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Abstract. This paper deals with the problem of saliency map estimation in 
computational models of visual attention. In particular, we propose a wavelet 
based approach for efficient computation of the topographic feature maps. 
Given that wavelets and multiresolution theory are naturally connected the 
usage of wavelet decomposition for mimicking the center surround process in 
humans is an obvious choice. However, our proposal goes further. We utilize 
the wavelet decomposition for inline computation of the features (such as 
orientation) that are used to create the topographic feature maps. Topographic 
feature maps are then combined through a sigmoid function to produce the final 
saliency map. The computational model we use is based on the Feature 
Integration Theory of Treisman et al and follows the computational philosophy 
of this theory proposed by Itti et al. A series of experiments, conducted in a 
video encoding setup, show that the proposed method compares well against 
other implementations found in the literature both in terms of visual trials and 
computational complexity. 
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1   Introduction 

In saliency-based visual attention algorithms efficient computation of the saliency 
map is critical for several reasons. First, the algorithm itself should model in an 
appropriate manner the visual attention process in humans. This is by no means easy. 
Visual attention theory has been constructed mainly by neuroscientists without taking 
into account computational modeling difficulties. On the other hand, computational 
models have been developed mainly by engineers and computer scientists which in 
several cases compromise theory in favor of implementation efficiency. Second, 
algorithm's implementation should conform to real life situations and settings. 
Perceptual based video coding is one of the areas that visual attention fits well. 
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However, in applications like video-telephony real-time video encoding is a 
requirement. Therefore, if a computational model of visual attention is to be used, 
then its implementation should be both fast and effective. Finally, integration of the 
topographic feature maps into the overall saliency map should be performed in a 
reasonable way and not ad hoc as it happens in most existing models where 
normalization and additions is the combination method of preference. 

2   Saliency-Based Visual Attention 

2.1   Existing Computational Models 

The basis of many visual attention models proposed over the last two decades [1] – 
[3] is the Feature Integration Theory (FIT) of Treisman et al [4] that was derived from 
visual search experiments. According to this theory, features are registered early, 
automatically and in parallel along a number of separable dimensions (e.g. intensity, 
color, orientation, size, shape etc).  

One of the major saliency-based computational models of visual attention is 
presented in [5] and deals with static color images. Visual input is first decomposed 
into a set of topographic feature maps. Different spatial locations then compete for 
saliency within each map, such that only locations that locally stand out from their 
surround can persist. All feature maps feed, in a purely bottom-up manner, into a 
master saliency map. Itti and Koch [6, 7] presented an implementation of the proposed 
saliency-based model. Low-level vision features (color channels tuned to red, green, 
blue and yellow hues, orientation and brightness) are extracted from the original color 
image at several spatial scales, using linear filtering. The different spatial scales are 
created using Gaussian pyramids, which consist of progressively low-pass filtering and 
sub-sampling the input image. Each feature is computed in a center-surround structure 
akin to visual receptive fields. Using this biological paradigm renders the system 
sensitive to local spatial contrast rather than to amplitude in that feature map. Center-
surround operations are implemented in the model as differences between a fine and a 
coarse scale for a given feature. Seven types of features, for which evidence exists in 
mammalian visual systems, are computed in this manner from the low-level pyramids.  

2.2   The Proposed Wavelet-Based VA Model Implementation 

In this work we begin from the model of Itti & Koch and make use of the YCrCb 
colour model [8], instead of RGB, and the hierarchical wavelet decomposition of 
Mallat [9] to provide an efficient way of computing saliency maps in static images 
and video sequences. 

Let’s consider a colour image f, represented in using the YCrCb colour model. 
Channel Y corresponds to the illumination, and can be used for identifying 
outstanding regions according to illumination and orientation, while Cr (Chrominance 
Red) and Cb (Chrominance Blue) correspond to the chrominance components and can 
be used to identify outstanding regions according to colour. 
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In the proposed method salient areas based on intensity, orientation, and colour are 
computed in several scales. In this way, outstanding objects of different sizes are 
recognized as such. Combining the results of intensity, orientation, and colour feature 
maps at various scales provide the intensity (CI), orientation (CO) and colour (CC) 
conspicuity maps. The motivation for the creation of the separate conspicuity maps is 
the hypothesis that similar features compete strongly for saliency, while different 
modalities contribute independently to the saliency volume. Hence, after the intra-
feature competition the three conspicuity maps are normalized and summed into the 
saliency map. Both feature and conspicuity maps are combined using a saturation 
function (sigmoid) to preserve the independency and added value of each separate 
feature channel and scale. 

The proposed method is analysed in detail in the following paragraphs. 

3   Saliency-Map Computation 

In order of multiscale analysis to be performed a pair of low-pass )(⋅φh  and high-pass 

filter )(⋅ψh  are applied to each one of the image’s colour channels Y, Cr, Cb, in both 

the horizontal and vertical directions. The filter outputs are then sub-sampled by a 
factor of two, generating the high-pass bands H (horizontal detail coefficients), V 
(vertical detail coefficients), D (diagonal detail coefficients) and a low-pass subband 
A (approximation coefficients). The process is then repeated to the A band to generate 
the next level of the decomposition. 

The following equations describe mathematically the above process for the 
illumination channel Y. It is obvious that the same process applies also to Cr and Cb 
chromaticity channels: 
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where ∗  denotes convolution, ),( nmY j
A
−  is the approximation of Y channel at j-th 

level (note that  YnmYA =− ),(0 ), and m2↓  and n2↓  denote down-sampling by a 

factor of two along rows and columns respectively.  
 
Following the decomposition of each colour channel at specific depth we use center-
surround differences to enhance regions that locally stand-out from the surround. 
Center-surround operations resemble the preferred stimuli of cells found in some parts 
of the visual pathway (lateral geniculate nucleus-LGN) [4]. Center-surround 
differences are computed in a particular scale (level j) using the morphological 
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gradient (difference between morphological opening and closing [8]) for the intensity 
and colour feature maps and the sum of differences of detail bands for the orientation 
feature map, as shown in the following equations: 
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  C-j = CR-j + CB-j  (2.5) 

In the above equations by ),( nmI j− , ),( nmO j− , ),( nmC j− ,  we denote the 

intensity, orientation and colour feature maps computed at scale j while  •  and  
denote the closing and opening operators respectively. 

The structuring element b is a disk of radius equal to Jmax where Jmax is 
maximum analysis depth and is computed as follows: 
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where in ⎣ ⎦xy =  y is the highest integer value for which yx ≥ , and R, C are the 

number of rows and columns of input image respectively.  

 

     
(a) (b) (c) (d) (e) 

Fig. 1. Locally stand-out regions, at level 3, based on: (a) intensity, (b) orientation, and (c) 
colour. In (d) and (e) are shown the individual chromaticity feature maps (CR and CB). 

Fig. 1 (a)-(c) shows the intensity, orientation and colour feature maps at scale 3 

( ),(3 nmI − , ),(3 nmO − , ),(3 nmC − ) along with the individual chromaticity feature 

maps ( ),(3 nmCR− , ),(3 nmBC − ) whose point by point addition produced the colour 

feature map.  
In Fig. 2 (a)-(c) the intensity, orientation and colour feature maps at scale 1 are 

shown. It is important to note that the areas that stand-out from their surround are 
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(a) (b) (c) 

Fig. 2. Locally stand-out regions, at level 1, based on: (a) intensity, (b) orientation, and (c) 
colour 

significantly smaller (proportionally) than the ones shown in Fig. 1. Therefore, a 
combination of the features maps at the various scales (conspicuity maps) is needed to 
cover both small and large stand-out objects. Combination of different scales is 
achieved by interpolation to the finer scale, point-by-point subtraction and application 
of a saturate function to the final result. The following equations describe 
mathematically process of combining the results of two successive scales for the 
orientation conspicuity map. It is obvious that the same process applies also to 
intensity and colour conspicuity maps: 
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where ),( nmO j−  is the orientation feature map computed at level j (see eq. 2.2), 

),( nmC j

O

−  is the orientation conspicuity map at level j, ),(ˆ nmC j

O

−  is the interpolation 

of ),()1( nmC j

O

+−  at a finer scale j, and m2↑  and n2↑  denote up-sampling along rows 

and columns respectively.  
An example of intensity, orientation and colour conspicuity maps computed using 

analysis depth equal to 3 is shown in Fig.3. 
After creating this intermediate multi-resolution representation (conspicuity maps 

per feature), where salient areas are enhanced and pop-out from the surround, an 
across-scale combination is applied to create a single saliency map. For this purpose a 
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(a)  (c) 

Fig. 3. Conspicuity maps computed using analysis depth (Jmax) equal to 3 (a) intensity (b) 
orientation, and (a) colour 

 

 

 
(a)  (c) 

Fig. 4. (a) An input frame, (b) Saliency map computed at depth 1. Note that though the 
floodlight it is a clearly stand-out object it is not recognized as such at this level. 
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saturate function is applied so as to preserve the independency and added value of the 
particular concpicuity maps. This process is described mathematically by the 
following equation: 

( )( ) 1
1
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= −−− ++− nmCnmCnmC COIe

nmS  (5) 

where ),(0 nmCI
− , ),(0 nmCO

− , and ),(0 nmCC
−  are the intensity, orientation and colour 

conspicuity maps respectively.  
Figs. 4 and 5 show examples of saliency maps computed using depths 1, 3, and 4. 

In the latter case objects covering as much as 20% of the whole image can be 
identified as standing-out from their surround.    

 

 

 

 
(a)  (c) 

Fig. 5. Saliency maps computed using analysis depth (Jmax) equal to (a) 3 and (b) 4. In (a) the 
floodlight starts appearing as a stand-out object but the overall saliency maps is rather noisy. In 
(b) the floodlight it is clearly a stand-out object while the saliency map is smooth. 

4   Visual Trials Tests and Experimental Results 

To evaluate the algorithm, we simply use it as a front end; that is, once the VA-ROI 
areas identified the non-ROI areas in the video frames are blurred. Although this 
approach is not optimal in terms of expected file size gains, it has the advantage of 
producing compressed streams that are compatible with existing decoders [10].  
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Visual trial tests were conducted to examine the quality of the VA-ROI based 
encoded videos. These tests are based upon ten short video clips, namely: 
eye_witness, fashion, grandma, justice, lecturer, news_cast1, news_cast2, 
night_interview, old_man, soldier (see [11]).  All video clips were chosen to have a 
reasonably varied content, whilst still containing humans and other objects that could 
be considered to be more important (visually interesting) than the background. They 
contain both indoor and outdoor scenes and can be considered as typical cases of 
news reports based on 3G video telephony. However, it is important to note that the 
selected video clips were chosen solely to judge the efficacy of VA ROI coding in 
MPEG-1 and are not actual video- telephony clips.  

For each video clip encoding aiming at low-bit rate (frame resolution of 144x192, 
frame rate 24 fps, GOP structure:  IBBPBBPBBPBB) has been taken place so as to 
conform to the constraints imposed by 3G video telephony. Two low-resolution 
video-clips were created for each case, one corresponding to VA based coding and the 
other to standard MPEG-1 video coding. 

4.1   Experimental Methodology 

The purpose of the visual trial test was to directly compare VA ROI based and 
standard MPEG-1 encoded video where the ROI is determined using the proposed 
VA algorithm. A two alternative forced choice (2AFC) methodology was selected 
because of its simplicity, i.e., the observer views the video clips and then selects the 
one preferred, and so there are no issues with scaling opinion scores between different 
observers [12]. There were ten observers, (5 male and 5 female) all with good, or 
corrected, vision and all observers were non-experts in image compression (students). 
The viewing distance was approximately 20 cm (i.e., a normal PDA / mobile phone 
viewing distance) and the video clip pairs were viewed one at a time in a random 
order. 

The observer was free to view the video clips multiple times before making a 
decision within a time framework of 60 seconds. Each video pair was viewed twice, 
giving (10x10x2) 200 comparisons. Video-clips were viewed on a typical PDA 
display in a darkened room (i.e., daylight with drawn curtains). Prior to the start of the 
visual trial all observers were given a short period of training on the experiment and 
they were told to select the video clips they preferred assuming that it had been 
downloaded over a 3G mobile / wireless network.  

4.2   Results 

Table 1 shows the overall preferences, i.e., independent of (summed over) video clips 
for standard MPEG-1 and VA ROI-based encoded MPEG-1. It can be seen in that 
there is slight preference to standard MPEG-1 which is selected at 52.5% of the time 
as being of better quality. However, the difference in selections, between VA ROI-
based and standard MPEG-1 encoding, is actually too small to indicate that the VA 
ROI-based encoding deteriorates significantly the quality of produced video. At the 
same time the bit rate gain, which is about 27% on average (see also Table II), shows 
clearly the efficiency of VA ROI based encoding. 
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Table 1. Overall preferences (independent of video clip) 

Encoding Method Preferences Average Bit Rate (Kbps) 

VA-ROI  95 224.4 
Standard MPEG -1 105 308.1 

Table 2. Comparison of VA-ROI based and Standard MPEG-1encoding in ten video seqs 

Video Clip Encoding Method Bit Rate (Kbps) Bit Rate Gain  
VA-ROI 319Eye_witness,  
Standard 386 

17 (%) 

VA-ROI 296fashion 
Standard 354 

16 (%) 

VA-ROI 217grandma 
Standard 256 

15 (%) 

VA-ROI 228 justice 
Standard 318 

28 (%) 

VA-ROI 201  lecturer 
Standard 274 

27 (%) 

VA-ROI 205 news_cast1 
Standard 297 

31 (%) 

VA-ROI 170 news_cast2  
Standard 270 

37 (%) 

VA-ROI 174 night_interview 
Standard 335 

48 (%) 

VA-ROI 241  old_man   
Standard 321 

25 (%) 

VA-ROI 193  soldier 
Standard 270 

29 (%) 

VA-ROI 224.4 Average 
Standard 308.1 

27.2 (%) 

Table 2 presents the bit-rates achieved for both the VA ROI based encoding and 
standard MPEG-1 in the individual video clips. It is clear that the bit rate gain obtained 
is significant, ranging from 15% to 48%. Furthermore, it can be seen from the results 
obtained in the night_interview video sequence, that increased bit-rate gain does not 
necessarily mean worse quality of the VA ROI encoded video. 

Bit-rate gain achieved by JPEG encoding of the individual video frames (not 
shown in Table 2) is on average about 21% (ranging from 14% to 28%). This 
indicates that the bit-rate gain is mainly due to the compression obtained for Intra-
coded (I) frames than for the Inter coded (P,B) ones. This conclusion strengthens the 
argument that smoothing of non-ROI areas may decrease the efficiency of motion 
compensation. 
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