid erroneous tracking as, even if the DVF shows
a tendency of slipping away from its correct trajectory, caus-
ing it to get to a position around the eye center, brings it back
to the desired position.

Mouth tracking
For mouth tracking, rapid lip movements, especially in the
case where skin color cannot be easily distinguished from
lips, cause DVF’s to change very rapidly. As a result, for
some cases, the mouth area is localized at the region between
the mouth and the nose, or a region under the chin. To tackle
mouth tracking, a search area around the perpendicular bi-
sector of the inter-ocular line segment is used to search for
regions with high hue values and high horizontal edges con-
catenation. The combination of the two features is achieved
by multiplying the binary edge values with the hue compo-
nent values of the search area (see fig. 5). The mouth is then
tracked as a mask of predefined size and is localized at the
positions of maxima of the map that combines hue and hori-
zontal edges. It was proved that this technique alleviated the
problems caused by fast lip movements and the mouth area
was efficiently tracked.

(a) (b) (c) (d)

Figure 5. a) Mouth search area; b) Hue component of mouth search
area; c) Horizontal edge map of mouth search area; d) Hue multiplied
with Horizontal edge map;

Optimization of tracker
To further restrict the search areas for eye tracking and push
results to obey to anthropometric measurements, it was as-
sumed that the fraction between the inter-ocular distance and
the vertical distance between the eyes and the mouth follows
a normal distributionf(µ, σ2) with µ andσ being the mean
and standard deviation respectively. To accommodate each
face’s characteristics,µ was considered as the inter-ocular
distance to eye-mouth distance at start-up, when the user
is facing the camera frontally, whileσ was extracted from
training data of faces posing various head rotations (we used
the dataset in [7]). Thus, the extra factor corresponding to
this distribution changes eq. 6 as follows:

p =

= arg min
x

(

∑

i∈Rk

‖fk,i − fk+1,i+x‖2f(dk+1,x;µ, σ2)−1
)

= arg min
x

(

∑

i∈Rk

‖fk,i − fk+1,i+x‖2e
(dk+1,x−µ)2

2σ2
)

(7)

with dk+1,x standing for the fraction between the inter-ocular
distance and the distance between the eyes midpoint and the
mouth, at framek + 1, and translationx of the tracked eye
with regards to its position at framek. The above equation
is used when tracking each eye separately and uses the co-
ordinates of the other two features in framek for estimating
dk+1,x. µ is acquired automatically at the face/facial fea-
tures detection step andσ is extracted offline from training
data, and can be thus used at every set-up.

Estimation of Yaw, Pitch, Roll angles
Wilson’s experiments [18] demonstrated that facial features’
positions with regards to head pose contour play a key role
for human perception of head pose [7]. Knowing the skin
contour boundaries, the eye midpoint’sEi = (Ex,i, Ey,i)
and mouth centre’sMi = (Mx,i,My,i) positions at each
framei, we calculate the yaw (pitch) angle as follows: it is
modeled as the average relative changes of the distance of
E andM from the skin region verticalC1x, C2x (horizon-
tal C1y, C2y) boundaries, with regards to a frame where the
subject is facing the camera frontally. The resulting values
coming from the eye midpoint’s and mouth’s positions were
fused using linear regression.

The above are illustrated in equations 8 and 9, withYi and
Pi being the values of yaw and pitch at framei.

Yi = b1y ×
[ (Ex,i − C1x,i) + (Ex,i − C2x,i)

2 × deyes,0

−
(Ex,0 − C1x,0) + (Ex,0 − C2x,0)

2 × deyes,0

]

+ b2y ×
[ (Mx,i − C1x,i) + (Mx,i − C2x,i)

2 × deyes,0

−
(Mx,0 − C1x,0) + (Mx,0 − C2x,0)

2 × deyes,0

]

(8)

Pi = b1p ×
[ (Ey,i − C1y,i) + (Ey,i − C2y,i)

2 × deyes,0

−
(Ey,0 − C1y,0) + (Ey,0 − C2y,0)

2 × deyes,0

]

+ b2p ×
[ (My,i − C1y,i) + (My,i − C2y,i)

2 × deyes,0

−
(My,0 − C1y,0) + (My,0 − C2y,0)

2 × deyes,0

]

(9)
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(a) (b)

(c) (d)

Figure 6. Examples of skin regions boundaries and relation with the
used features’ positions

with Yi andPi the estimated yaw and pitch angle at the cur-
rent frame, andb1y, b2y andb1p, b2p the regression weights
used for fusing the information coming from the eye mid-
point and mouth centre for yaw and pitch angles, respec-
tively. Normalization with inter-ocular distance (as calcu-
lated at frame 0 where the user was looking frontally)deyes,0

is done to cater for scale variations between different sub-
jects, while the inter-ocular distance is re-calculated when
the face is facing the camera frontally. By doing so, head ro-
tation estimation is invariant to head movements along thez
axis. To suppress noisy data,Y andP can be convolved with
a N th order FIR filter (here,N=12). The above methodol-
ogy can be intuitively explained as shown in figure 6.

Estimation of Roll angle
Calculating the roll angle is straightforward: It derives from
the angle defined by the eye centers line segment and thex
axis (Fig. 7). The values are again filtered as is done for the
yaw and pitch angles.

Figure 7. Example of roll angle estimation on the BU dataset;

(a) (b)

(c) (d)

Figure 8. Example frames from the Boston University Dataset

EXPERIMENTAL RESULTS

Results on the Boston University Dataset
To evaluate the effectiveness of the described method, we
used a widely known database, namely the Boston Univer-
sity database [3]. It consists of 45 image sequences of 200
320×240 frames each, and contains 5 people, each of them
appearing in 9 videos. As they appear in the database, the
participants were allowed to move freely, along any direc-
tion, while ground truth is offered regarding their head ro-
tation at any moment, using a ”Flock of Birds” magnetic
tracker. Also, the sequences were digitized at a 30 fps rate
and the participants appear to be sitting at a distance of about
one meter from the camera. Typical example frames of the
database can be seen in Figure 8.

When testing a person’s head rotation, weightsb1y,b2y,b1p

and b2p were learnt using the rest of the subjects’ videos.
Although, here, weights were learnt from videos that used
the same camera for recording as the testing videos, in our
work we consider that the cameras do not distort the face
shape (they are neither of wide nor narrow angle) and, thus,
the weights would be expected to have the same values for
any type of camera within the scope of our research. Table
1 shows the mean errors at estimating roll, pitch and yaw
angles on the Boston University dataset, using the RMS er-
ror. We state results of other methods in literature, stating
that they are using the RMS error. It can be seen from the
results, that our method is comparable and, in cases, per-
forms even better. However, the advantage of the proposed
scheme is that no a priori knowledge regarding camera pa-
rameters or distance of the user from the camera is needed,
or limitation that the user’s face bounding box size is stable.
Figure 9 shows typical examples of angles as extracted by
our method, against ground truth data.

Results on the HPEG dataset
To test the validity of our algorithm, we used the HPEG
dataset’s [2] first session. This dataset was developed in our
laboratory, and it is challenging, in the sense that it consists
of recordings of ten people, sitting in front of a computer
monitor, and free to rotate their heads (some of them also
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Figure 9. Estimated head pose angles and corresponding ground truth.

Table 1. RMS error results on the BU

DVF tracking method in [17] method in [16]

Yaw 5.72◦ 6.10◦ 5.40◦

Pitch 4.89◦ 5.26◦ 5.60◦

Roll 3.56◦ 3.00◦ 3.10◦

(a) (b)

(c) (d)

Figure 10. Examples from the HPEG dataset

Table 2. Head Pose Estimation RMS error, using feature tracking with
Optical Flow and Distance Vector Fields

Error: Optical flow Error: DVF

Yaw 8.39◦ 6.65◦

Pitch 5.51◦ 5.59◦

Average 6.95◦ 6.12◦

their torso) towards any direction they want. Furthermore,
the dataset was acquired using a standard web-camera, while
the lighting conditions were those of a usual indoors, office
environment, with complex background and some human
action taking place in the background. The frame resolu-
tion is 640×480, while the frame rate of the recorded videos
is 30fps. Some examples of the dataset can be seen in figure
10.

To illustrate the validity of using DVFs for tracking facial
feature areas, we compared the Head Pose results with those
obtained by using the standard Lucas-Kanade algorithm. The
same restrictions as before were imposed (features limited
within the skin area, gaussian model limiting the eye-mouth
geometrical relations, search areas the same as DVF track-
ing). Table 2 shows the results of using Optical Flow track-
ing and DVF tracking on the HPEG dataset. It can be seen
that, in general, DVF is more appropriate for Head Pose Esti-
mation using facial feature tracking, as optical flow searches
for similarities of chrominance between consecutive frames
(which might have more than one solutions on the face),
while DVFs search for similar shapes, as the position of
each pixel and its relation with their neighboring shapes is
encoded. These results have shown that, for the purpose of
Head Pose Estimation, and the search areas that we use, Dis-
tance Vector Fields are more appropriate for tracking.

CONCLUSIONS AND FUTURE WORK
A new method for facial feature tracking for head pose esti-
mation has been proposed in this paper, as a necessary part
of inferring gaze of a person. As head pose is a vital compo-
nent for inferring people’s focus of attention, and sometimes
it can be a reliable stand-alone indicator, we focused on un-
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intrusive and uncontrolled environments. Our technique in-
troduces Distance Vector Fields for tracking facial features
and adopts a new methodology for efficient face tracking.
This work was inspired by the need to conduct research to-
wards un-intrusive methods for facial attention estimation,
without any prior knowledge regarding camera parameters,
environment, user, etc. The results obtained by our method
are extremely promising and tracking was successful during
all image sequences. This is largely due to the fact that we
incorporated a face tracking scheme, automatically adapted
to the user, as well as a gaussian geometrical model, which
is also acquired online. Gaze directionality estimation using
the present technique and eye gaze estimation in a common
system is within the scope of our future work and an overall
framework for user attention recognition, taking into account
user profile/character/emotional state is going to be our main
focus of attention in the near future.
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