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Abstract— During the last decades multimedia processing
has emerged as an important technology to retrieve content
based on similar data. Moreover, recent developments in the
fields of high definition (HD) multimedia content and personal
content collections (personal camcorders and digital still image
cameras) tend to generate a huge volume of multimedia data
everyday. Thus, the need for a meaningful, quick organization
and access to generated content is now more than necessary;
however, it still remains a rather difficult problem to be tackled
both by humans and computers. In this paper we propose an
intelligent extension of traditional image analysis methodologies
towards more efficient digital content retrieval. The main idea is
to extend local feature extraction methodologies by introducing
additional geometrical constraints in the process. The proposed
approach is tested and evaluated on a number of publicly
available image datasets and results are very promising.

I. INTRODUCTION

It is true that the end of the last decade has marked an
era of ubiquitous connectivity and communication between
people, devices and multimedia information. Community
multimedia content collections such as Youtube1 or Flickr2

emerged to the everyday life of millions of people, allowing
them to widespread personal multimedia data across the
Internet. Vast amounts of new multimedia content is created
daily on the Web and on personal computers, “transforming”
ordinary human beings into heavy-duty content consumers.
At this point the need for intelligent multimedia search
and retrieval capabilities is becoming evident, considering
that the produced content collections typically contain high-
quality multimedia content, which is becoming harder and
harder to access, manage and share.

The popularity of social networks and web-based personal
image collections has resulted to a continuously growing
volume of publicly available photos and videos. Nowadays,
users are constantly uploading, describing, tagging and an-
notating their personal photos. Consequently, this growth of
image collections has created the need for fast, robust and
intelligent methodologies, able to analyze large-scale, di-
verse and rather heterogeneous visual content. As traditional
keyword-based search engines give way to image-based,
intelligent and context-aware engines, the need for quick,
(semi-)automatic organization of content, boosted research
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efforts towards the direction of intelligent search and retrieval
functionalities.

Human annotation or tagging of multimedia content in
the form of accompanying metadata -nowadays used widely
within social networks- forms a way to represent and han-
dle the underlying knowledge. However, despite this clever
human intervention, multimedia content remains highly un-
structured and it is rather difficult to quickly extract important
semantics from it. Consequently, based solely on additional
textual information, it is hard to correlate raw multimedia
content to other sources of information. The ultimate research
goal remains to develop intelligent, (semi-)automated multi-
media content analysis techniques to extract knowledge from
the content itself.

The work presented herein forms an integrated approach
that aims to retrieve visually similar content in a quick and ef-
fective manner. With respect to its technical implementation,
we make use of traditional well-esteemed image analysis
techniques, such as the construction and utilization of a visual
vocabulary and a bag-of-words representation, in order to
meaningfully describe the visual properties of the selected
content under consideration. Moreover, geometric constraints
are applied, in order to extend the bag-of-words model
towards more accurate results, in terms of its efficiency
and efficacy in the multimedia content retrieval process. It
contributes to the current state-of-the-art techniques in single
modality content processing for efficient information retrieval
and takes a significant step in proposing a novel research
methodology in the field.

The structure of this paper is as follows: Section II
describes related work in the field of image retrieval, in order
to present both the relation and the novelty of the presented
approach in comparison to existing techniques. In Section III
we discuss the low-level features we used, in order to capture
the visual properties of images. In Section IV we describe
our approach for creation of a visual vocabulary, that aims
to quantize the extracted visual features and the technique
we used for the indexing of images. Section V presents the
algorithm we used in order to match the points extracted from
two images, thus estimating their distance based on their low-
level features. Section VI describes a step, that estimates
the distance between two images in a more strict way, by
exploiting the consistency of the locations of the visual
features between the two images in comparison. Finally,
experimental results on well-known datasets are presented
in Section VII and conclusions are drawn in Section VIII.



II. RELATED WORK

In this work we try to bring together important elements of
the content information retrieval research field with special
focus on the visual part. In this section we attempt to shortly
describe some important advances and point out relevant
ongoing activities for each area. Amongst the basic building
blocks of intelligent information retrieval are visual similarity
techniques based on the extraction of scale- and/or rotation-
invariant feature/interest points, leading to the construction
of a suitable visual vocabulary and corresponding indexing
of the image representation. In the following we provide a
brief overview and discuss related research efforts conducted
on the above topic.

A. Visual similarity

The easiest but less effective approach to efficient visual
similarity is to extract visual features globally. In this way,
the non-trivial task of selecting image parts or regions from
which descriptors should be extracted is skipped. In [1], a
similarity measure between images is presented. This mea-
sure is based on the Kullback–Leibler divergence between
multidimensional probability density functions of wavelet
coefficients grouped in coherent sets. Also, in [37], the
global characteristics of an image are captured along with the
local ones, by adaptively computing hierarchical geometric
centroids of the image, called neighbourhoods. This method
is applied to the problem of near-duplicate image retrieval.

Another approach which has been popular in previous
years, is to extract descriptions from regions of the image, in
an effort to capture local image characteristics and achieve
better performance than global approaches, since in many
cases two images may present the same global features, while
locally are significantly different. Typically, knowledge for
visual properties of regions is encoded in the form of a
visual vocabulary. Each region is then assigned to a visual
word. Numerous extensions of the bag-of-words approach
have been recently proposed. For example, [28] explores
techniques to map each visual region to a weighted set of
words, allowing the inclusion of features which were lost in
the quantization stage of previous systems. The set of visual
words is obtained based on proximity in the descriptor space.
In [8], images are segmented into regions and regions are
classified into visual words, using a variety of features. Then
a mapping between visual words and keywords is learned
using the Expectation Maximization method. In [19], an
approach for the linguistic indexing of images is presented,
that uses Wavelets to extract image features and Hidden
Markov Models (HMMs) to learn the association of those
features to the keywords describing the images. In [4], the
authors propose a randomised data mining method that finds
clusters of spatially overlapping images. This unsupervised
method is applied on large databases, finds clusters of
similar regions and also is capable to retrieve near-duplicates
of images. Moreover, the approach of [14] uses a visual
words’ description of images and then tries to create a more

accurate description by using Hamming embedding and weak
geometric consistency constraints.

B. Visual similarity based on points

While global extraction of features and local from regions
presents good results in certain retrieval problems, as in the
case of “object”-retrieval based applications, these techniques
present serious limitations. Thus, most modern algorithms
begin with the determination of interest points within an
image. These points carry properties such as invariance to
various image transformations, illumination etc. The methods
continue by defining regions in the neighbourhood of these
points and extract the descriptors within them. We should
note here, that while some of the papers presented herein
deal solely with object detection, the techniques mentioned
are also important in the area of image retrieval, where the
goal is to retrieve images based on the objects/places they
contain. In [5], a representation of local image structure and
a matching scheme, both insensitive to many appearance
changes is presented. This method is applied to two-view
matching of images from different modalities. Moreover,
[9] presents a method to learn and recognise object class
models from unlabelled and unsegmented cluttered scenes in
a scale invariant manner. In this work, objects are modelled as
flexible constellations of parts. A probabilistic representation
is used for all aspects of the object: shape, appearance, occlu-
sion and relative scale. An entropy-based feature detector is
then applied, for region selection within the image. Also, in
[10], object recognition is based on affine invariant regions.
Segmentation and recognition are achieved simultaneously.

In [17], the problem of near-duplicate image retrieval is
tackled with a parts-based representation of images using
distinctive local descriptors extracted from points of interest,
which are invariant under several transformations. Moreover,
the work presented in [18], uses parts affinely rigid by con-
struction. Object detectors are trained by identifying groups
of neighbouring local affine regions whose appearance and
spatial configuration remain stable across multiple instances.
In [26], a novel feature matching method aims at efficiently
tackling high-dimensional problems. The work presented in
[29] is a large-scale object retrieval system. Therein, the
query is a region of an image and the system retrieves
images that contain the same object as the one contained
in the user’s query. In [32], the target is to identify the same
rigid object or 3D location in different shots of a film, using
invariant descriptors, that facilitate multiview matching. In
[33], the authors suggest the use of local grey value invariants
for retrieving images. These features are also computed in
invariant points. Finally, in the same manner, in [23], a new
method for detecting scale invariant interest points used for
image indexing is presented.

III. LOCAL FEATURE EXTRACTION

For the representation of the visual content of a given
image, a set of interest points is first selected and visual
features are extracted locally, from their surrounding area.
Since the goal is to choose scale invariant interest points,



their localization is carried out on a gaussian scale-space.
In our system, the SURF (Speeded-Up Robust Features) [2]
features have been selected to represent the visual properties
of the images. These features have been proven to achieve
high repeatability and distinctiveness. Apart from that, their
extraction speed is high, when compared e.g. with the SIFT
features [21]. An example of the extracted SURF features is
depicted in Fig. 1.

Fig. 1. Interest points extracted with the SURF Fast Hessian detector.
The size of the yellow circle and the green line denote the scale and the
dominant orientation, respectively.

For the detection of the interest points, a fast approxi-
mation of the Hessian matrix, which exploits the use of
integral images is adopted. Then the local maxima of the
Hessian matrix determinant are chosen as interest points.
This blob response maxima process is carried out on several
octaves of a Gaussian scale-space. The correct scale is
automatically selected also from the Hessian determinant, as
introduced in [20]. For exact point localization, an efficient
non-maximum suppression algorithm is used at a 3 × 3 × 3
intra-scale neighbourhood [25].

The SURF descriptor captures the intensity content dis-
tribution around the points detected with the aforementioned
process. The first order Haar wavelet responses are computed
with the use of integral images, resulting in a 64-dimensional
feature vector. In order to achieve rotation invariance, a
dominant orientation is determined. This is selected as the di-
rection that maximizes the sum of the Haar-wavelet responses
in a sliding window of size π/3 around the neighborhood of
interest points.

To compute the descriptor, a square area around the
interest point with 20× s side length is selected and divided
in 4×4 blocks, with s denoting the interest point scale. Thus,
the descriptor is also scale invariant. At each one of the 16
blocks, 4 values that correspond to the sum of the x,y, |x|
and |y| first order Haar wavelet responses in a 5 × 5 grid
in the block, are extracted. To make the descriptor robust to
contrast changes, the descriptor vector is turned into a unit
vector.

It is clear that the selection of the aforementioned low-level
feature extraction scheme combines speed with robustness
to scale, rotation and contrast changes. The fact that the
extraction time is very small compared to other approaches

allows the use of this scheme in real time image retrieval
systems. Robustness to changes of the image guarantees that
the system would be able to match two images depicting the
same object under certain visual changes.

IV. VISUAL VOCABULARY AND INDEXING

In this section we present the method we follow in order
to create a visual vocabulary. The words contained in this
vocabulary will be used for the representation of the visual
properties of a given image. To understand the notion of a
visual vocabulary, one should consider it as an equivalent to a
typical language vocabulary, with an image corresponding to
a part of a text. In the same way that text may be decomposed
to a set of words, an image can also be decomposed to a set
of visual words. Then, in order to compare two images, the
sets of their corresponding visual words may be compared
instead. Thus, it is interesting to create a visual vocabulary,
in such a way that parts of images could be meaningfully
assigned to visual words. We should note here that due to
their polysemy, visual words cannot be as accurate as natural
language words. This means that a given visual word cannot
directly be assigned to a specific concept, but it can represent
a part of a significantly large number of concepts.

A. Visual Vocabulary Construction

In order to create the visual vocabulary, a clustering
approach is adopted. More specifically, the well-known K-
means clustering algorithm [22] is applied on the SURF
descriptors that correspond to a very large number of points
of interest. If this set of points is significantly large, the
clustering process using the K-means algorithm becomes a
very slow and impractical task. For example, clustering of
5M of points (which is a typical amount of points extracted
from 10000 images) requires a few days of processing. Even
though clustering is an offline process, one should consider
that in order to efficiently deal with large scale retrieval
problems, the size of the vocabulary should be in the order
of a few tenths of thousands of visual words as described in
[15] and [30]. Thus, in order to rapidly create an appropriate
vocabulary, the clustering process is performed on a smaller
subset, carefully selected to contain the most representative
images. After constructing the visual vocabulary, each image
has to be represented with a description that captures its
relation to all the words of it. We should also emphasize here
that in order to create a visual vocabulary able to perform
well in more than one domains, the images from which
the regions of interest are extracted, have to be diverse and
heterogeneous. Moreover the size of the visual dictionary has
to be significantly large.

B. Nearest Neighbor search using a k-d tree

The goal is to describe a given image based on the set
of the visual words it contains. This description will be
in a vector form and will be denoted as model vector. In
particular, for the formulation of a model vector, we need
to determine the visual word that is the closest in terms of
descriptor vector to each one of the image’s points. To do



this fast and efficiently we select the k-d tree structure. The
structure of k-d trees has been widely used in information
retrieval [12], [3]. This data structure is a binary tree, which
stores a finite number of k-dimensional data points and has
been widely applied in the fields of computer learning [24]
and neural networks [27]. Within the presented work, k-d
trees are used in order to find the closest visual word of
every point of interest, which is typically a very difficult and
time consuming task due to the large dimension of points.

Given N k-dimensional elements, the k-d tree is con-
structed by partitioning the space iteratively, one dimension
at a time. At each iteration, the feature space is divided into
two subspaces along the selected dimension. This is repeated
until each subspace contains a single point. This process
creates a tree which allows a very fast search for all data
points. The height of this tree is equal to log(N).

In the case of the presented system, a k-d tree is created by
the centroids of the clusters that are created by the clustering
process. The dimension of the centroids is equal to 64. These
centroids comprise the visual words of the visual vocabulary.
This tree is created once and for all the images that we would
like to index. Then, within the process of formulating the
model vector for each point of the given image, its nearest
neighbor is determined using the k-d tree.

C. Model Vector Formulation

After constructing the visual vocabulary, a given image
is then represented in terms of it using a model vector. We
assign the most similar visual word of the vocabulary to each
descriptor of an image. Then, a histogram is constructed for
each image, which counts the occurrences of the visual words
of the vocabulary within it. If Nvw is the size of the visual
vocabulary, the model vector mvI that describes the visual
content of a given image I is denoted by

mvI =
[
tfI(0), tfI(1), . . . , tfI(Nvw)

]
, (1)

where tfI,i denotes the number of times that the visual word
i was selected as a nearest neighbor of one of the interest
points extracted from image I . In order to find the closest
visual word to a point, the aforementioned k-d tree structure
is used.

The histogram of visual word appearance frequencies is
then normalized and its non-zero values are stored in an
index which resembles to the technique of inverted files,
widely used in fast text retrieval [35],[36]. Each image
is then represented by its corresponding visual words and
the frequencies these occur. From this point, when it is
mentioned that a visual word appears within an image, this
would mean that this visual word is the nearest neighbor of
one or more of the image’s interest points.

When it is formed, based on large vocabularies of over
100K of visual words, the model vector is very sparse. The
maximum number of non-zero values is at most equal to the
number of the image’s interest points in the extreme case
when each of them is assigned to a different visual word.

Since this indexing process is inspired by techniques
applied in the task of textual search, in addition to the term

(a)

(b)

Fig. 2. Matching of two images without a visual vocabulary (2(a)) and
with a visual vocabulary (2(b)).

frequency (tf), which is the frequency of a given term in
a document, inverse document frequency (idf), can also be
used. This case is studied in Section IV-D.

The process of querying an image database without and
with a visual vocabulary is depicted in Fig. 2. In the first case
the comparison of local descriptors is performed immediately
for two images and after exhaustive comparisons in the whole
database, the closest regions are found. In the latter case, for
every image of the database all points have been assigned to
appropriate visual words of the visual vocabulary. Thus, for a
new query, its points have to be assigned to the closest visual
words of the vocabulary. After this process, two images are
considered to be similar if their points are assigned to similar
visual words.

D. Inverse Document Frequency and Stop List

Inverse Document Frequency is another technique used in
information and text retrieval [31], which during the last few
years has been used for image retrieval, either along with
language processing [16], or using visual dictionaries [34]
[7].

The model vector of an image has taken, up to now, only
the frequency of the appearance of a visual word as a nearest
neighbor to any of the interest points into account. We define
the Inverse Document Frequency or idf as

idfk = log
N

nk
, (2)

where N denotes the total number of the images of the given
collection (the size of the database) and nk the number of the



appearences of the visual word V Wk as the nearest neighbor
to all points of all images in the database. Thus, idf acts
as a weighting scheme, which identifies the most and less
frequent visual words of the entire collection. The model
vector can now be formulated as

vI =
[
idf0 · fI(0), . . . , idfK · fI(K)

]
, (3)

with idfk being the idf value of the visual word k.
It is obvious that the most common visual words, i.e. those

with the smallest idf values, are not discriminative and their
absence would facilitate the retrieval process. On the other
hand, the rarest visual words are in most of the cases a result
of noise and may distract the retrieval process. To overcome
these problems, a stop list is created that includes the most
and the least frequent visual words of the image collection.
Using this list, the presence of its visual words is ignored,
resulting to even sparser model vectors and thus to smaller
image representations.

V. MATCHING

In order to compute the similarity between two given im-
ages, two similarity measures are used. The first is the inner
product between the model vectors, which is a commonly
used measure. Let vQ and vI be the model vectors for the
query image Q and a database image I respectively. Then,
their matching score can be computed as

s2(Q, I) = 〈vQ, vI〉 =
K∑

i=0

vQ(i)vI(i) , (4)

where Nvw denotes the size of the visual vocabulary and
vx(i) denotes the term frequency of the visual word i in
image x.

The second similarity measure, that also proved to yield
better results in practice, is the histogram intersection, dis-
cussed in [7]. Since the model vectors are histograms of
visual words, the similarity between the model vector that
corresponds to the query image and the one that corresponds
to the database image is computed as

s1(Q, I) =
K∑

i=0

min(vQ(i), vI(i)) . (5)

For both matching schemes and since the vectors are prac-
tically very sparse, the inverted file scheme is used in order
to decrease matching time.

When a query is performed, first the local low-level
features are extracted from the query image and its model
vector is computed. Then the similarity of the query model
vector with all database model vectors is computed, and the
N most similar images, that is the images with the highest
similarity values, are either returned to the user as similar,
or become candidates for geometric consistency checking, as
explained in Section VI.

VI. GEOMETRIC CONSISTENCY CHECKING

When the retrieval process considers only the model vec-
tors that represent the visual content of images, it sometimes
fails to produce accurate results, because the bag-of-features
approach totally ignores the geometry of the extracted inter-
est points. That is, because two images can contain similar
visual words, which appear in a totally different spatial layout
one from the other. Thus, the inclusion of a geometry con-
sistence checking would be very useful. The method usually
adopted is the RANSAC algorithm [11]. This method can
determine the geometric transformation between two images
given a set of tentative point-to-point correspondences, in
presence of many false such correspondences that are also
called outliers. In fact the RANSAC algorithm estimates the
transformation that maximizes the number of inliers that
is the set of correspondences that support the model. A
modification of the RANSAC algorithm called Fast Spatial
Matching[29] has been applied in this paper and is described
in detail in section VI-A.

It is obvious that RANSAC relies a lot in the correspon-
dences among points, which will be provided initially. These
correspondences are not available, thus need to be calculated
each time. A method that determines the nearest neighbors is
not efficient, since it is a very time-consuming procedure that
also needs to be computed online. However, we can exploit
the correspondences between points and visual words, in
order to create tentative point correspondences between two
images. This requires an additional indexing process. Within
this procedure, for every given image and each of its visual
words, we store the locations of the corresponding points
that yield these visual words as their nearest neighbors. We
should note here that this process is very fast.

This procedure, however, introduces many false correspon-
dences, due to the quantization effects of the bag-of-words
approach. So, if, for example, a visual word appears 4 times
in an image and 5 in another, then for this pair and with
our method 4 × 5 = 20 correspondences will be formed,
instead of the 4 correct ones. Taking this into account,
we follow a rejection procedure, called neighbor checking.
This method rejects correspondences between points whose
neighborhoods do not match [34]. This means that in order
for a tentative correspondence to be considered as valid,
we require some of its spatially neighboring points to also
have a valid correspondence between them. An example of
RANSAC inliers between two images in the presence of
partial occlusion is depicted in Fig. 3.

We choose not to apply this method in the whole database,
but rather in the most similar images, in terms of their model
vectors. The outcome of RANSAC, which is the number of
inliers, is used to filter the most similar images and re-rank
them. This approach appears to decrease the number of false
positives. Using an appropriate threshold on the retrieved
results, a higher precision can be easily achieved.



Fig. 3. The inliers found by RANSAC between two images.

A. Spatial verification using Fast Spatial Matching

The well known RANSAC algorithm is applied between
two images in order to determinate the geometric trans-
formation between them, in presence of outliers. We use
a deterministic modification of RANSAC to determine the
affine transformation between a pair of two images. Given
a set of correspondences between two images, i.e., the pairs
xi ↔ x′

i, we can define the affine transformation matrix H
by

x′
i = Hxi . (6)

While in the original RANSAC algorithm 3 correspon-
dences are needed to create an initial hypothesis for affine
transformation, in Fast Spatial Matching an initial hypoth-
esis is created by single correspondences of SURF features
leading to an initial similarity transformation between the two
images. Using single correspondences for hypothesis genera-
tion makes it feasible to evaluate all possible transformations
based on the tentative correspondences, thus removing the
randomness of the algorithm [29]. The geometric model
with the highest number of inliers so far is kept after each
iteration. When a better model is found, then using the inliers
of the similarity transformation, the Local-Optimization step
[6] is executed in order to determine an affine transformation
in the least-squares sense.

Given the correspondences of the points between two
images, the algorithm is summarized as follows:

• Randomly select a tentative correspondence, from the
set of the ones not selected so far. This is a correspon-
dence between two circular regions found by the SURF
detector C ←→ C ′.

• Based on C ←→ C ′ and on the transforms H1, H2

which will transform C, C ′ correspondingly to the unit
circle, the overall similarity transformation is H =
H−1

2 H1.
• Using H , calculate the symmetric transfer error Ei[13]

for each correspondence and find the set I for which
Ei < θ. This is the set of inliers.

• If |I| is the highest so far, then use the Local-
Optimization, solve for affine transformation and use
it to recalculate the set of inliers.

It is appropriate to notice that although our method was
initially based on scale and rotation invariant regions for an
initial transformation hypothesis (which is a similarity trans-
formation), we finally calculated the affine transformation

using Local-Optimization.

VII. EXPERIMENTAL RESULTS

First we present the datasets we used in order to evaluate
the proposed method. All of the datasets are annotated and
publicly available, namely:

• UK Bench: This dataset contains 10000 images of 2500
objects. 4 pictures correspond to each object, taken from
different angles. A sample of this dataset is depicted in
Fig. 4(a).

• Zurich Buildings (Zurich1): This dataset is a collection
of images of buildings in Zurich. It contains 1005
images from 201 different buildings. A sample of this
dataset is depicted in Fig. 4(b).

• Zurich Buildings with distractors (Zurich2): The Zurich
Bulidings Dataset, augmented with 5000 “distractor”
images. i.e. images that should not be returned by any
query.

• Caltech: We used a subset from the Caltech101 database
which contained 1025 images from 8 categories (zebra,
car, racket, tennis, insects, cows, airplanes, motorcycles
and Eiffel tower). A sample of this images is depicted
in Fig. 4(c)

We constructed a visual vocabulary of 10000 visual words
and for the evaluation of the presented work, we utilized
the mean Average Precision (mAP) metric. Results are sum-
marized in Table I. In general, we observe robust retrieval
results, with high precision rates on the top-ranked images’
list.

Best results were achieved at the Zurich Buildings datasets.
There, we observe that although a large amount of distractors
were added, the performance remained significantly high.
We may notice that the performance in the Caltech dataset
appears poor, in comparison to the other datasets. However,
we should emphasize that images of each category of this
dataset belong to the same object class and not to the same
object, while in the other datasets they belong to multiple
views of the same object.

Overall, the performance of the proposed technique ap-
pears very promising and the experimental results indicate
its robustness in diverse data sets.

TABLE I
MEAN AVERAGE PRECISION VALUES FOR THE AFOREMENTIONED

DATASETS. MAP(GC) AND MAP ARE ESTIMATED WITH AND WITHOUT

FAST SPATIAL MATCHING, RESPECTIVELY.

Dataset Size (images) mAP(GC) mAP
UK Bench 10500 0.55 0.33

Zurich1 1005 0.80 0.57
Zurich2 6005 0.73 0.42
Caltech 1025 0.42 0.35

VIII. CONCLUSIONS

The work presented in this paper is an approach that
manages to efficiently retrieve visually similar multimedia



content. We utilized traditional analysis techniques, like
construction and utilization of a visual vocabulary and a bag-
of-words representation, in order to meaningfully describe
the visual properties of the selected content. We then applied
geometric constraints in order to extend the model and
obtained more accurate results in the retrieval process. Future
work will include application to larger image datasets and
tackling of computational issues and limitations of the pro-
posed representation model, so that this is used for efficient
object recognition.
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Fig. 4. Sample images of the UK Bench, Zurich Buildings and Caltech
datasets.


